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Abstract

Human-machine interaction has become one of the
most active research areas, and influenced several new
paradigms of computing such as Social computing, Mo-
bile computing, and Pervasive/Ubiquitous computing,
which are typically concerned with the study of hu-
man user’s behavior to facilitate behavioral modeling
and prediction. Human behavioral data are usually
high-dimensional time series, which need dimension-
reduction strategies to improve the efficiency of com-
putation and indexing. In this paper, we present a
dimension-reduction framework for human behavioral
time series. Generally, recent behavioral data are much
more interesting and significant in understanding and
predicting human behavior than old ones. Our ba-
sic idea is to reduce to data dimensionality by keep-
ing more detail on recent behavioral data and less de-
tail on older data. We distinguish our work from other
recent-biased dimension-reduction techniques by em-
phasizing on recent-behavioral data and not just recent
data. We experimentally evaluate our approach with
synthetic data as well as real data. Experimental results
show that our approach is accurate and effective as it
outperforms other well-known techniques.

Introduction

Time series is a sequence of time-stamped data points. It is
used to represent different types of data such as stock price,
exchange rate, temperature, humidity, power consumption,
and event logs. Time series are typically large and of high
dimensionality, which introduces the “curse of dimension-
ality” problem in machine learning. To improve the effi-
ciency of computation and indexing, dimension-reduction
techniques are needed for high-dimensional data. Among
the most widely used techniques are PCA (Principal Com-
ponent Analysis) (also known as Singular Value Decom-
position (SVD)), Discrete Wavelet Transform (DWT), and
Discrete Fourier Transform (DFT). Other recently proposed
techniques are PIP (Perpetually Important Points) (Fu et al.
2001), PAA (Piecewise Aggregate Approximation) (Keogh
et al. 2000), and landmarks (Perng er al. 2000). These
techniques were developed to reduce the dimensionality of
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the time series by considering every part of a time series
equally. In many applications such as the stock market, how-
ever, recent data are much more interesting and significant
than old data, “recent-biased analysis” (the term originally
coined by Zhao and Zhang 2006) thus emerges. The re-
cently proposed techniques include SWAT (Bulut and Singh
2003), equi-DFT (Zhao and Zhang 2006), vari-DFT (Zhao
and Zhang 2006), and others (Aggarwal et al. 2003; Chen et
al. 2002; Giannella et al. 2003; Palpanas et al. 2004).

With Ambient Intelligence (Aml) (Remagnino and
Foresti 2005) and new paradigms of computing, e.g., Social
computing, Mobile computing, and Pervasive/Ubiquitous
computing, more human behavioral time series are being
processed and analyzed to model human-machine interac-
tion. Human behavior data are being collected from many
sources such as sensors, mobile devices, and wearable com-
puters. Typically, human behavior tends to repeat period-
ically, which creates a pattern that changes over different
periods. This change of behavioral pattern distinguishes hu-
man behavioral time series from many other types of time
series as well as provides the key to our proposed framework
in dimension reduction particularly for human behavioral
time series data. Since human behavioral pattern changes
over time, the most recent pattern is more significant than
older ones. In this paper, we introduce a new recent-pattern
biased dimension reduction framework that gives more sig-
nificance to the recent-pattern data (not just recent data) by
keeping it with finer resolution, while older data is kept at
coarser resolution. We distinguish this paper from other pre-
viously proposed recent-biased dimension-reduction tech-
niques by the following contributions:

1. We introduce a new framework for dimension reduction
for human behavioral time series by keeping more detail
on data that contains the most recent pattern and less de-
tail on older data.

2. Within this framework, we also propose Hellinger

distance-based algorithms for recent periodicity detection
and recent-pattern interval detection.

Dimension Reduction for Human Behavioral
Time Series

In dynamic stream data analysis, changes in recent data usu-
ally receive more attention than old data. Human behavioral



time series is also stream data at a variety rate. This rate
of data generation depends on the type of behaviors that are
being monitored. Nevertheless, changes in the recent data
are normally more significant than the old data. Especially,
human behavior tends to repeat periodically, which creates
a pattern that alters over many periods due to countless fac-
tors. Generally, future behavior is more relevant to the recent
behavior than the older ones. Our main goal in this work is
to reduce dimensionality of a time series generated from hu-
man behavior. The basic idea is to keep data that contains
recent pattern with high precision and older data with low
precision. Since the change in human behavior over time
creates changes in the pattern and the periodicity rate, thus
we need to detect the most recent periodicity rate which will
lead to identifying the most recent pattern. Hence a dimen-
sion reduction technique can then be applied. This section
presents our novel framework for dimension reduction for
human behavioral time series data, which includes new al-
gorithms for recent periodicity detection, recent-pattern in-
terval detection, and dimension reduction.

Recent Periodicity Detection

Unlike other periodicity detection techniques (Berberidis
et al. 2002; Elfeky, Aref, and Elmagarmid 2004; Elfeky,
Aref, and Elmagarmid 2005; Indyk, Koudas, and Mathukr-
ishnan 2000; Ma and Hellerstein 2001; Yang, Wang, and
Yu 2000) that attempt to detect the global periodicity rates,
our focus here is to find the “most recent” periodicity rate
of time series data. Let X denote a time series with [V
time-stamped data points, and x; be the value of the data
at time-stamp 7. The time series X can be represented as
X = xg, 1, T2, ..., N, Where xg is the value of the most
recent data point and z is the value of the oldest data
point. Let ®(k) denote the recent-pattern periodicity likeli-
hood (given by (1)) that measures the likelihood of selected
recent time segment (k) being the recent period of the time
series, given that the time series X can be sliced into equal-
length segments X(’J“,Xf, X§, ey XfN/kjfl’ each of length

k, where XF = @ik, Tiki1, Tikt2, os Tikph—1.
N/k|—1 P
_ M - (X%, X))
(k) = ; (D
[N/k] -1

where d?,(A, B) is Hellinger distance (Yang and Cam
2000), which is widely used for estimating a distance (dif-
ference) between two probability measures (e.g., proba-
bility density functions (pdf), probability mass functions
(pmf)). Hellinger distance between two probability mea-
sures A and B can be computed by (2). A and B are M-
tuple {a1,as,as,...,apt and {by,ba, bs,...,bpr} respec-
tively, and satisfy a,, > 0,>° a, = 1,b, > 0, and
> bm = 1. Hellinger distance of 0 implies that A = B
whereas disjoint A and B yields the maximum distance of

1.
Zm Vo)

In our case, X{fand XfareX(’f and XFafter normalization,
respectively, such that they satisfy the above conditions.

d} (A, B) = )

N~
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2. Di = [ da(1)

Thus, ®(k) has the values in the range [0, 1] as 0 and 1
imply the lowest and the highest recent-pattern periodicity
likelihood, respectively.

Definition 1 If a time series X of length N can be sliced

into equal-length segments X', X7, X% ..., XfN/pj _,,each

of length p, where X¥ = z, Tip+1, Tip+2, -, Tip+p—1, and

p = arg max ®(k), then p is said to be the recent periodicity
k

rate of X.

The basic idea of this algorithm is to find the time segment
(k) that has the maximum ®(k), where k = 2,3, ..., [N/2].
If there is a tie, smaller k is chosen to favor shorter period-
icity rates, which are more accurate than longer ones since
they are more informative (Elfeky et al. 2005). The detailed
algorithm is given in Algorithm 1. Note that (1) = 1 since

d%(X$, X 1) = 0, hence k begins at 2.

Algorithm 1 Recent Periodicity Detection
p = PERIODICITY (X)
Input: Time series (X) of length N
Output: Recent periodicity rate (p)
.FOR k=2to | N/2]

Compute ®(k);
END FOR
p = k that maximizes ®(k);
5.1F |k|> 1
6. p = min(k);
7.
8

B -

END IF
. Return p as the recent periodicity rate;

Recent-Pattern Interval Detection

After obtaining the recent periodicity rate p, our next step
towards dimension reduction for a time series X is to detect
the time interval that contains the most recent pattern. This
interval is a multiple of p. We base our detection on the
shape of the pattern and the amplitude of the pattern.

For the detection based on the shape of the pattern, we
construct three Hellinger distance-based matrices to mea-
sure the differences within the time series as follows:

1. Di = [ di(1) di(2) d1 (i) ]1is the matrix whose
elements are Hellinger distances between the pattern de-
rived from the X} to X;Dq (Xgﬂjq)’ which can be sim-
ply computed as a mean time series over time segments 0
to 7 — 1 given by (4), and the pattern captured within the
time segment j (X f ) as follows:

. 5P
di(j) = d%I(XO—q'—la ij)a

3

where
i—1
'y
- Tnp+p—1-
J n=0

OHJ 1__anp7 anp+la"'a
“

Again, the hat on top of the variable indicates the normal-
ized version of the variable.

da(2) da(7) ] is the matrix whose
elements are Hellinger distance between the most recent



pattern captured in the first time segment (X)) and the
pattern occupied within the time segment j (X f ) as fol-
lows:

do(5) = df (X§, X7). 5)

3. Di = [ ds(1) ds(2) ds(i) ] is the matrix whose

elements are Hellinger distance between the adjacent time
segments as follows:

ds(j) = d (X

-1 X f ). (6)

These three matrices provide the information on how
much the behavior of the time series changes across all time
segments. The matrix D} collects the degree of difference
that X f introduces to the recent segment(s) of the time series
up to j = i, where j = 1,2,3,...,|N/p|] — 1. The matrix
D5 records the amount of difference that the pattern occu-
pied in the time segment X’ f makes to the most recent pattern
captured in the first time segmentX} up to j = i. The ma-
trix D3 keeps track of the differences between the patterns
c_aptqred in the adjacent time segmentsX ;-[1 and X f up to
j=1.

To identify the recent-pattern interval based on the shape
of the pattern, the basic idea here is to detect the first change
of the pattern that occurs in the time series as we search
across all the time segments X f in an increasing order of
j starting from j = 1 to |[N/p| — 1. Several changes
might have been detected as we search through entire time
series, however our focus is to detect the most recent pattern.
Therefore, if the first change is detected, the search is over.
The change of pattern can be observed from the significant
changes of these three matrices. The significant change is
defined as follows.

Definition 2 If 1 Di and o Di is the mean and the standard
deviation of Dj and pip; +20pi < dy(i +1), then X7, is
said to make the significant change based on its shape.

Algorithm 2  Significant Change Detection

y = SIG.CHANGE(D:? ,dj, (i + 1))

Input: Distance matrix (D} ) and the corresponding distance
elementdy (i + 1).

Output: Binary output (y) of 1 implies that there is a signif-
icant change made by X7 _1 and 0 implies otherwise.

LIF pipi +20pi < di(i+1)

2. y=1;
3. ELSE

4. y=0;
5. END IF

With the detected significant changes in these distance
matrices, the recent-pattern interval based on the shape of
the pattern can be defined as follows. The detailed algorithm
is given in Algorithm 3.

Definition 3 If X7 _1 Introduces a significant change to at

least two out of three matrices (D?,D}, and DY), then the
recent-pattern interval based on the shape (7554pe) i said to
be ip time units.
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Figure 1: An example of misdetection for the recent-pattern
interval based on the shape of the pattern. Algorithm 3
would detect the change of the pattern at the 5! time seg-
ment (X?) whereas the actual significant change takes place
at the 3" time segment (X3%).

Algorithm 3 Shape-based Recent-Pattern Interval Detec-
tion

Tshape = SHAPE_RPI( DIN/PI=L pIN/PI=L %N/p I-1y
Input: Three distance matrices (DltN/ ? 71, DQLN /p) *1,
D%N/pj 71).

Output: Shape-based recent-pattern interval (rspqpe)-
1. Initialize 7spqpe to N
2.FOR:=2to |[N/p|] —1

3. IF SIG.CHANGE(D: ,d; (i+1)) + SIG_.CCHANGE(
Dido(i+1)) + SIG.CHANGE(D} s (i+1)) = 2

4. Tshape = ip;

5. EXIT FOR LOOP

6. END IF

7. END FOR

8. Return 7p4p¢ as the recent-pattern interval based on the
shape;

For this shape-based recent-pattern interval detection, the
Hellinger distances are computed by taking the normalized
version of the patterns in the time segments. Since normal-
ization rescales the amplitude of the patterns, the patterns
with similar shapes but significantly different amplitudes
will not be detected (see an example illustrated in Figure
1).

To handle this shortcoming, we propose an algorithm to
detect the recent-pattern interval based on the amplitude of
the pattern. The basic idea is to detect the significant change
in the amplitude across all time segments. To achieve this
goal, let A* = [ a(1) a(2) a(i) | denote a matrix
whose elements are mean amplitudes of the patterns of each
time segment up to time segment ¢, which can be easily com-
puted by (7).

15
a(k) = - Z T(k—1)ptn-
p n=0
Similar to the previous case of distance matrices, the sig-
nificant change in this amplitude matrix can be defined as
follows.

(N

Definition 4 If y4: and 0 4: is the mean and the standard
deviation of A* and p14: + 204: < a(i+ 1), then X7, is
said to make the significant change based on its amplitude.



Likewise, with the detected significant change in the am-
plitude matrix, the recent-pattern interval based on the am-
plitude of the pattern can be defined as follows. The detailed
algorithm is given in Algorithm 4.

Definition 5 If X7, makes a significant change in the ma-

trix (A%), then the recent-pattern interval based on the ampli-
tude (7gmyp) is said to be ip time units.

Algorithm 4 Amplitude-based Recent-Pattern Interval
Detection

Tamp = AMP_RPI(ALN/PI—1)

Input: The amplitude matrix (ALN/P1=1),

Output: Amplitude-based recent-pattern interval (7qmp).

1. Initialize 74y to N

2.FOR:=2to |[N/p|] —1

3. IF SIG.CHANGE(A%,a(i + 1)) =1
4. Tamp = p;

5. EXIT FOR LOOP

6. END IF

7. END FOR

8. Return 74y, as the recent-pattern interval based on the
amplitude;

Finally, the recent-pattern interval can be detected by con-
sidering both shape and amplitude of the pattern. Based on
the above algorithms for detecting the interval of the most
recent pattern based on the shape and the amplitude of the
pattern, the final recent-pattern interval can be defined as
follows.

Definition 6 If 75,4y is the recent-pattern interval based
on the shape of the pattern and 74, is the recent-pattern
interval based on the amplitude of the pattern, then the final
recent-pattern interval(R?) is the lowest value among 7 pqpe
and romp — i.e., R = min(Tshape, Tamp)-

Dimension Reduction

Our main goal in this work is to reduce dimensionality of
a human behavioral time series. The basic idea is to keep
more details for recent-pattern data, while older data kept at
coarser level.

Based on the above idea, we propose a dimension reduc-
tion scheme for human behavior time series data that ap-
plies a dimension reduction technique to each time segment
and then keeps more coefficients for data that carries recent-
behavior pattern and fewer coefficients for older data.

Several dimension reduction techniques can be used in
our framework such as DWT, DFT, SVD, and others. In
this paper, we choose DFT for demonstration.

Let C; represent the number of coefficients retained for
the time segment X”. Since our goal is to keep more co-
efficients for the recent-pattern data and fewer coefficients
for older data, a sigmoid function (given by (8)) is generated
and centered at R time units (where the change of behavior
takes place).

1
f(t) = Tra i (8)

The decay factor («) is automatically tuned to change
adaptively with the recent-pattern interval (R) by being set
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Figure 2: Dimension reduction scheme for human behav-
ioral time series. A time series is partitioned into equal-
length segments of length p (recent periodicity rate) and
more coefficients are taken for recent-pattern data and fewer
coefficients are taken for older data based on the decay rate
of a sigmoid function (f(¢)). For this example, recent-
pattern interval (R) is assumed to be (i + 1)p.

at « = p/R, such that a slower decay rate is applied to
a longer R and vice versa. The number of coefficients for
each time segment can be computed as the area under the
sigmoid function over each time segment (given by (9)), so
the value of C; is within the range [1, p].

{ f@dt} |
X

C; decreases according to the area under the sigmoid
function across each time segment as 7 increases, hence
Co > Cy > C2 > ... 2 C|nyp)—1. For each time seg-
ment, we choose the first C; coefficients that capture the
low-frequency part of the time series.

With this scheme, a human behavioral time series data can
be reduced by keeping the more important portion of data
(recent-pattern data) with high precision and the less impor-
tant data (old data) with low precision. As future behavior is
generally more relevant to the recent behavior than old ones,
maintaining the old data at low detail levels might as well re-
duces the noise of the data, which would benefit predictive
modeling for (individual and group) human behavior. This
scheme is shown in Figure 2, and the detailed algorithm is
given in Algorithm 5.

Note that if no significant change of pattern is found in the
time series, our proposed framework will work similarly to
equi-DFT as our R is initially set to [NV (by default, see Algo-
rithm 3, Algorithm 4, and Definition 6). Hence the entire se-
ries is treated as a recent-pattern data, i.e., more coefficients
are kept for recent data and fewer for older data according to
(the left-hand side from the center of) the sigmoid function
with decay factor « = p/R.

Ci= ©))

Algorithm 5 Dimension Reduction for Human Behavioral
Time Series

7 = DIMENSION_REDUCTION(X)

Input: A human behavioral time series (X)) of length V.
Qutput: A reduced time series (2).

1. p =PERIODICITY(X);

2. Partition X into equal-length segments, each of length p;
3. Compute matrices DltN/mfl, D%N/pjfl, D%N/pjfl, and
ALN/p] -1,

4. 7ypape = SHAPE_RPI(DLY/PI =1 pIN/pI=1 pIN/pI=1y.
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Figure 3: Experimental result of the error rate at differe
SNR levels of 100 synthetic time series (with known p ar
R).

5. Tamp = AMP_RPI(ALN/PI =1y,

6. R = min(rshape, Tamp);

7. Place a sigmoid function f(¢) at R;
8. FOR each segment %

9. Coefs_ DFT = apply DFT for segment ;
10. Compute C;

11. z; = C; first Coefs_DF'T

12. END FOR

13. Z = {20, 21, 22, ..., Z|N/p|—1};  [* Series of selected
coefficients */

14. Return Z as the reduced time series;

Performance Analysis

This section contains the experimental results to show the
accuracy and effectiveness of our proposed algorithms. In
our experiments, we exploit synthetic data as well as real
data.

The synthetic data are used to inspect the accuracy of the
proposed algorithms for detecting the recent periodicity rate
and the recent-pattern interval. This experiment aims to es-
timate the ability of proposed algorithms in detecting p and
R that are artificially embedded into the synthetic data at
different levels of noise in the data (measured in terms of
SNR (signal-to-noise ratio) in dB). For a synthetic time se-
ries with known p and R, our algorithms compute estimated
periodicity rate (p) and recent-pattern interval (1) and com-
pare with the actual p and R to see if the estimated values
are matched to the actual values. We generate 100 differ-
ent synthetic time series with different values of p and R.
The error rate is then computed for each SNR level (0dB to
100dB) as the number of incorrect estimates (Miss) per to-
tal number of testing data, i.e. Miss/100. The results of this
experiment are shown in Figure 3. The error rate decreases
with increasing SNR as expected. Our recent periodicity de-
tection algorithm performs with no error above 61dB while
our recent-pattern interval detection algorithm performs per-
fectly above 64dB. Based on this experiment, our proposed
algorithms are effective at SNR level above 64dB.

‘We implement our algorithms on two real time series data
as one serves as an individual behavioral time series, and the
other serves as a group behavioral time series. The first data
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Figure 4: A monthly mobile phone usage over six months
represents an individual behavioral time series with detected
p=24and R =3p=T72.

50

Figure 5: A monthly water usage during 1966-1988 repre-
sents a group behavioral time series with detected p = 12
and R = 2p = 24.

120 144

Figure 6: A reconstructed time series of the mobile phone
data of 75 selected DFT coefficients from the original data
of 144 data points, which is 48% reduction.

contains the number of phone calls (both made and received)
on time-of-the-day scales on a monthly basis over a period of
six months (January 7¢", 2008 to July 6, 2008) of a mobile
phone user (Phithakkitnukoon and Dantu 2008). The sec-
ond data contains a series of monthly water usage (ml/day)
in London, Ontario, Canada from 1966 to 1988 (Hipel and
McLeod 1995). Figure 4 shows an individual behavioral
time series of a mobile phone user with computed p = 24
and R = 3p = 72 based on our algorithms. Likewise, Fig-
ure 5 shows a group behavioral time series of a monthly wa-
ter usage with computed p = 12 and R = 2p = 24. Based
on a visual inspection, one can clearly identify that the recent
periodicity rates are 24 and 12, and recent-pattern intervals
are 3p and 2p for Figure 4 and 5, respectively, which shows
the effectiveness of our algorithms.

We implement our recent-pattern biased dimension reduc-
tion algorithm on these two real time series data. The 144-
point mobile phone data has been reduced to 75 data points
(DFT coefficients), which is 48% reduction. On the other
hand, the water usage data has relatively short recent-pattern
interval compared to the length of the entire series thus we
are able to reduce much more data. In fact, there are 276
data points of water usage data before the dimension reduc-
tion and only 46 data points are retained afterward, which
is 83% reduction. The results of reconstructed time series
of the mobile phone data and water usage data are shown in
Figure 6 and 7, respectively.

To compare the performance of our proposed algorithm
with other recent-biased dimension reduction techniques, a



Data Percentage Reduction Errgep RER
RP-DFT | equi-DFT | vari-DFT | SWAT | RP-DFT | equi-DFT | vari-DFT SWAT RP-DFT | equi-DFT | vari-DFT SWAT
Mobile phone 0.479 0.479 0.750 0.972 0.0170 0.0300 0.0330 0.191 27.458 15915 22.950 5.078
Water usage 0.837 0.479 0.739 0.986 0.00712 0.00605 0.0168 0.0641 117.550 79.201 43.996 15375

Table 1: Performance comparison of our proposed RP-DFT and other well-known techniques (equi-DFT, vari-DFT, and SWAT)
based on Percentage Reduction, Recent-pattern biased error rate (Errrpp), and RE R from the real data.
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Figure 7: A reconstructed time series of the water usage data
of 46 selected DFT coefficients from the original data of 276
data points, which is 83% reduction.

criterion is designed to measure the effectiveness of the al-
gorithm after dimension reduction as following.

Definition 7 If X and X are the original and reconstructed
time series, respectively, the recent-pattern biased error rate
is defined as

Errppp(X,X) =B-d%(X, X)

[N/p]—1 2
1 N
=5 E b() (\/:Ei - \/sEi) , (10)
i=0

where B is a recent-pattern biased vector (which is a sigmoid
function in our case).

Definition 8 If X and X are the original and reconstructed
time series, respectively and Errgpp (X, X) is the recent-

pattern biased error rate, then the Reduction-to-Error Ratio
(RER) is defined as

Percentage Reduction

RER = =
ETTRPB(X, X)

(1)

We compare the performance of our recent-pattern biased
dimension reduction algorithm (RP-DFT) to equi-DFT, vari-
DFT (with k£ = 8), and SWAT as we apply these algorithms
on the mobile phone and water usage data. Table 1 shows the
values of percentage reduction, recent-pattern biased error
rate, and RER for each algorithm. It shows that SWAT has
the highest reduction rates as well as the highest error rates
in both data. For the mobile phone data, the values of the
percentage reduction are the same for our RP-DFT and equi-
DFT because R is exactly a half of the time series hence the
sigmoid function is placed at the half point of the time se-
ries (IN/2) that makes it similar to equi-DFT (in which the
number of coefficients is exponentially decreased). The er-
ror rate of our RP-DFT is however better than equi-DFT by
keeping more coefficients particularly for the “recent-pattern
data” and fewer for older data instead of keeping more co-
efficients for just recent data and fewer for older data. As a
result, RP-DFT performs with the best RE'R among others.
For the water usage data, even though RP-DFT has higher
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error rate than equi-DFT, R is a short portion of the entire
series thus RP-DFT is able to achieve much higher reduction
rate, which results in a better RE'R.

In addition to the result of the performance comparison
on the real data, we generate 100 synthetic data to further
evaluate our algorithm compared to others. After applying
each algorithm to these 100 different synthetic time series,
Table 2 shows the average values of percentage reduction,
recent-pattern biased error rate, and RER for each algo-
rithm, where our proposed algorithm has the highest RER
among others.

| Algorithm | Percentage Reduction | Errrep | RER |

RP-DFT 0.758 0.0209 36.268

equi-DFT 0.481 0.0192 25.052

vari-DFT 0.748 0.0385 19.429
SWAT 0.975 0.109 8.945

Table 2: Performance comparison of our proposed RP-DFT
and other well-known techniques (equi-DFT, vari-DFT, and
SWAT) based on the average Percentage Reduction, Recent-
pattern biased error rate (Errrpp), and RER from 100
synthetic data.

Conclusions and Future Work

In this paper, we have developed a novel dimension reduc-
tion framework for a human behavioral time series based
on the recent pattern. With our framework, more details
are kept for recent-pattern data, while older data are kept
at coarser level. Unlike other recently proposed dimension
reduction techniques for recent-biased time series analysis,
our framework emphasizes on keeping the data that carries
the most recent pattern (behavior), which is the most impor-
tant data portion in the time series with a high resolution
while retaining older data with a lower resolution. Our ex-
periments on synthetic data as well as real data demonstrate
that our proposed framework is very efficient and it outper-
forms other well-known recent-biased dimension reduction
techniques. As our future directions, we will continue to ex-
amine various aspects of our framework to improve its per-
formance as well as expand it to work with other types of
time series.
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