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Abstract

The paper describes various aspects and prac-
ticalities of applying the “Hidden Markov” ap-
proach to train parameters of regular and context-
free stochastic grammars. The approach enables
grammars to be trained from unlabelled text cor-
pora, providing flexibility in the choice of syntac-
tic categories and text domain. Part-of-speech
tagging and parsing are discussed as applica-
tions. Linguistic considerations can be used to de-
velop constrained grammars, providing appropri-
ate higher-order context for disambiguation. Un-
constrained grammars provide the opportunity to
capture patterns that are not covered by a specific
grammar. Experimental results are discussed for
these alternatives.

Introduction

The analysis of large text corpora has become increas-
ingly popular as a means of instantiating models of
natural language. Methods of statistical pattern recog-
nition have likewise received more attention as a means
of parameter estimation and classification. Such ap-
proaches cater to the following:

1. Relative likelihoods of alternative interpretations,
enabling the resolution of ambiguity on the basis of
most likely interpretation.

2. The induction of models that cover a wide variety of
constructions that appear in corpora of unrestricted
text. One strategy is to start with a suitably un-
restricted grammar and rely on parameter estima-
tion to rule out the patterns that are not found in
the training corpus. Only this strategy is consid-
ered here, though many alternative techniques (e.g.
cluster analysis) also exist for automatically charac-
terizing patterns in corpora.

The Baum-Welch algorithm (Baum 1972) (also
called the Forward-Backward algorithm) is the preva-
lent method in speech recognition for training hidden
Markov models (HMM’s). It can also be used for train-
ing part-of-speech models from unlabelled text (Jelinek

1985). In the brief description that follows, notation
is based on that of (Levinson et al. 1983). Grammars
can be represented in terms of probabilistic transition
networks. A hidden Markov model represents a transi-
tion network for a regular grammar, comprising states
{c1...cn} that correspond to part-of-speech categories.
The probability of a transition between states ¢; and cj
is labelled by the element al[z, j] of the transition matrix
A. Each state ¢; has its own matrix of word probabil-
ities. The probability that word k in the dictionary is
generated by a transition to state ¢; is given by the
element b[j, k] of the output matrix B. An element
I{j] of the initial matrix I gives the probability that
a word sequence starts with category c¢j. The model
is considered to generate a sequence of words via a se-
quence of state transitions; a word being generated at
each state. The part-of-speech category of each word
must correspond to the state that generated it. Thus
the word “of” could only be generated by the preposi-
tion state, whereas the word “do” could be generated
by the verb state or the noun state (do — the musical
note). We would expect the probability of the former
to be much higher than the latter.

Given a training corpus, the training algorithm is
responsible for assigning the parameters of the matri-
ces (A, B,I). Once this has been done, the Viterbi
algorithm (Viterbi 1967) can be used to find the most
likely state sequence for any given sequence of words.
The state sequence defines the corresponding part-of-
speech categories for each word. Performance in excess
of 95% correct category assignment has been reported
using HMM-based taggers. (Jelinek 1985; Merialdo
1991; Kupiec 1992).

In the case of context-free grammars, (Baker 1979)
describes the Inside/Outside algorithm for grammars
in Chomsky normal form and (Kupiec 1992b) describes
an algorithm that does not have this restriction. A
context-free grammar can be represented by a recur-
sive transition network. This involves the addition of
states that model nonterminal categories. Initial prob-
abilities in the matrix I serve to describe production



probabilities in this arrangement.

Unlabelled Training Corpora

This section provides an informal intuition regarding
the training algorithms. The reader is referred to the
references for formulaic details. Using a labelled train-
ing corpus the probabilities in (4, B,I) can be esti-
mated directly from frequency counts. Such a corpus
can be viewed as output from an observable markov
source. The categories are known for each word, so
the state sequences involved in generating the words
the words of the text are explicit. The number of times
a transition is made from state ¢; to c; can be deter-
mined by simply counting.

The state sequences in an unlabelled corpus are hid-
den from view. The following iterative strategy is then
used to estimate the number of times a transition is
taken from ¢; to c;. The strategy assumes some ini-
tial values have been assigned to (4, B,I). For con-
venience, the training corpus can be split up into sen-
tences. Consider one such sentence:

(wq, w1, wa...wy)

For any word w, (0 < z < Y) the probability of
generating w, at state ¢; then making a transition to
¢; while jointly generating the whole sentence can be
determined from the sentence and the current values
of (A, B, I). This probability is summed over all words
in all sentences to find the expected number of transi-
tions that were made from ¢; to ¢j. Expressing this as
a fraction of the total expected number of transitions
from ¢; to all other states, a new estimate of af, j]
can be found. In fact the matrices (A, B, I) can all be
re-estimated from their current values, and the train-
ing corpus. The process is repeated until the estimates
converge, at which point they are guaranteed to pro-
vide a local maximum of the likelihood of generating
the training corpus (Baum 1972).

The capability to train on unlabelled text corpora
affords flexibility in several respects. The laborious
effort required to manually label a necessarily large
amount of text is completely avoided. Grammars can
be trained directly on corpora from a desired applica-
tion domain. To use a different category set requires
only a new dictionary describing what possible cate-
gories each word can assume.

In (Kupiec 1992) the dictionary in a tagger for En-
glish was replaced by a French dictionary then the
tagger was trained on French text excerpted from the
Canadian Hansards (the proceedings of the Canadian
parliament). The resulting part-of-speech tagger for
French required minimal extra effort to implement, and
was found to have error rates commensurate with the
tagger for English.

The approach described here permits context-free
grammar rules to be changed at will during grammar
development. This not only avoids the initial expense
of manually parsing the training corpus, but also the
possibility that it needs to be re-parsed due to changes
in nonterminal categories.

Another situation in which flexibility of this ap-
proach may prove useful is when a category set includes
domain specific semantic categories.

Sparse Data Considerations

During training, some transitions may never occur (e.g.
two successive commas or determiners). In such cases
the transitions would be re-estimated as having zero
probability. Subsequently if one of these sequences did
appear in text that was being tagged, the grammar
would fail to accept the sentence. To preserve robust-
ness in this situation transition probabilities that fall
to zero during re-estimation are assigned appropriately
small values so that all sentences can still be tagged.
The situation also applies to context-free grammars,
when the training corpus does not contain an instance
of a particular rule, and subsequently an instance of
it appears during parsing. In this case the production
probabilities in the matrix I are also maintained as
small positive values. .

Word Equivalence Classes

When probabilities b4, k] are estimated for every word
k in the dictionary, the B matrix contains a large num-
ber of parameters. Even if a very large training corpus
is used, the fact that a large percentage of words in
the dictionary typically only occur a few times in a
corpus means the corresponding parameters would not
be reliably estimated (more than 40% of the words in
a dictionary for the Brown corpus only occur once).
Consequently an alternative approach has been taken
(Kupiec 1989) in which words are represented in terms
of equivalence classes. Words are partitioned accord-
ing to the set categories which they can assume. The
members of the sparsely populated equivalence class
{adjective, adverb, verb} are illustrated below:

clean direct even free
further loose pretty sheer
slow steady upstage

Pooling words into equivalence classes greatly re-
duces the number of parameters involved, and enables
reliable estimation (the 50,000 different word types in
the Brown corpus are covered by just 410 equivalence
classes). Furthermore, adding new words to the dic-
tionary can generally be done without re-training, as
they are likely to be covered by existing equivalence
classes.

The approximation assumes that words in a given



class have similar distributions over their category set.
This is generally not the case in for any given corpus,
however across different corpora distributions generally
are different, so the representation provides a degree of
parameter smoothing for infrequently occurring words.

In contrast, many common words in a corpus can
be estimated reliably. The most frequent 100 words in
one training corpus accounted for approximately 50%
of the total number of word tokens, providing adequate
data for reliable estimation. If these words are assigned
their own unique equivalence classes, they can assume
different distributions over their associated categories.

Incomplete Dictionary Coverage

A dictionary containing over 200,000 word types was
found to cover 95-97% of words in various actual ap-
plications. To perform robustly on unrestricted text,
a tagging program must be able to predict the cate-
gories of the remaining “unknown” words that aren’t
in the dictionary. Such words are restricted to the
set of open class categories (nouns, verbs, etc.) as
opposed to closed classes, which can be exhaustively
enumerated in the dictionary. A fixed prior proba-
bility could be used to associate an unknown word
with a given open class category, however more ac-
curate prediction can be achieved by making use of
word suffix information. In languages such as English
and French, inflectional and derivational suffixes pro-
vide useful clues to a word’s part-of-speech category.
To accommodate suffix-based prediction, conditional
probabilities are pre-computed for various suffixes (130
were used for English). During the training phase a
single equivalence class is used to represent unknown
words. Suffix-based probabilities are then employed
by the Viterbi algorithm when an unknown word is
encountered. The effectiveness of the method is illus-
trated in the tagged nonsense passage shown in Fig-
ure 1. The passage is excerpted from (Weaver 1979)
(Copyright 1979 by the National Council of Teachers
of English. Reprinted with permission).

In the passage, unknown words can assume between
five and ten open class categories depending on their
suffix. The suffix probabilities can be calculated us-
ing untagged text; examples are shown below for the
probability of the suffix -ic, for the equivalence classes
{noun} and {adjective}:

P(—ic | {noun}) = 0.0027
P(—ic | {adjective}) = 0.0988

The passage contains five definite tagging errors,
which are indicated by tags marked each side with as-
terisks. Seventeen errors result if only a fixed prior
is used. Three of the five errors are due to the as-
signment of “corandic” and “borigen” as adjectives in-
stead of nouns. Their preferable assignment as nouns
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is indicated by their subsequent appearance after a de-
terminer. This aspect of local word recurrence can
be profitably modelled with a dynamic word cache
and used to improve the prediction of unknown words
(Kuhn & De Mori 1990).

Alternative Grammar Structures

Here, an unconstrained grammar refers to a gram-
mar which has a uniform pattern of conditioning (and
which can be constructed automatically). A con-
strained grammar refers to one which has been built to
expressly reflect linguistic structure, and consequently
has non-uniform conditioning. In addition, an aug-
mented grammar is defined as an unconstrained gram-
mar in which connectivity has either been deleted, or
to which extra structure has been added to provide
selective higher-order conditioning (perhaps based on
linguistic considerations or as a result of analyzing er-
rors made by the grammar). :

Unconstrained regular grammars work well for train-
ing part-of-speech taggers. The results quoted later
for the Brown corpus are for a first-order grammar.
Second-order grammars are also commonly used (e.g.
Meteer et al. 1991; Merialdo 1991).

We have experimented with unconstrained context-
free grammars to investigate whether any linguistically
reasonable dominance structure can be automatically
inferred from an unlabelled corpus. A “headed” gram-
mar was chosen for the experiment. Nonterminals C;
exist for every part-of-speech category i (a simple set
containing N = 9 categories was used). A nonterminal
rule C; must immediately dominate a terminal ¢; of the
same category (thus the number of rule applications is
limited to the size of the sentence). Each nontermi-
nal C; may also dominate a nonterminal to the left
or right of the terminal. Thus the phrase “ The big
cat” may be inferred as either a determiner, adjective
or noun phrase, and having a parse tree that indicates
the dominance structure. The following schema illus-
trates the rules, in regular expression form:

Ci = (C) ¢ (Cy)
1<izy< N

In the above, brackets denote optional inclusion. El-
ements in the transition and initial matrices (A4, I)
were initialized to be equally likely. The elements of
the output matrix B were assigned from a trained text
tagger and thus reasonably accurate at the outset. A
corpus of approximately 400 sentences was used for
training. Initial results were somewhat encouraging.
Nouns (as opposed to determiners or adjectives) domi-
nated noun phrases, and verbs often dominated whole
sentences. Prepositions and conjunctions however did
not make satisfactory attachments. The context was
then extended to two optional nonterminals to the left



Key to Tags:

pnom v3sg

granks from corite ,
pPrep n

Corite grinkles several other tarances ,

adj npl

in

v3sg: verb 3rd singular npl: plural noun

v: uninflected verb n: noun

det: determiner prel: relative pronoun
pnom: nominal pronoun pobl: oblique pronoun
prespart: present participle npr: proper noun
pastpart: past participle adj: adjective
Corandic is an emurient grof with many {fribs ; it

n is det adj n prep adj npl

an olg which cargs like lange .

det n prel v3sg prep n n v3sg adj
which garkers excarp by glarking the corite and starping it

prel  #v3sgg** *knk** prep prespart det n
tranker ~ clarped storbs .
n adj npl det npl v
exparged with worters , branking a  slorp .
pastpart prep npl prespart det n

several other corusces , finally frasting a
adj adj npl adv

coranda .
npr

Coranda is a  cargurt ,
npr is det n prespart
The corandic is nacerated from the borigen by

det n is pastpart prep det n

Thus garkers finally thrap a

adv npl adv v det adj adj
which granks in many starps .
prel v3sg ©prep adj npl

conj prespart pobl prep

The tarances starp a
det n

This slorp is
det n

prespart det adj

prep npl

means of

chark which is

prel is

garped through
is pastpart prep

pragety , blickant crankle :

adj n

grinkling corandic and borigen .
**adj*** conj **adj**

loracity .
prep n

glick , bracht , glupous grapant , corandic ,
adj n

wkad Rk

Figure 1: Predicting Unknown Words

or right of the terminal. No satisfactory result was ob-
tained despite alternative initialization strategies for
the A and I matrices, and different grammar structures
of the same complexity. Many of the resulting parse
trees contained systematic left or right branching. It
appears that the grammar requires more constraint to
obtain useful results. An alternative approach is de-
scribed by (Pereira and Schabes 1992), in which in-
formation which constrains the estimation is included
in the training corpus. They report successful results
by training an unconstrained context-free grammar us-
ing a partially bracketed corpus in which constituent
boundaries have been manually assigned.

Stochastic grammars enable the probability of alter-
native parses to be used to rank the most likely ones.
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Thus they cater for “looser” grammars having higher
coverage, and a correspondingly higher ambiguity. Ef-
forts using simple constrained context-free grammars
have been successful. Results have been encouraging
even when using an equivalence class representation for
most of the dictionary.

In (Kupiec 1989) a first-order regular grammar used
for a tagger was augmented by including state chains
that corrected some obvious errors that were being
made because of insufficient context (e.g. dependencies
between a past participle separated from a preceding
auxiliary verb by one or more adverbs). The “headed”
grammar mentioned earlier would likely benefit from
being augmented. It may also be possible to train a
constrained grammar, relax the constraints, then re-



train the grammar to obtain increased coverage while
preserving linguistic well-formedness.

Training with Different Corpora

This section relates experiences with regard to training
part-of-speech taggers on different corpora. A tagger
was trained on approximately one million words of elec-
tronic mail messages (concerning the design of a pro-
gramming language). It was subsequently used to tag
a technical article concerning the drilling of deep wells.
The most common error involved the mistagging of the
word “well” as an adverb or adjective instead of a noun.
Upon investigation, the informal nature of communi-
cation in electronic mail used the word “well” almost
completely as an adverb. Using a tagger trained on
text from Grolier’s American Academic Encyclopedia
resulted in fewer errors of this kind.

In turn, a tagger trained from Grolier’s encyclopedia
was used to tag excerpts from the electronic mail cor-
pus. A commonly occurring error was the mistagging
of “I” as a proper noun instead of a pronoun. Inspec-
tion showed that the training text from the encyclo-
pedia was written almost exclusively in an impersonal
style; the word “I” appearing often in phrases such as
“King James I”. Training a tagger using the encyclo-
pedia was very appropriate for later use with it, but
not for other text in which word usage was different.

The case conventions used for words also vary be-
tween corpora and affect the correctness of the tag-
ging. For example, consider the words “do” and “van”
in the names “Edson Arantes do Nascimento” and
“Rembrandt van Rijn”. In the Brown corpus “do”
and “van” would be printed with an initial capital let-
ter, facilitating their interpretation as proper nouns.
In Grolier’s (and other corpora) they often remain in
lower case, leading to incorrect verb and noun assign-
ments. Proper noun categories for these words may
not be included in a dictionary at all; likewise other
words that can be interpreted as proper nouns (e.g.
surnames such as Baker, Mills, Rice etc.). It is thus
advantageous to account for the dictionary coverage
of proper nouns and case conventions when deciding
upon a strategy to identify proper nouns for specific
applications.

Another application involved the use of a tagger
to tag a small corpus consisting entirely of questions
(which occur rarely in the training corpora). The tag-
ger performed poorly in this situation (an 11% error
rate). Half of the errors involved questions containing
the verb “do” (e.g. as in “When did World War II
start 7”). The final word was tagged as a noun rather
than a verb, as the appropriate context for disambigua-
tion was lost by the time the end of the question was
reached.
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These examples illustrate how category usage can be
corpus dependent. They also suggest that rather than
attempting to train a tagger using text from the widest
variety of corpora available, it may instead be worth
trying to adapt a tagger locally to the text with which
it is being used.

Evaluation

A manually labelled corpus enables the performance
of the algorithms to be assessed. Currently, only the
part-of-speech tagger has received a detailed evalua-
tion (Kupiec 1992). A tagger was trained using unla-
belled text from the Brown corpus with a dictionary
built from the corpus (therefore no unknown words are
present). The performance of the tagger can be as-
certained by comparing its output with the manually
assigned categories. Results are shown in Table 1.

The top two rows in Table 1 are results for train-
ing on untagged text and testing against the tagged
text, for two different samples from the Brown cor-
pus. The bottom two rows show results when the
tagger was trained with smaller samples from a dif-
ferent untagged corpus containing material from a hu-
mor columnist. The latter is composed mainly of in-
formal direct speech. A portion of an error matrix is
shown in Table 2 (for the top row of Table 1), and
the principal tagging errors are indicated in boldface.
The conjunctions referred to in the Table are subor-
dinate conjunctions. It is the authors’ opinion that
the percentage correct quoted for ambiguous words is
a better indicator of performance than the percent-
age of total tokens which is typically reported in the
literature. Unambiguous words in the dictionary are
by definition correctly tagged. Counting punctuation
marks as correct tokens is likewise undesirable from an
evaluation standpoint.

The most frequent error is the mistagging of nouns as
adjectives. This is due to both the variability in their
order in noun phrases, and the fact that semantic con-
siderations are often required for disambiguation. In
practice, the effect of the various errors depends largely
on the tagger application. For example when using the
tagger to delineate noun phrases in text, the mistag-
ging of nouns as adjectives is not particularly serious.
The choice of category set influences the error rate.
For instance in the Penn Treebank category set (San-
torini 1990) the qualifier category is subsumed by the
adverb category and subordinate conjunctions are as-
signed the same tag as prepositions. The error matrix
shows that at least 2,449 fewer errors would be made
by the tagger if such distinctions were dropped.

Conclusions

The paper has described experiences using hidden
Markov methods to train stochastic grammars for part-
of-speech tagging and context-free parsing. Results in-



Nr. Words in Nr. Words 1n Nr. Ambiguous Words in
Training Sample Test Sample Test Sample
‘Total Correct Total Correct

442,151 443,246 | 424,361 (95.7%) | 159,419 | 140,534 (88.1%)

443,246 ] 442,151 | 423,097 (95.7%) | 163,212 | 144,158 (88.3%)

118,906 443,246 | 421,016 (95.0%) | 159,419 | 137,233 (86.1%

66,122 443,246 | 418,223 (94.4%) | 159,419 | 134,440 (84.3%

Table 1: Performance of the Brown Corpus Tagger
orrect Tag Incorrect Tags Assigned
Noun Sg. [ Adj. [ Adv. | Qual. [ Part. | Prep. | Conj.

Noun Singular - 1,365 [ 65 5 0 4 0
Adjective 317 - 658 15 1 6 0
Adverb 29 175 - 704 32 417 182
Qualifier 9 22 514 - 0 1 552
Particle 0 2 ] 0 - 392 0
Preposition 3 18 313 0 507 - 624
Conjunction (Sub.) 3 8 132 9 0 607 -

Table 2: Error Matrix

dicate that part-of-speech tagging can be done with
high accuracy and flexibility. Attempts to train a un-
constrained context-free grammar were not successful,
however more conventional grammars can be trained
from unlabelled text and used for parsing.
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