
Empowering OWL with Overriding Inheritance, Conflict Resolution and
Non-monotonic Reasoning∗

Shazzad Hosain and Hasan Jamil
Department of Computer Science, Wayne State University, USA

shazzad@wayne.edu, jamil@cs.wayne.edu

Abstract

The popularity of OWL for knowledge representation
in the Semantic Web applications makes it an attrac-
tive platform. Although OWL supports some form
of object-oriented features for knowledge structuring
and maintenance, it is significantly weak in capturing
most essential object-oriented features such as single
and multiple inheritance, default class values, meth-
ods, overriding and encapsulation in their true spirits.
It is also weak in extending reasoning support for in-
telligent knowledge processing. Such features are be-
coming increasingly essential in applications such as
social networks, e-commerce and knowledge rich on-
tology for Life Sciences. In this paper, we propose
an extension of OWL toward a more powerful knowl-
edge structuring language, called OWL++, by support-
ing multiple different types of inheritance with overrid-
ing, and non-monotonic reasoning capabilities within
OWL. We demonstrate OWL++’s computability and
implementability by presenting a translational seman-
tics of OWL++ to OWL, for which we have robust ex-
ecution engines while for the reasoning component of
OWL++ we rely on Jena to support rules in OWL.

Introduction

Since W3C accepted OWL Web Ontology Language as a
standard for knowledge representation in the Semantic Web
several years ago, OWL has become the leading ontology
language in industry and academia as evidenced by the sig-
nificant number of applications and development tools re-
ported in the literature. Despite OWL’s immense popularity,
its inherent limitation in handling exceptions and conflicts
in multiple inheritance hierarchies poses significant hurdles
in naturally capturing modern application semantics that de-
mand advanced constructs to structure knowledge. This lim-
itation may be attributed to OWL’s semantic foundations
rooted in Description Logic (DL). From a software engi-
neering and knowledge representation standpoint, the im-
portance of class and inheritance hierarchies has been well
documented in the literature and in OWL’s own adoption of

∗Research supported in part by National Science Foundation
grants CNS 0521454 and IIS 0612203.
Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

these concepts to a limited extent. The insistence on inher-
itance with overriding in class hierarchies also demands at-
tention to the concomitant issue of conflict resolution due to
multiple inheritance and exceptions. The absence of a satis-
factory semantic along these lines in OWL has been a major
bottleneck for its wider use in modern applications requiring
serious knowledge representation tools.

Conflicts and exceptions are natural in common sense
knowledge. To appreciate the breadth and scope of excep-
tions in the context of the Semantic Web, we summarize be-
low the various different ways it can manifest itself in such
applications. For example,

• Rules with Exception: In e-commerce it is common to
have conflicting business rules. In (Antoniou and Arief
2002), the authors present several such rules with excep-
tions. One of the simple ones says that ’If a customer is
loyal then grant discounts’, which is in contradiction with
the general business rule that states ’No discount may be
allowed to customers’.

• Reasoning with Incomplete Information: (Antoniou and
Arief 2002) also describes a scenario where business rules
have to cope with incomplete information, i.e. in the ab-
sence of certain information some assumptions have to
be made that lead to conclusions not supported by OWL.
For example, conventional wisdom dictates that the pack-
aging for tax free food is also tax free. However, in the
absence of the knowledge that any packaging that is more
exotic than usual is not tax free.

• Ontology Merging: When ontologies from different
sources are merged, contradictions arise naturally and
OWL cannot cope with such inconsistencies.

• Default Inheritance in Ontologies: The need for default
value inheritance in ontologies has been discussed in
(Bernstein and Grosof 2003) in the context of modeling
the MIT Process Handbook. As pointed out in this ex-
ample, and numerous others (Jamil 1997), default values
and overriding inheritance of such values in inheritance
hierarchies are one of the most effective, efficient and ele-
gant ways of factoring information and streamlining their
maintenance.

• Non-monotonic Reasoning: Once exceptions are allowed,
and reasoning is supported, the natural demand is the

53

support for non-monotonic reasoning as advocated in
RuleML.

To exemplify the need for representing default values and
their inheritance in OWL class hierarchies, let us discuss
a simple scenario. In OWL, all properties are defined out-
side of class descriptions and are thus decoupled from all
classes making them global in nature, exposed and available
to all classes. The mapping constructs domain and range ex-
ternally tie properties to OWL classes. Since a property is
global, default value assignment is not feasible or meaning-
ful for OWL classes. Essentially, values are thus assigned
at the instance level. For example, if class GradStudent
has a monthlySalary property with a default value $1,500,
then in OWL we need to assign this value to every Grad-
Student instance explicitly through textual assignment. In
essence, the inheritance of the default value and its possi-
ble overriding is decided statically at compile time, leaving
no option for updating the default value. This leaves the is-
sue of maintenance on shaky ground because if we are to
change this default value to another value, say $1,700, we
will be required to update the knowledge base entirely and
replace all occurrences of $1,500 to $1,700. As opposed
to OWL, object-oriented (OO) systems handle default val-
ues quite elegantly. In OO systems, default class values are
assigned inside a class template to an attribute or class vari-
able (Meditskos and Bassiliades 2008) which is local to the
class, and thus, shielded from outside use. The mechanism
of inheritance is used to share this value at run time at the
instance or subclass level, giving the opportunity to update
the class value when needed without the need to update all
instance objects locally. This dynamic resolution of over-
riding and default value inheritance facilitates maintenance
and improved knowledge structuring as we will witness in
the following sections. OO systems also are better equipped
to handle conflicts in the case of multiple inheritance (Jamil
1997) but OWL simply does not support this feature.

Contributions of OWL++

In this paper, we present an extension of OWL called
OWL++ to support default value inheritance, overriding,
conflict resolution and non-monotonic reasoning in a spirit
similar to OO systems. So, the main contributions of our
proposal can be summarized as follows:

• We introduce the notion of default property values in
OWL classes and their inheritance with overriding in the
class hierarchies.

• We address the issue of multiple inheritance and conflict
resolution through the introduction of the concept of prop-
erty locality and inheritability in OWL class hierarchies.

• We also introduce the concept of null inheritance1 in
OWL to model withdrawal of properties in subclasses to
aid conflict resolution and to support complex inheritance
needs.

1A superclass in OWL++ may inhibit a subclass from inherit-
ing its properties by declaring them null, such as AverageSalary in
employee class, which has no meaning at the instance level.

property rdfs : subClassOf

Member

Student

profession

Literal

scholarship

Donor
Mentor

Associate

Literal
Literal

monthlyFee

Literal
Teacher

Code
Goldif(12* monthlyFee)

+donation5000

type

Literal
100

pr
ofe

ssi
on

Literal

profes
sio

n

Literal

Donor:professio
n

donation
Literal

na
me

Figure 1: Classes showing inheritance modes and types

• As a demonstration of its implementability and the sound-
ness of its semantics, we present a translation procedure
of OWL++ to OWL. OWL++ is implemented as a Java
based front-end through which the users interact on top
of Jena (jena.sourceforge.net). We chose to use a transla-
tional semantics to leverage existing robust OWL engines
such as Jena for our implementation to avoid effort dupli-
cation, ease of implementation and efficiency, and for the
reasoning support it offers for OWL.

A Motivating Example

We now discuss modeling a social network type of appli-
cation similar to Facebook and LinkedIn using OWL++ for
expository purposes to highlight its salient features on intu-
itive grounds. In this example application, we model a non-
profit humanitarian group that aims to promote education in
the less fortunate parts of the world. Every member of this
social network is classified as a Donor, Student, Mentor
or Associate. Donors offer financial resources or funds to
students for their education. Mentors are professional teach-
ers who act as surrogates to administer the funds donated by
donors and guide students, while Associates offer support
in the form of coordination and program organization. The
associates in this social network are usually members of the
Mentor class who are teachers.

Figure 1 shows a partial ontology of this application in
which classes are shown in ovals (i.e., Donor), solid arrows
represent properties and the annotations on the arrows rep-
resent their names (i.e., monthlyFee), solid rectangles repre-
sent default class values (i.e., $100), and dashed rectangles
depict default class values (also known as virtual attributes)
that are computed (i.e., Gold if (monthlyFee*12 + donation)
≥ $5,000). Computed property values are essentially a set of
rules that assigns a value to the property when executed. A
bar above any rectangle indicates an inhibition of the asso-
ciated property in the class for which the property is defined
(i.e., property profession in Student class is withdrawn al-
though it is a subclass of Member). It is important to note
here that in OWL++, a property can only be associated with

54

one class giving the property a specific locality that we ex-
ploit in overriding and conflict resolution decisions during
inheritance in OWL++. Finally, a dashed arrow captures the
notion of subclasses in OO systems (i.e., Donor inherits all
the properties of Member being one of its subclasses and
additionally defines three new properties monthlyFee, dona-
tion, and category). Inhibited property annotations can be
further prefixed with class names to indicate the choice of
inhibition (i.e., Donor:profession in class Associate). This
feature is useful for the purpose of inheritance conflict reso-
lution as we will discuss shortly.

Preliminaries

To stay consistent with OWL and one of its extensions called
SWRL, we adapt the syntax of these two languages with
slight modifications to be able to introduce the primitives of
OWL++. We now briefly discuss the syntax and semantics
of OWL (Patel-Schneider, Hayes, and Horrocks 2004) and
SWRL (Horrocks et al. 2004) as adapted in OWL++.

OWL Web Ontology Language

Definition 1 (OWL Vocabulary) The OWL vocabulary V
consists of a set of literals VL and seven sets of URI ref-
erences, VC , VD, VI , VDP , VIP , VAP , and VO . The com-
ponents of V , i.e., VC , VD, VI , VDP , VIP , VAP , and VO ,
are pairwise disjoint. VC consists of class names owl:Thing
and owl:Nothing. VD consists of OWL URI reference for
built-in datatype name rdfs:Literal. VAP is the set of annota-
tions containing owl:versionInfo, rdfs:label, rdfs:comment,
rdfs:seeAlso, and rdfs:isDefinedBy. Finally, the individual-
valued property names VIP , the data-valued property names
VDP , the individual names VI , and the ontology names VO

of V do not have any required members.

Definition 2 (OWL Interpretation) An OWL Interpreta-
tion is a tuple of the form I = 〈R,EC,ER,L, S, LV 〉,
where R is a set of resources, LV ⊆ R is a set of literal
values, EC is a mapping of URI references to OWL classes
and datatypes. Also, ER is a mapping of URI references for
OWL properties, L maps typed literals to LV and S maps
individual names to elements of EC (owl:Thing).

Definition 3 (OWL Classes) An OWL class ocs is a struc-
ture of the form < αc, κ >, where αc is the class axiom2

and κ is a set of OWL constructs3.

Example 1 The following example captures the Associate
class of Figure 1 in OWL.

<owl:Class rdf:ID="Associate">

<rdfs:subClassOf rdf:resource="#Donor" />

<rdfs:subClassOf rdf:resource="#Mentor" />

</owl:Class>

Definition 4 (OWL Instances) An OWL instance ois is a
structure of the form < αi, pv >, where αi is the instance
axiom and pv is a set of name value pairs.

2class axiom declares an URI reference to be the name of an
OWL class (Bechhofer et al.)

3constructs are statements such as subClassOf, comple-
mentOf, unionOf etc. that help in building more complex classes

Example 2 Let D1 be an instance of Donor in which the
properties name and profession have values ”Sam” and
”Teacher” respectively. The OWL representation for Donor
is shown below.

<Donor rdf:ID="D1">

<name rdf:datatype="&xsd;string">Sam</name>

<profession rdf:datatype="&xsd;string">Engineer

</profession>

</Donor>

The Semantic Web Rule Language (SWRL)

SWRL (Horrocks et al. 2004) extends OWL with sim-
ple Horn like rules. The syntax of a rule is A ←
B1, . . . ,Bm, where A is the head and Bis are body atoms.
The atoms can be of the following forms: C(x), D(z),
P (x, y), Q(x, z), sameAs(x, y), differentFrom (x, y) and
builtIn(B, z1, . . . , zn), where C is an OWL DL description,
D is an OWL DL data range, P is an OWL DL individual-
valued property, Q is an OWL DL data-valued property, B
is a built in predicate, x, and y are variables or OWL indi-
viduals, and z, z1, . . . , zn are variables or OWL data values.
Usually the body atoms are binary predicates but using built-
ins SWRL also allows some predefined n-ary predicates in
body atoms. We adapt the XML version of rule syntax di-
rectly from (Horrocks et al. 2004). However, since the XML
version is fairly verbose we will use short hand notation as
follows:

head← body

OWL++ Overview

We now briefly introduce the syntax and semantics of
OWL++ with an overview of its salient features. An
OWL++ program basically is a set of classes, instances, ob-
ject and data type properties and rule definitions. In contrast
to OWL class definitions, an OWL++ definition has prop-
erties with default value or rules through its signature con-
struct. An instance object is similar to a class object except
that instances do not define the structural aspects of class ob-
jects and can not have instances or subclasses of their own.

Syntax

Definition 5 (OWL++ Programs) An OWL++ program
P is a tuple of the form 〈Σ,Υ,Ω〉, where Σ is
a set of class structures, containing owl:Thing and
owl:Nothing, Υ is the set of Horn like rules and Ω =
{VD, VI , VDP , VIP , VAP , VO} is the set of OWL elements
as defined in Definition 1.

Definition 6 (OWL++ Class Structure) An OWL++

class structure cs is of the form < αc, ψ, κ >, where αc is
the class axiom, ψ is the signature of the class and κ is a set
of OWL constructs.

Definition 7 (Class Signature) A class signature ψ of class
c is of the form 〈ρ, δ〉, where ρ is a set of inhibited proper-
ties from its super classes and δ is the set of properties that
have either default values or a rule corresponding to a virtual
property. The set of inhibited properties in c is denoted by
ρ(c).

55

Example 3 The following XML code fragment defines the
structure of Donor and Associate class in OWL++. Within
the signature construct Donor takes a default value on
monthlyFee and a default rule for type property4.

<owl:Class rdf:ID="Donor">

<rdfs:subClassOf rdf:resource="#Member" />

<owlp:Signature>

<owlp:hasDefaultValue>

<monthlyFee rdf:datatype="&xsd;int">100</monthlyFee>

type(object, "Gold") <- monthlyFee(object, fee),

donation(object, amount), 12*fee+amount >= $5,000

</owlp:hasDefaultValue>

</owlp:Signature>

</owl:Class>

Similarly, the class Associate inhibits the property profes-
sion from Donor in an attempt to avoid conflict due to multi-
ple inheritance, and thus allows the inheritance of the prop-
erty along with its default value from the Mentor class, if
any. In the absence of this inhibitory declaration, Associate
will inherit neither based on OWL++’s cautious semantics.

<owl:Class rdf:ID="Associate">

<rdfs:subClassOf rdf:resource="#Donor" />

<rdfs:subClassOf rdf:resource="#Mentor" />

<owlp:Signature>

<owlp:reject rdf:resource="$Donor::profession"/>

</owlp:Signature>

</owl:Class>

To be able to capture an intuitive semantics of inheritance
with overriding and conflict resolution, (Jamil 1997) intro-
duced the concept of property locality, and inheritability of
properties based on the locality of their definitions. The idea
of inheritability states that a class can inherit a property from
another class if there is a unique path of subclass relation-
ships between these classes, and there is no intermediate
class that redefines the same property (and thus overrides
it), thereby guaranteeing the inheritance of most specific and
conflict free class properties. The concept of locality and in-
heritability are captured in the following set of definitions.

• Code or virtual property: A property p in Υ ⊂ VCP is
said to be virtual if it is defined using a OWL++ rule.

• Global property: Any property p ∈ P =
{VIP , VDP , VCP } is said to be global since it is defined
outside of a class.

• Locality of property: Let p be a property and o be an ob-
ject then o : p represents the fact that p is locally defined
at o. Intuitively, o is called the context or the descriptor
of the local property p, i.e. context(p) = o. In example 3
the property monthlyFee is defined locally within the sig-
nature construct i.e. context(monthlyFee) = Donor.

• Is-a: Let oc, oi and os be class names. Then oi ∈ oc and
os :: oc are respectively instance and subclass descrip-
tions in OWL++. Intuitively, they say that oi and os are

4For lack of space, instead of using the customary XML based
SWRL syntax, we directly use a Horn like rule notation for this vir-
tual property type within the class structure below with the under-
standing that in a real OWL++ program this rule will be replaced
by a SWRL like syntax.

instance and subclass of oc respectively. We will use the
notation o�p throughout when the difference between the
two is unimportant.

Definition 8 (Locality) Let P = 〈Σ,Υ,Ω〉 be a program,
oc be a class object, o be any object, ϕ be any signature
expression for oc ∈ Σ, and p ∈ P be any property such that
context(p) = o, or context(ϕ) = o. Then p and ϕ are local
to objects o and oc respectively in P.

Definition 9 (Property Inheritability) Let S be a set of is-
a descriptions, p be a property symbol and o be an object.
Then the inheritability of the property p in the object o is de-
fined by the property inheritability function ∇p as follows:

∇p(S, p, o) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

os

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

if property context(p) �= o and [∃q

such that o�q ∈ S, ∇p(S, p, q) =
os, context(p) = os, ∇p(S, p, o) =
∇p(S, p, os) and (∀r, such that
o�r ∈ S, one of hte following holds.

• ∇p(S, p, r) = r, and
context(p) �= r,

• ∇p(S, p, r) = os, or p ∈ ρ(o).)]

o in all other cases

The algorithm to compute the inheritability function
∇p(S, p, o) is given bellow:

Algorithm 1 computeInheritableFunction(class, lcc)

Require: initially lcc = ∅ {lcc = list of computed classes}
if class ∈ lcc then

continue
end if
ldp = list of default properties of class
for each dp ∈ ldp do

put inheritable(class, class, dp). into rule base
end for
lrp = list of inhibited properties of class
lip = list of immediate parents of class
for each pClass ∈ lip do

if lcc �= ∅ and pClass /∈ lcc then
computeInheritableFunction (pClass, lcc)

end if
lp = list of all properties of pClass
for each p ∈ lp do

if p ∈ ldp or p ∈ lrp then
continue

end if
if p already inherited from another class then

throw Exception (”Inheritance Conflict”)
end if
add fact inheritable(class, pClass, p). to rule base

end for
end for
add class ∈ lcc

Definition 10 (Inherited Property) Let P be a program, oc

be a class object, oi be an instance object, o be any object i.e.
o ∈ oc ∪ oi, p ∈ P be a property, and context(p) = o. Then
p is inherited in o if ∇p(S, p, oc) = o. We say o code inherits
p if p ∈ VCP , otherwise it value inherits p if p ∈ VIP ∪VDP .

56

Semantics Based on Rewriting

The semantics of an OWL++ program P = 〈Σ,Υ,Ω〉 are
obtained by translating it to an equivalent OWL program
P′ = 〈Σ′,Υ′,Ω′〉 such that Σ′ is a set of OWL classes in
VC , Υ′ is a set of SWRL rules and Ω′ has a set of instances
VI′ = VI ∪ VSI where VSI is a set of system instances5 for
every OWL++ class that has default values. The algorithm
below describes how to translate P to P′.

Algorithm 2 Rewriting class structure

if signature ψ ∈ cs〈αc, ψ, κ〉 = ∅ then
OWL class expression oc〈αc, κ〉 = cs〈αc, ψ, κ〉
add oc〈αc, κ〉 ∈ Σ′

else
remove ψ from cs〈αc, ψ, κ〉
add oc〈αc, κ〉 in Σ′

if δ ∈ ψ �= ∅ then
if δ ∈ VIP ∪ VDP then

create oi�, a system instance of OWL class
for every p ∈ VIP ∪ VDP do

add p ∈ oi�

end for
add oi� ∈ VSI

end if
if δ ∈ VCP then

for every p ∈ VCP do
replace object variable with the class object

end for
end if

end if
end if

Example 4 The Donor class in OWL++ shown above will
be disassembled to an equivalent OWL class with the same
name, a system instance named Sys-Donor with month-
lyFee of value $100 and a rule for the type property as shown
below.

<owl:Class rdf:ID="Donor">

<rdfs:subClassOf rdf:resource="#Member" />

</owl:Class>

<Donor rdf:ID="Sys-Donor">

<monthlyFee rdf:datatype="&xsd;int">100</monthlyFee>

</Donor>

type(Donor, "Gold") <- monthlyFee(Donor, fee),

donation(Donor, amount), 12*fee+amount <= $5,000

For the class Associate, we just remove the signature and
add the following OWL class.

<owl:Class rdf:ID="Associate">

<rdfs:subClassOf rdf:resource="#Donor" />

<rdfs:subClassOf rdf:resource="#Mentor" />

</owl:Class>

5System instance is not part of OWL++ program individuals
and users are not aware of it. It is used to simulate the default
behavior of OWL++ class.

Table 1: Query Translation
Original Query Translated Query

(Donor monthlyFee ?value) (Sys-Donor monthlyFee ?value)

(Associate profession ?value) (Sys-Mentor profession ?value)

(D1 monthlyFee ?value) (Sys-Donor monthlyFee ?value)

(D1 name ?value) (D1 name ?value)

Recall that we have used signatures to override values and
rules locally within a class. To be able to simulate non-
monotonic inheritance with overriding and conflict resolu-
tion, we create a system instance of a class if that class con-
tains any default value for a property p ∈ VIP ∪VDP and as-
sign the value to this system instance. However, if p ∈ VCP

then we replace the class object with the object returned by
the inheritable function.

The translation into an OWL then completes by adding all
the facts computed by ∇ function to P′, a process we call in-
heritance closure, and by adding the following completion
rules to it. The completion rules properly deduce which ob-
ject o can inherit a property p from a class c and bind those
inherited properties to the relevant objects. For our exam-
ple, inheritance closure will add the following facts to the
translated OWL program P′.

inheritable (Donor, monthlyFee, Donor).
inheritable (Donor, type, Donor).
inheritable (Mentor, profession, Mentor).
inheritable (Associate, profession, Mentor).
inheritable (Associate, monthlyFee, Donor).
inheritable (Associate, type, Donor).

Query Translation

We query an OWL++ program with the SPARQL query lan-
guage (Prud’hommeaux and Seaborne). The general syntax
of SPARQL is of the form (subject predicate object), where
subject, predicate and object are either variables6 or URIs
and have usual meanings as in SPARQL.

Any query to a class instance in OWL++ does not need to
be translated, since the instance structure in both languages
are identical. However, a query involving class structures,
e.g. default values, needs to be translated to equivalent OWL
query. Since the default value of a class property is tied with
the object sys-instance, a query that asks for a class prop-
erty value is translated with respect to that sys-instance. The
sys-instance is actually the system instance of the class from
which the property is inherited or returned by the inherita-
ble function. For example, the query (Donor monthlyFee
?value) is translated to (Sys-Donor monthlyFee ?value),
since the value of monthlyFee is stored in Sys-Donor in-
stance. Several other examples of translated queries are
given in Table 1.

Since inheritance closure computes all the facts of inheri-
tability, the query translation now becomes a pure deduction
and is implemented by the following two rules.

property(source, value) ← inheritable(source, prop,
object), property (object, value).

6Variables start with the symbol ’?’.

57

property(source, value) ← inheritable(source, prop,
object), sysInstanceOf(object, sys object),
property(sys object, value).

Related Research

To the best of our knowledge, we believe that OWL++ is the
first language that extends OWL with support for overriding
inheritance, conflict resolution and non-monotonic reason-
ing in a single platform. However, the development pro-
posed in this paper has been largely motivated by the work
in (Jamil 1997). We now discuss other research that are sim-
ilar in spirit to this development, but they do not quite ad-
dress the issues raised. (Yang, Kifer, and Zhao 2003) pro-
pose a model for semantic web, and (Kifer 2005; Katz and
Parsia 2005) introduce the concept of non-monotonic inher-
itance into non OWL based Semantic Web rule languages.
On the other hand, (Bernstein and Grosof 2003) proposed
a new approach called Courteous inheritance, using Courte-
ous Logic Programs (CLP), a subset of Rule Markup Lan-
guage, RuleML (Boley, Tabet, and Wagner 2001), to rep-
resent non-monotonic inheritance reasoning in process on-
tologies. In this approach, the PH ontology knowledge e.g.
subclass relationship and property values, are represented as
CLP rules. The CLP rules have labels (optional) to identify
prioritized conflicts using a special predicate ”overrides”.
For example, overrides(l1, l2) means that (any rule labeled)
”l1” has strictly higher priority than ”l2”. Similar kind of
non-monotonic extensions of Description Logic have been
proposed in (Antoniou 2002). This work shows how non-
monotonic rule systems in the form of defeasible reason-
ing can be built on top of the Description Logic. In both
cases, exceptions are not modeled as part of the semantics.
Instead it needs to specify every exception rule explicitly,
making knowledge representation clumsy and compromis-
ing the naturalness of knowledge representation.

Summary

Non-monotonic inheritance and overriding has always
been a complex subject to address satisfactorily because
it involves the notion of theory or belief revision. In the
context of the Semantic Web, the problem is more acute
because complete enumeration of all exceptions are not
possible ahead of time due to its sheer size, and the constant
changes in the universe of discourse. So, there is a serious
need for a language in which the semantics of the language
is capable of handling such exceptions naturally without
user intervention or prior knowledge. In this paper, we
have proposed one such language to tackle these issues in
an elegant fashion within the semantics of the language.
This extension empowers OWL with the requisite set of
constructs needed to support modern applications. We
have presented a brief but formal syntax for our language
OWL++ and demonstrated its usefulness and salient
features using several real life examples. To comply with
standards and recent developments, we have adapted to
OWL and SWRL syntax, and implemented our system on
top of the Jena reasoner for OWL. In our implementation,
the user always uses OWL++ to represent an ontology, and

is unaware of the use of the back-end systems. Thus, the
main strength of this proposal is its tight integration with
the existing OWL and SWRL languages and the rewriting
based approach that we take to construct a semantics of
OWL++, allowing us to use existing technologies to build
the OWL++ reasoner.

Acknowledgement: The authors would like to acknowl-
edge the helpful discussions they have had with Artem
Chebotko during the development of this article.

References

Antoniou, G., and Arief, M. 2002. Executable declarative
business rules and their use in electronic commerce. In
Proceedings of ACM Symposium on Applied Computing.

Antoniou, G. 2002. Nonmonotonic rule systems on top
of ontology layers. In ISWC ’02: Proceedings of the First
International Semantic Web Conference on The Semantic
Web, 394–398. London, UK: Springer-Verlag.

Bechhofer, S.; van Harmelen, F.; Hendler, J.; Horrocks, I.;
McGuinness, D. L.; Patel-Schneider, P. F.; and Stein, L. A.
OWL Web Ontology Language Reference, Recommenda-
tion February 2004. http://www.w3.org/TR/owl-ref/.

Bernstein, A., and Grosof, B. N. 2003. Beyond monotonic
inheritance: Towards semantic web process ontologies.
Working paper, University of Zurich, Department of Infor-
matics, Winterthurerstrasse 190, 8057 Zurich, Switzerland.

Boley, H.; Tabet, S.; and Wagner, G. 2001. Design ratio-
nale of ruleml: A markup language for semantic web rules.
In International Semantic Web Working Symposium.

Horrocks, I.; Patel-Schneider, P. F.; Boley, H.; Tabet, S.;
Grosof, B.; and Dean, M. 2004. SWRL: A Seman-
tic Web Rule Language Combining OWL and RuleML.
http://www.w3.org/Submission/SWRL/.

Jamil, H. M. 1997. Implementing abstract objects with
inheritance in datalogneg. In Proceedings of the 23rd In-
ternational Conference on Very Large Data Bases.

Katz, Y., and Parsia, B. 2005. Towards a nonmonotonic
extension to owl. In International Workshop on OWL Ex-
periences and Directions.

Kifer, M. 2005. Nonmonotonic reasoning in flora-2*. In
LPNMR ’05, 1–12.

Meditskos, G., and Bassiliades, N. 2008. A rule-based
object-oriented owl reasoner. IEEE Trans. on Knowl. and
Data Eng. 20(3):397–410.

Patel-Schneider, P. F.; Hayes, P.; and Horrocks, I. 2004.
OWL Web Ontology Language Semantics and Abstract
Syntax. http://www.w3.org/TR/owl-semantics/ direct.html.

Prud’hommeaux, E., and Seaborne, A. SPARQL Query
Language for RDF. http://www.w3.org/TR/rdf-sparql-
query/.

Yang, G.; Kifer, M.; and Zhao, C. 2003. Flora-2: A rule-
based knowledge representation and inference infrastruc-
ture for the semantic web. In 2nd International Conference
on Ontologies, Databases and Applications of Semantics.

58

