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1 Introduction

Development of a robust syntactic parser capable of re-
turning the unique, correct and syntactically determi:
hate analysis for arbitrary naturally-occurring input will
require solutions to two critical problems with most, if
not all, current wide-coverage parsing systems; namely,
resolution of structural ambiguity and undergeneration.
Typically, resolution of syntactic ambiguity has been
conceived as the problem of representing and deploy-
ing non-syntactic (semantic, pragmatic, phonological)
knowledge. However, this approach has not proved fruit-
ful so far except for small and simple domains and even in
these cases remains labour intensive. In addition, some
naturally-occurring sentences will not be correctly anal-
ysed (or analysed at all) by a parser deploying a gener-
ative grammar based on the assumption that the gram-
matical sentences of a natural language constitute a well-
formed set (e.g. Sampson, 1987a,b; Taylor et al., 1989).
Little attention has been devoted to this latter problem;
however, the increasing quantities of machine-readable
text requiring linguistic classification both for purposes
of research and information retrieval, make it increas-
ingly topical. In this paper, we discuss the application of
the Viterbi algorithm and the Baum-Welch algorithm (in
wide use for speech recognition) to the parsing problem
and describe a recent experiment designed to produce a
simple, robust, stochastic parser which selects an appro-
priate analysis frequently enough to be useful and deals
effectively with the problem of undergeneration. We fo-
cus on the application of these stochastic algorithms here
because, although other statistically based approaches
have been proposed (e.g. Sampson et ai., 1989; Garside
& Leech, 1985; Magerman & Marcus, 1991a,b), these
appear most promising as they are computationally-
tractable (in principle) and well-integrated with formal
language / automata theory.

The Viterbi algorithm and Baum-Welch algorithm
are optimised algorithms (with polynomial computa-
tional complexity) which can be used in conjunction with
stochastic regular grammars (finite-state automata, i.e.
(hidden) markov models, Banm, 1972) and with stochas-
tic context-free grammars (Baker, 1982; Fujisaki et al.,
1989) to select the most probable analysis of a sentence
and to (re-)estimate the probabilities of the rules (non-
zero parameters) defined by the grammar (respectively).
The Viterbi algorithm computes the maximally prob-

able derivation with polynomial resources despite the
exponential space of possible derivations (e.g. Church
& Patil, 1983) by exploiting the stochastic assumption
and pruning all non-maximal paths leading to the set
of states / non-terminals compatible with the input at
each step in the parsing process. The Baum=Welch algo-
rithm (which is often called the forward-backward algo-
rithm when applied to regular grammars and the inside-
outside algorithm with context-free grammars) computes
the probability of each possible derivation with polyno-
mial resources also by factoring the computation across
each state / non-terminal involved in any derivation. A
detailed and clear description of these algorithms is pro-
vided by de Rose (1988), Holmes (1988) and Lari 
Young (1990), amongst others. These algorithms will
converge towards a local optimum when used to itera-
tively re-estimate probabilities on a training corpus in a
manner which maximises the likelihood of the training
corpus given the grammar.

It is possible to imagine exploiting these algorithms in
a number of ways in text processing and parsing and,
so far, relatively few of the possible options have been
explored. To date the primary application of stochas-
tic techniques in text rather than speech processing has
been the use of the Viterbi algorithm in the lexical tag-
ging of corpora with part-of-speech categories, training
on an unambiguous corpus (e:g. de Rose, 1988). Typi-
cally a tagged training corpus is used to train a bigram
(first-order) ergodic automaton (i.e. no parameters 
set to zero, which is equivalent to assuming that no
grammatical constraints are assumed other than those
imposed by the choice of tagset). This represents one of
the simplest applications of such stochastic techniques,
because the unambiguous training data ensures that the
model will converge to the true optimum and the er-
godic assumption ensures that all possible derivations
will involve the same number of states for any given
length of input. Recently, Cutting et al. (1992) have
developed a tagging system based on the Banm-Welch
algorithm trained on untagged data which performs as
well as these Viterbi based systems. In what follows we
will only consider the application of these algorithms to
stochastic context-free grammars (SCFGs) and exten-
sions of such models, since we are addressing problems
of parsing rather than tagging.
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2 Choosing Between Analyses

Fujisaki et al. (1989) describe a corpus parsing experi-
ment using a SCFG containing 2118 rules which was first
converted into Chomsky Normal Form (CNF) (creating
7550 productions) and then trained on an ambiguous
corpus of 4206 sentences using a variant of the Baum-
Welch re-estimation procedure. In this case the model
was constrained in the sense that many of the possible
parameters (rules) defined over the category set were set
to zero before training began. Thus training was used
only to estimate new probabilities for a set of prede-
fined rules. The utility of the resulting probabilities was
evaluated by testing the trained grammar on sentences
randomly selected from the training corpus, using the
Viterbi algorithm to select the most probable analysis.
In 72 out of 84 sentences examined, the most probable
analysis was also the correct analysis. 6 of the remainder
were false positives and did not receive a correct parse,
whilst the other 6 did but it was not the most proba-
ble. A success rate (per sentence) of 85% is apparently
impressive, but it is difficult to evaluate properly in the
absence of further details concerning the nature of the
corpus. For example, if the corpus contains many simple
and similar constructions, training on ambiguous data is
more likely to converge quickly on a useful set of proba-
bilities. (Fujisaki et al. report that the majority of their
corpus had an average sentence length of 10.85 words.)

Sharman et al. (1990) conducted a similar experiment
with a grammar in ID/LP format. ID/LP grammars sep-
arate the two types of information encoded in CF rules
-- immediate dominance and immediate precedence --
into two rule types which together define (a subset of)
the CFLs. This allows probabilities concerning domi-
nance, associated with ID rules, to be factored out from
those concerning precedence, associated with LP rules.
In this experiment, an unambiguous training corpus of
sentences paired with a semantically appropriate syntac-
tic analysis was employed consisting of about 1 million
words of text. A grammar containing 100 terminals and
16 non-terminals and initial probabilities based on the
frequency of ID and LP relations was extracted from
the training corpus. The resulting probabilistic ID/LP
grammar was used to parse 42 sentences of 30 words or
less drawn from the same corpus. In addition, lexical tag
probabilities were integrated with the probability of the
ID/LP relations to rank parses. 18 of the most probable
parses (derived using a variant of the Viterbi algorithm)
were identical to the original manual analyses, whilst a
further 19 were ’similar’, yielding a success rate of 88%.
What is noticeable about this experiment is that the re-
suits are not significantly better than Fujisaki et al.’s ex-
periment with ambiguous training data discussed above,
despite the use of more unambiguous training data, a
more sophisticated language model and a grammar de-
rived directly from the corpus (thus ruling out under-
generation). It seems likely that these differences derive
from the differential complexity of the corpus material
used for training and testing, properties of the grammars
employed, and so forth. However, these two results un-
derline the need for the use of shared corpora in training
and testing, or model / grammar independent measures

of complexity, such as estimation of the actual entropy /
perplexity of a language (Sharman, 1990; Wright, 1990).

Briscoe & Carroll (1991, 1992) extend the probabilis-
tic approach to stochastic generalised LALR(1) parsers.
The motivation for this move is that LR parse tables
(which are non-deterministic finite-state automata in the
generalised case) provide a more fine-grained stochas-
tic model than SCFGs and can distinguish probabilis-
tically derivations involving (re)application of identical
grammatical rules (such as in typical analyses of noun-
noun compounding or PP attachment) in different or-
ders. Thus they offer a better approximation to natural
language without abandoning the stochastic assumption
and consequent computational advantages. They con-
struct a LALR(1) parse table from the CF backbone 
the Alvey Natural Language Tools (ANLT) grammar, 
wide-coverage unification-based grammar (e.g. Briscoe
et al., 1987) and derive a probabilistic version of the
table by interactively guiding the LR parser to the se-
mantically appropriate analysis of the training data (i.e.
an unambiguous training corpus is semi-automatically
created using the parser / grammar to be trained). The
resulting LR parse histories are used to associate prob-
abilities with the table directly (in contrast to Wright
(1990) and others, who have proposed to ’compile’ the
probabilities associated with a SCFG into the LR ta-
ble). In principle, the Viterbi algorithm could be used
to find the most probable analysis assigned by the CF
backbone, however, in practice during both the train-
ing and testing phase, features associated with the CF
backbone rules are unified, and unification failure results
in the associated derivation being assigned a probability
of zero. Consequently, a packed parse forest represen-
tation is constructed with probabilities associated with
(sub)analyses in the forest and the parse forest is prob-
abilistically unpacked to recover the the n-best parses
(Wright et al., 1991; Briscoe & Carroll, 1992). This ap-
proach was tested on a corpus of noun definitions taken
from the Longman Dictionary of Contemporary English
(LDOCE) training on 151 definitions and testing on 
definitions from the training data and a further 54 un-
seen definitions. The definitions vary in length from 2
to 31 words and in global ambiguity from unambiguous
to over 2500 distinct analyses. On the seen test data the
most probable parse was correct in 85.9% of the cases
and for the unseen ones in 63.8% of cases. In the case of
the unseen data most of the failures are false positives in
which no correct analysis is found and in the remaining
cases the correct analysis is most frequently one of the
three most probable analyses. In the case of the false
positives the most frequent cause of failure was the lack
of a subcategorisation frame in the set of lexical entries
associated with a word.

Each of these (very preliminary) experiments suggests
that stochastic approximation may be useful in selecting
an appropriate parse from the set licensed by a gener-
ative grammar. However, none achieve results reliable
enough to be of practical utility and none address the
problem of undergeneration or grammar induction via
stochastic techniques in a manner analogous to work in
speech recognition or lexical tagging. Nevertheless, the
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experiment reported in Briscoe & Carroll highlights the
need to resolve this problem before parsers can genuinely
be robust.

3 Dealing with Undergeneration

The stochastic techniques presented above whilst being
useful the disambiguation of analyses, are as ’brittle’
as non-stochastic approaches when presented with new
examples, for which the correct analysis cannot be as-
signed, or in the limit, for which no analysis is possi-
ble. These situations may arise, through a deficiency
in the syntactic rules or lexicon, or simply where the
input is ill-formed or extragrammatical. One approach
to this problem, is to iteratively develop the grammar,
adding suplementary rules, and re-analysing the failed
examples (e.g. Black et al. 1992). The aim here is 
ensure broad coverage by the labour intensive analysis
of as large a subset as possible of the target language.
In more lexically-orientated approaches to grammar, it
might be argued that the principle cause of undergen-
eration is the incompleteness of lexical entries (Briscoe
& Carroll, 1991). However, manual correction or devel-
opment of a realistic lexicons does not appear feasible,
given the vast amount of coding required (Boguraev 
Briscoe 1989), and there are good reasons to believe that
the goal of developing an entirely watertight generative
grammar is unattainable (Sampson, 1987a; Taylor et al.,
1989).

Methods for dealing with ill-formedness have been
presented for formal languages (Tanaka & Fu, 1978),
stochastic pattern recognition (Fu, 1982), and in nat-
ural language processing (Mellish, 1989). Most of these
address the problem through the inclusion of simple
rules, which support deletion, insertion or substitution
of terminals, combined with penalty scores for their use.
Where the ill-formedness is of a more complex nature,
however, the use of thsee techniques will lead to combi-
natorial explosion (where multiple deletions or insertions
are hypothesised for instance).

Another potential solution to the problem of under-
generation using the inside-outside algorithm is sug-
gested by the work of Lari & Young (1990). They utilise
a tabular parsing algorithm (e.g. CYK) coupled with 
SCFG in CNF. Initially, they assume that all possible
CNF rules which can be formed from a prespecified ter-
minal and non-terminal category set are possible; that is,
are associatedwith non-zero probabilities. The inside-
outside algorithm is used to re-estimate the probabilities
of these rules by repeated iteration over a corpus until
they stabilise within some prespecified threshold. In this
way a (locally) optimal set of rules and probabilities 
induced which maximise the probability of the language
defined by the corpus. Thus they propose an approach
which is the CF counterpart of making the ergodic as-
sumption in (hidden) markov modelling.

One problem with this technique is that the search
space of possible parses even for small category sets is
very large; although the algorithm has O(ns) complexity
in the length of the input and number of non-terminals,
the search space of possible analyses is defined by the
the number of binary branching trees over a sentence of

length n (the Catalan series, Church & Patil, 1983) mul-
tiplied by the number of possible labellings of the nodes
in that tree (the number of non-terminals to the power
of n-l). For this reason the algorithm is only practical
for small (non-terminal) category sets. Lari & Young
generated a corpus of 200 random palindromes from a
grammar containing 5 non-terminals, two terminals and
8 rules (non-zero parameters) for the simple palindrome
language {xylz is a mirror image of y}. The same cat-
egory set with all 135 possible rules (parameters) given
initial non-zero probabilities was used to re-estimate the
grammar. After approximately 70 iterations the system
stabilised on a weakly-equivalent grammar for this lan-
guage. Lari & Young (1990) demonstrate that this gram-
mar is a better model of the observed language than
that produced by a hidden maxkov model with the same
number of parameters, in the sense that the predicted en-
tropy of the language is lower. Unsurprisingly, the CFG
is also better able to classify members of the palindrome
language since this language cannot be generated using
a regular grammar. It is fairly clear that scaling up Lari
& Young’s approach for a realistic grammar of natural
language, such as the ANLT grammar, would be com-
putationally intractable -- the ANLT CF backbone con-
tains 575 distinct categories (before conversion to CNF).
It might be thought that switching to the Viterbi algo-
rithm would allow a considerable saving in computation
since the latter only requires computation of the average
and maximum probabilities for each sentence of the cor-
pus for re-estimation. However, in order to achieve con-
vergence it would almost certainly be necessary to use
much more training data in this case, because less infor-
mation is being extracted from each example. It would
probably be necessary to use a smoothing technique to
avoid unseen events converging to the zero threshold too
rapidly. And, it is impossible to combine filtering of CF
backbone parses by unifying the remaining features with
the Viterbi algorithm, since this can mean that the most
probable CF backbone analysis is invalid, necessitating
backtracking through sub-optimal analysis paths.

One simplification would be to use lexical tagging of
corpora to reduce the size of the terminal vocabulary
and to make it unambiguous. It might then be possible
to develop a grammar of the order of complexity of that
typical used in the manual parsing of tagged corpora,
such as the Lancaster skeleton parsing scheme (Leech
& Garside, 1991) or the Penn Treebank scheme (San-
torini, 1990). These schemes typically assume of the or-
der of 10 non-terminal symbols; however, even grammars
of this simplicity result in startlingly large search spaces
when no grammatical constraints (other than CNF) are
assumed; for instance, for a 20 word sentence and 10
non-terminals over a determinate lexical input there are
1.76726319 × 102s possible analyses and for a 30 word
sentence 1.00224221665137 × 1044. Although it is possi-
ble to perform re-estimation in parallel quite straightfor-
wardly by splitting the corpus, these figures suggest that
this approach may be too colnputationally expensive to
be practical.

Another problem with Lari & Young’s approach from
the perspective of parsing is that it is extremely un-
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ALIAS V2 = [V +, N -, BAR 2].
ALIAS VI - rV @, N -, BAR 1].

PSRULE $1 : V2 --> NI Vl.
PSRULE VP1 : Vl --> VO N1.

WORD cat : IO.
WORD the : DT.

Figure 1: Simple X-bar Grammar Rules

likely that the re-estimation process will result in a
grammar which imposes constituency of a linguistically
conventional kind. In the context of language mod-
elling for speech recognition this is unimportant, but
it is a crucial consideration for parsing. Even in the
case of the very simple palindrome language experiment,
the re-estimated grammar is not strongly-equivalent to
the original one. In general, in order to obtain use-
ful analyses of a language it will be necessary to start
from initial probabilities which bias the system to-
wards a linguistically-motivated local optimum during
re-estimation.

4 Imposing Grammatical Constraints

In the limit, imposing grammatical constraints on the
initial model used for re-estimation would reintroduce
the problem of undergeneration and make the Lari &
Young technique into one for the acquisition of proba-
bilities from an ambiguous corpus for a completely pre-
specified grammar (as with the experiments described
in section 2). However, it is possible to envisage an
intermediate position in which some broad grammati-
cal constraints are imposed and some rules are explicitly
specified with higher initial probabilities, whilst implicit
rules compatible with these constraints are assigned a
floor non-zero probability, and illegal rules incompati-
ble with the constraints are given zero probabilities. In
this way, the search space defined over the category set
can be reduced and the size of the category set can be
increased, whilst the initial bias of the system will be
towards a linguistically moti’~ated (local) optimum. 
what follows, we suggest several constraints and propose
a general feature-based approach to their specification.
The idea is that many constraints will have the property
of ruling out linguistically uninterpretable analyses with-
out necessarily constraining weak generative capacity.

4.1 Headedness

The notion of headedness as expressed, for example, in
X-bar Theory (e.g. Jackendoff, 1977), can be formalised
in a feature-based unification grammar containing rules
of the type illustrated in Figure 2, which is specified in
the ANLT formalism (e.g. Briscoe et al., 1987).

If we think of the word declarations as a set of
unary rules, rewriting preterminals as terminals, and the

aliased categories as atomic category symbols, G1 spec-
ifies a CNF CFG with 11 non-terminal and 20 terminal
categories (given in full in appendix 1). If we were 
induce a SCFG using the inside-outside algorithm from
G1, raising the floor of probabilities in the matrix rep-
resentation of the space of possible rules would force the
following (and many other) rules to be considered and
thus incorporated into possible analyses assigned by the
parser:

N2 --> V2 V2
AI --> V2 NI
V2 --> N2 P1

N2 --> PO VI
AI --> PO
V2 --> AO A1

Linguistically, these rules are unmotivated and implausi-
ble for the same reason: they violate the constraint that
a phrase must have a head; for example, a noun phrase
(N2) must contain a noun (N), a sentence (V2) must 
tain a verb (phrase) (V1), and so forth. Of course, there
are many more possible combinations of the category set
for G1 which also violate this constraint and taken to-
gether they can be used to define a very large number of
possible analyses of input sentences. Furthermore, the
interpretation of such rules within any extant linguistic
framework is impossible, so it is unclear what we would
’learn’ if the system converged on them. However, if we
impose the following constraint on formation of further
rules in G1, then all of the above rules will be blocked:

CONSTRAINT HEAD1 :
[N, V, BAR(NOT 0)3 --> [3, [3;
N(0)fN(1), V(0)fV(1),
BAR(0)f(BAR(1) I BAR(l) -- 1).

This constraint expressed in terms of feature values is to
be interpreted as a restriction on immediate dominance
relations in CF rules consisting of a rule schema spec-
ifying that all rules must contain a non-(pre)terminal
mother category and two non-terminal daughters, that
all mother categories must be specified for N, V and
BAR, and that one daughter must share these values or
have a BAR value of one less than the mother. Thus this
constraint also blocks rules containing heads with BAR
values higher than that of the mother category. The
utility of such rules is also dubious since they express
linguistically implausible claims, such as the head of a
phrase is a clause, and so forth. The constraint licenses
rules not in G1 such as:

a) b)
V2 --> N2 V2 V2 --> Vl VI
V2 --> AI V2 V2 --> PO A1
V1 --> VO Vl Vl --> Vl V2
N1 --> NO V2 N1 --> NO NI

The four rules in a) constitute linguistically motivated
extensions to G1 but those in b) are harder to justify, in-
dicating that, although ’headedness’ can provide useful
restrictions on possible rules, it is not the whole story.
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For convenience in this experiment we impose the further
constraint given below, which restricts rules introducing
two preterminals so that the second daughter must al-
ways be A0 or NO.

CONSTRAINT PT1 :
[] --> J’BAR O] [BAR 0] ;

$(2)ffi 

This constraint interacts with HEAD1 to define a fur-
ther 99 implicit rules not in G1. Many of these rules
are linguistically unmotivated. Nevertheless, it may be
that the X-bar schema does provide enough constraint,
taken together with the CNF constraint and an initial
probabilistic bias in favour of the original rules to make,
the approach practical and useful. The number of pa-
rameters (explicit and implicit rules) in the probabilistic
model defined by Gl’s constraints is of the same order
as that used by Lari & Young for the palindrome lan-
guage. Thus the space of possible analyses remains of
similar size, although it is much reduced over the space
defined using Gl’s category set and allowing any pos-
sible CNF rule; for instance, for the 14 word sentence
passionately with the sheep the cat chases the ball with
the boy so slowly the implicit grammar provides approx-
imately 380,000 analyses (as V2), whilst the number
Catalan(14) × 1114 is considerably bigger.

The main motivation for using the inside-outside algo-
rithm and raising the floor of implicit rules is to be able
to parse unexpected orderings of terminal categories.
Implicit G1 does not quite allow any possible ordering
of terminal categories -- any sentence ending with an
adverb not proceeded by a degree modifier cannot be
parsed, for instance. Nevertheless, we can demonstrate
that with respect to G 1 and one very pervasive form of
word order that we will not prevent the system finding
a linguistically motivated analysis. The explicit portion
of G1 can analyse a) below without modification.

a) A girl kisses a boy so passionately
b) A girl so passionately kisses a boy
c) So passionately a girl kisses a boy
d) ? A girl kisses so passionately a boy
e) * A so passionately girl kisses a boy

However, b) and c) require the addition of the two im-
plicit rules below:

V1 --> A1 V1 V2 --> A1 V2

The analysis of d), which is an unlikely but possible ex-
ample in a stylistically marked context, or of e) which is
plain ungrammatical would require the addition of the
rules in a) and b) below, respectively:

a) Vlll> VO ~1
b) N1 ----> A1 Sl

V1 --> V1 N2

Of course, there are other possible ways, using implicit
G1, of parsing these examples and it is an empirical ques-
tion whether the system will stabilise on these analyses.

4.2 Experiment 1

We generated 500 sentences using a probabilistic version
of explicit G1 (probabilities used are given in brackets af-
ter the rules in appendix 1). We then produced a proba-
bilistic version of implicit G 1 with the implicit rules given
a floor probability of around 0.01 and the explicit rules
initialised with higher probability. This gave a gram-
mar with a total of 126 CNF CF rules (27 of which were
explicit rules derived from G1 PS rules and word declara-
tions). As a simple test we trained this grammar using
the inside outside algorithm1 on the 500 sentences. It
was then retrained on an larger corpus, consisting of the
original 500 sentences and 28 examples hand-written ex-
amples, which could be analysed with the addition of the
implicit rules though not the explicit grammar, such as
slowly with the sheep the boy chases the ball. In this ex-
ample, an adverb occurs without a degree modifier and
both the adverbial and prepositional phrases are pre-
posed. Explicit G1 does not contain rules covering these
possibilities. The resulting trained grammar is given in
appendix 1 (with rules with zero probability excluded).
In Table 1 we give two measures of the entropy (per
word) (Wright, 1990) of the source language and the 
timated language from the original 500 sentences. For
comparison we provide the same measures for the palin-
drome language investigated by Lari & Young (1990). 
the case of the implicit grammar trained on the corpus
of 528 sentences, only the entropy of the randomly ini-
tialised grammar and the trained grammar are shown, as
the entropy of the source language is unknown. These
measures are defined by:

H3a = ~Kl°gP(S)
EK ISI

1x-" log P(S)
HSb

where P(S) and iS[ are the probability and length of sen-
tence S respectively and K, the number of sentences in
the set. For the extended corpus we show the difference
in entropy between the implicit grammar with random
probability assignment and the trained grammar. These
figures demonstrate that the inside-outside algorithm is
converging on a good optimum for modelling both the
original language and the extended language given the
initial conditions. They also demonstrate that the lan-
guage being modelled has an entropy / word which is
roughly twice that of the palindrome language. Thus we
have shown that restricting the space of possible rules
that is explored and biasing initial parameters towards
a linguistically motivated optimum allows the model to
converge very rapidly to a useful solution. In this case,
the model converges after only 6 iterations over the train-
ing corpus, suggesting that we may be able to extend the

1 The version of the inside-outside algorithm used through-

out this paper is that presented in Jelinek (1985)
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Entropy Measure H3a n3b

Palindrome Language 0.6870 0.7266
Estimated Panlindrome Lang. 0.6916 0.7504

Explicit Grammar 500 1.5954 1.5688
Implicit Grammar 500 1.5922 1.5690

Initial Grammar 528 2.0979 2.0898
Trained Grammar 528 1.5584 1.5698

Table 1: Measures of Entropy

approach successfully to more complex grammars / lan-
guages. Crucially, these results extend to the case where
the original explicit grammar is only an approximate
(undegenerating) model of the training data. This situa-
tion recreates (in a small way) the situation in which the
linguistically-motivated grammar available undergener-
ates with respect to naturally-occurring sentences.

Although these results are promising, we are crucially
interested in the analyses assigned by the trained gram-
mar and not in its ability to model the language (strings).
One measure of success here is the extent to which the
trained grammar has zeroed the parameters for implicit
rules. In the final trained version of implicit G1, 52
non-zero rules remain (27 explicit rules + 25 implicit
rules). Recall that we said that there are approximately
380,000 analyses for the 14 word sentence passionately
with the sheep the cat chases the ball with the boy so
slowly; this example has 75 parses in the trained gram-
mar. In addition, we analysed 14 sentences parsed us-
ing the trained grammar, recording the most probable
analysis assigned, the probability of this analysis, the
total number of analyses, the probability of all analy-
ses and the likelihood of the analysed sentence given the
trained grammar. These sentences are drawn from the
original 500, the additional 28 and further unseen ex-
amples. Examination of the parse trees shows that the
trained grammar is not perfect in the sense that not all
the constituents constructed conform to linguistic intu-
itions; for example, the constituent [N1 [A0 passionately
A0] [N1 [DT the DT] [NO boy N0]N1]N1]. In addition,
global ambiguities such as PP attachments are not re-
solved in a manner which necessarily accords with our
lexical semantic intuitions. Nevertheless, the system has
done about as well as could be expected given only in-
formation about rule frequencies. Furthermore, in the
cases where the examples are ’nearly’ grammatical, in
the sense that they deviate from the explicit grammar
by no more than one or two rules, the analyses assigned
are almost always the ’closest fit’ that can be achieved
using a minimal number of implicit rules. In many cases,
this results in the linguistically-motivated analysis being
induced. The most ambiguous example (17 words long)
has 273 parses, the average is just under 60 parses (for

average length of 13.5 words). Ignoring PP attachment
ambiguity 8 rules are misapplied out of a total of 160
rule applications for these examples, yielding a figure of
95% correct rule application for the examples analysed.

5 Feature-based Encoding of

Constraints

In most implementations of X-Bar Theory a feature:
based encoding of headedness is assumed and, at least
since GPSG (Gazdar et al., 1985), the feature theory
is formalised via the unification operation (e.g. Shieber,
1984). Within a broad framework of this type it is possi-
ble to envisage imposing many grammatical constraints
by treating feature-based generalisations as constraints
on the ’compilation’ of a (CF) phrase structure gram-
mar (PSG). For example, we could add an agreement
constraint to G1 by requiring, for instance, that daugh-
ters in rules which have agreement features NUM and
PER the values of these features must be consistent, as
in AGR below:

CONSTRAINT AGR :
D --> Cstm, PER], C~tm, PER];

Nt~C1)fmm(2),
PER(1)=PER(2).

This rule blocks the generation of PS rules in which the
values of these features differ or, if variable, are not
bound. We have extended the ANLT metagrammati-
cal grammar compilation system to incorporate this ap-
proach to grammatical constraints or partial grammar
specification. In the current ANLT grammar compiler,
these rules are used to create a set of ’fleshed out’ PS
rules in which aliases are expanded out, constraints ap-
plied in the form of feature variable or value bindings,
and so forth. There are two ways that the compiled out
grammar might be interfaced to a system, such as that
of Lari & Young (1990), which assumes a CNF CFG.

Firstly, we might expand out PER, NUM and any
other features with variable values, creating new rules
for all possible values of these features according to the
feature declarations. This approach is guaranteed to ter-
minate if feature declarations specify a finite number of
values, and the result will be a set of categories which
can trivially be replaced by a new set of atomic sym-
bols. However, in general this approach is likely to lead
to impractical increases in the size of the grammar for
the purposes of tractable re-estimation of probabilities
using the inside-outside algorithm and also means that
feature-based grammatical constraints can only be em-
ployed in a manner which allows compilation into a CFG,
precluding the use of category-valued features and other
linguistically common techniques which lead to an in-
finite feature system / category set. Secondly, we can
simply re-alias the non-variable parts of categories using
the existing aliases (for perspicuity) and filter with the
remaining features for the purposes of assigning parses
to sentences during the first phase of re-estimation. Al-
ternatively, Briscoe & Carroll (1991) provide an algo-
rithm which automatically constructs the most informa-
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tive CF backbone from a unification-based grammar in
which categories are specified entirely in terms of feature
sets. Unification of features could be treated as either
a ’hard’ constraint to remove certain analyses from the
re-estimation process or possibly in a ’softer’ fashion to
adjust probabilities in a manner sensitive to this phase of
the parse process. Currently, we expand the resulting set
of feature-based PS rules into a CNF CFG, though we
are developing a parsing and re-estimation system which
does not require rules in CNF format and can make more
direct use of features.

5.1 Experiment 2
The availability of large quantities of tagged and hand-
corrected corpora, such as the Penn Treebank, LOB,
SEC and others, coupled with the relative reliability of
automatic tagging (e.g. de Rose, 1988), means that 
obvious test (and potential useful application) for a ro-
bust parser would be in the automatic parsing of tag-
sequences to construct analyses of the same order of
complexity as those currently constructed manually (see
above). Most tagged corpora contain between 50-120
distinct lexical tags. These tags most often encode PER
and NUM information as well as major category infor-
mation. We can, therefore, create a lexicon of tags in
which each tag is represented as a feature set with de-
terminate values for all features:

NNS : IN +, V-, BAR 0, PER 3, NUN Sg].
NNP : IN +, V-, BAR 0p PER 3, NUN P1]. etc.

We have developed a unification-based grammar (G2)
for the CLAWS2 tagset (Garside et al., 1987:Appendix
B) containing 156 lexical categories (tags), 17 fea-
tures (maximum number of values 15), 8 non-terminal
(aliased) categories, 12 terminal (aliased) categories, 
binary-branching PS rule (schemata), and 10 constraints
of feature propagation and defaulting (of the type de-
scribed above). These constraints implement headed-
ness, agreement, and also constrain the grammar of coor-
dination via the propagation and defaulting of a feature
CONJ. Implicit rules are automatically generated from
G2 by creating a new set of CF rules encoding all possi-
ble binary rules from the set of aliased categories defined
in G2. Then category declarations are used to expand
out the aliased categories in these potential implicit rules
with their featural definitions. The constraints of G2 are
applied to produce bindings and default values in these
rules. Any potential implicit rule which does not match
the pattern specified by a propagation constraint is fil-
tered out of the set of implicit rules. In this fashion, prin-
ciples of feature propagation and defaulting are given an
absolute interpretation with respect to the generation of
the implicit component of the grammar.

We have used G2 to produce explicit and implicit CNF
CFGs for use with the inside-outside re-estimation and
parsing system. However, were all the features in the
PS rules to be expanded out to create a CNF CFG,
the resulting explicit grammar would consist of 63,831
rules. Combining these with the implicit rules licensed
by the constraints in G2, would generate over 250,000

rules, which is too many for our current implementa-
tion and hardware and would also lead to problems of
data insufficiency. We chose instead to re-alias a subset
of the features in the set of rules produced and form a
CNF CFG from these aliases. In this way, we can con-
trol the size of the category set to keep the re-estimation
technique tractable. In future work, we intend to use the
remaining features to filter out some derivations. Thus,
we simplified the grammar by not utilising featural dis-
tinctions between sub-classes of the major categories,
thereby yielding a total of 8271 rules (1850 of which were
explicit). This simplification both increased slightly the
coverage of the grammar and so too the number of spuri-
ous analyses assigned to any given tag sequence. Whilst
the simplified explicit grammar parses less than 20% of
the SEC, the combined grammar (consisting of both im-
plicit and explicit rules) can assign a complete parse to
about 75% of the corpus.

Once again the rules were initialised randomly prior to
training, with explicit rules initialised with higher prob-
abilities than implicit rules. After 5 iterations of the
inside-outside algorithm, during which very low proba-
bility rules were floored to zero, 3786 rules with non-zero
probability remained. Using this trained grammar, 14
sentences selected at random from the corpus were anal-
ysed, of which 10 were assigned complete parses. The
Viterbi algorithm was used to extract the most probable
parse, together with its probability and the number of
explicit rules employed. Using the inside phase of the
inside-outside algorithm, the probability of all analyses
of the sentence, the number of analyses and the likeli-
hood of the most probable parse were calculated. Ap-
pendix 3 contains a number of these analyses, with a
brief comment on the errors associated with the most
probable analysis. As can be seen from these examples,
approximately 90% of rules used in the most probable
parse were explicit rules. This is only to be expected,
as these rules are assigned higher probabilities at ini-
tialisation. However, it also demonstrates that typically
only a few extra rules are necessary in order to modify
the grammar to increase coverage. Concerning the er-
rors in the most probable parses: although the grammar
is extremely ambiguous, the most ’probable parse in 8
out of 10 of the complete parses is close to correct, and
in the case of observation 7 completely correct. Com-
paring the most probable analyses with the syntactico-
semantic most plausible bracketing and major category
assignment yields a correct rule application rate of 79%
(39 errors out of 189 applications). Given that about 
third of these errors concern level of attachment of ar-
guments / modifiers about which the grammar has no
information, these results suggest that the technique is
promising. We intend to carry out further tests using
extended versions of G2 which do not involve full expan-
sion of the grammar to a CNF CFG.

6 Conclusions
In order to further explore the applicability of the inside-
outside algorithm to the robust parsing problem we need
to develop a version of the re-estimation and parsing
system capable of accepting classes of grammars not



restricted to CNF and able to unify features at parse
time. In addition, we need to develop a more sophisti-
cated grammar of tag sequences which factors more in-
formation into the grammatical constraints used to con-
struct the implicit rules. These steps will, we hope, allow
the creation of a parser capable of robust and accurate
phrasal-level analysis. In order to extend this analysis
to problems such as PP attachment, it would be neces-
sary to incorporate information concerning collocations
of semantic classes of words into the probabilistic anal-
yser. However, a robust and accurate phrasal analyser
would itself be useful for tasks such as (semi-)automatic
acquisition of lexical entries. In the longer term, we hope
to merge the techniques we are developing to deal with
undergeneration with those we have developed for parse
selection for use with the full ANLT grammar (Briscoe
& Carroll, 1992).
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Appendix 1 -- GI: A simple X-bar Grammar

FEATURE N{+, -}
FEATUItEV{+, -}
FEATUItEBAIt~O, 1, 2}
FEATUItEMINOIt~DT, DG}

ALIAS V2 = IV +, N -, BAit 2]
ALIAS Vl = IV +, N -, BAit 1]
ALIAS VO = [V +, N -, BAit O]
ALIAS N1 = IV -, N +, BAit 13
ALIAS NO = IV -, S +, BAit O]
ALIAS P1 ffi IV -, N -, BAit 1]

ALIAS P0 = IV -, N -, BAit 01
ALIAS A1 ffi [V +, N +, BAit 1]
ALIAS A0 = IV +, N +, BAR 0]

ALIAS DT = [MINOR DT].
ALIAS DG ffi [MINOIt DG].

PSItULE $1 : V2 --> N1Vl. (I.0)
PSRULE VP1 : Vl --> VO N1. (0.9)
PSItULE VP2 : V1 --> Vl A1. (0.I)
PSItULE NP1 : N1 --> DT NO. (0.8)
PSItULE N1 : N1 --> N1P1. (0.2)

PSItULE P1 : P1 --> PO Sl. (1.0)
PSItULE A1 : AI --> DT AO. (1.0)

WORD cat : NO. (0.15)

WORD bird : NO. (0.2)

WORD park : NO. (0.1)

WORD ball : NO. (0.2)

WORD girl : NO. (0.08)

WORD boy : NO. (0.15)
WORD sheep : NO. (0.12)
WORD chases : VO. (0.65)
WORD kisses : VO. (0.35)

woRD in : PO. (0.4)
WORD with : PO. (0.6)

WORD slowly : AO. (0.72)

WORD passionately : AO. (0.28)

WORD Che : DT (0.4)

WORD a : DT. (0.3)

WORD this : DT. (0.1)

WORD that : DT. (0.3)

WORD so : DG. (0.3)

WORD too : DG. (0.25)

WORD very : DG. (0.45)

Appendix 2 -- Probabilistic CNF Trained Version of Implicit G1

V2 --> V2 Pl

V2 --> V2 A1

V2 --> N1 Vl

V2 --> NO Vl

V2 --> Pl V2

V2 --> A1 V2

V2 --> AO V2

Vl --> V1 Pl
V1 --> V1 A1
Vl --> VO N1
V1 --> VO Pl
V1 --> Pl V1
Vl --> kl Vl
Vl --> kO V1
VO --> chases #
VO --> kisses #

N1 --> N1 Pl
N1. --> N1 kl
N1 --> NO A1
N1 --> Pl N1
N1 --> A1 N1
NI --> AO N1
N1 --> DT NO

NO --> cat #
NO --> bird #
NO --> park #
NO --> ball #
NO --> girl #
NO --> boy #
NO --> sheep #

0.00057531 implicit
0.00076667 implicit
0.94625349 explicit
0.00541748 implicit
0.00693598 implicit
0.02800444 implicit
0.01504663 implicit
0.00050115 implicit
0.07906031 explicit
0.90583286 explicit
0.00171885 implicit
0.00606044 implicit
0.00166988 implicit
0.00515654 implicit

0.71401815 explicit
0.28598488 explicit
0.17184879 explicit
0.00003598 implicit
0.00060919 implicit
0.00074166 implicit

0.00085517 implici~
0.00166976 implicit
0.82423948 explici~
0.16212233 explici~
0.19528371 explici~
0.09874724 explici~

0.21075903 expliciZ
0.08032424 explicit
0.15401621 explicit
0.09874724 explicit
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P1 --> V1 P1 0.00328333

P1 --> P1 P1 0.00099618

P1 --> PO N1 0.99571773

P1 --> AO P1 0.00000276

PO --> in # 0.44554458

PO --> with # 0.88448848

A1 --> V1 A1 0.00001139

A1 --> P1 A1 0.03048650

A1 --> A1 P1 0.00592188

A1 --> A1 ll 0.03028750
A1 --> AO P1 0.11100389
A1 --> AO A1 0.00120497

A1 --> DG AO 0.82111386

AO --> slowly # 0.66250000
AO --> passionately # 0.33750000
DG --> so # 0.27586207

DG --> too # 0.27886207
DG --> very # 0.44827586
DT --> the # 0.43784619
DT --> a # 0.29120473
DT --> ~his # 0.09460458

DT --> that # 0.17664449

implicit
implicit
explicit

lmplicit
explicit
explicit
implicit
implicit
implicit
implicit
implicit
implicit
explicit
explicit
explicit
explicit
explicit
explicit

explicit
explicit
explicit
explicit

Appendix 3 -- SEC Parses with G2

A) Complete Parses

Observation 1

Next_}.) eeek_NNT1 a_AT1 delegation_NN1 of_IO nine_MC Protestan¢_JJ
ministers_SSS2 from_II Argen~ina_NP1 visits_VVZ the_AT Autumn_NN1
assembly_N.1 of_lO the_AT British_33 Council_N.3 of_IO Churches_g.32

Parsed sentence:

Iv2.2
[N2.2
IN1.4 [AO. 1 Next_MD AO. 1] [NO. 2 week_..T1 NO. 2] N1.43
[.2.2

[DT.4 a_ATl DT.4]
[N1.4 [.1.4 [NO.2 delegation_N.1 NO.2]

[P1.2 [PO.7 of_IO PO.7]
[.2.7

[DT.3 nine_Me DT. 3]
[.1.2 [A1.1 Protestant_3S A1.1]

[NO. I ministers_..S2 NO. fiN1.2]N2.7]P1.2]N1.4]

[P1.2 [PO.7 from_II PO.7]
IN2.2 Argentina_.P1 N2.2] P1.2] N1.4] N2.2] N2.2]

[VI.2 [VO. 13 visits_VVZ VO. 13]
[N2.2 [DT.4 the_AT DT.4]

[N1.4 [NO.2 [NO.2 Aut-mn_NNI NO.2] [NO.2 assembly_NN1 NO.2]NO.2]

[P1.2 [PO.7 of_IO PO.73
[.2.2 [DT.4 the_AT DT.4]

[.1.4 lEt. I British_J3 At. I]
[NI.4 [NO.2 Council_NNJ NO.2]

[P1.2 [PO.5 of_IO PO.5]
IN2.1 Churches_NNJ2 N2.1]

P1.2]NI .4]NI. 4] N2.2] P1.2]N1.4] N2.2] VI. 2] V2.2]

Sentence length: 19 words
best 8.809598e-33 all 1.064649e-30 likelihood 0.005457
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(Tot number of parses : 21862499278031036 )

Total Rules Applied 40 Total Explicit 36 (90.00~)
Ratio of correct rules / rules applied: 18/19

Comments: ’Next week’ not part of N2 but V2; ’from Argentina’ attach lower?

Observation 2

More_DAR news_NN1 about_II the_AT Reverend_NNS1Sun_NP1MyunE_NP1
Moon_NP1 founder_NN1 of_IO the_AT Unification_NN1 church_NN1 who_PNQS
’s_VBZ currently_RR in_II jail_NN1 for_IF ¢ax_NNl evasion_NNl

Parsed sentence :
[v2.2

[i2.2
[11.4
[A1.2
[AO.2 More_DAR AO.2]
[Ni.4 [NO.2 news_NN1 NO.2]

[P1.2 [PO.7 abou¢_II PO.7]
IN2.2

[DT.4 the_AT DT.4]
[NI.4
[go. 2
[NO. 2
ENO. 2

[NO.2 [NO.2 Reverend_NNSl NO.2] [NO.2 Sun_NP1 NO.2]NO.2]
[gO. 2 gyung_NP1 NO. 2] NO. 2]

[NO.2 Moon_NP1 NO.2]NO.2]
[NO. 2 founder_NN1 NO. 2] NO. 2]

[P1.2 [PO.7 of_IO PO.7]
[N2.2 [DT.4 the_AT DT.4]

[NO. 2 Unif ication_NN1 NO. 2] N2.2] PI. 2
]NI. 43 N2.23 P1.23NI .43AI .2"1

[NO. 2 church_NN1 NO.2]N1.4]
[N2.4 who_PNqS N2.4] N2.2]

[VI.2 [VO.3 ’s_VBZ VO.3]
[P2. I [AI.4 currently_RR AI.4]

[P1.2 [PO.7 iu_ii PO.73
[N2.2 [N1.4 [NO.2 jail_NN1 NO.2]

[PI.2 [PO.8 for_IF PO.8]
[NO.2 ¢ax_NN1 NO.2]PI.2]NI.4]

[NO. 2 evasion_NN1 NO. 2]N2.2] PI. 2]P2.1]VI. 2]V2.2]

Sentence length: 21 words
best 8.557940e-33 all 1.232113e-29 likelihood
(Tot number of parses : 31241634778345886 )

0.000695

Total Rules Applied 42 Total Explicit Rules Applied 38 ( 90.48 ~ 

Ratio of correct rules / rules applied: 14/20

Comments: ’more’ not head; ’founder ~ not part of name; ’unif church’
split; ’currently’ not in PP, ’tax evasion’ split; N2 --> N1 NO = too
probable implicit rule; relative clause split

Observation 3

he_PPHS1 was_VBDZ awarded_VVN an_AT1 honorary_JJ degree_NN1 last_MD



week_NNT1 by_II the_AT Roman_JJ Catholic_JJ University_NNL1 of_IO
la_kFW Plata_BP1 in_II Buenos_SP1Aires_NPl Argentina_NP1

Parsed sentence:
[v2.2

[N2.2 hs_PPHSI N2.2]
IV1.2
[Vl.2 [VO.3 was_VBDZ VO.3]
[V1.1 [VO. 12 awarded_VVN VO. 12]
[42.2 [DT.4 an_AT1 DT.4]

[NI.4 [A1.1 honorary_JJ A1.1] [NO.2 deEree_NN1 NO.2]N1.4]N2.2]V1.1]V1.2]
[N2.4 [N1.4 [AI.1 [AO.1 last_MD AO.1]

[N1.4 [NO.2 week_SST1 NO.2]
[P1.2 [PO.7 by_II PO.7]

[N2.2
[DT.4 the_AT DT.4]
[NI.4 [A1.1 Roman_JJ AI.I]

[41.4
[AI. I Catholic_~3 AI. I]
[41.4 [N0.2 University_NNL1 40.2]

[PI.2 [PO.7 of_IO PO.7]
[N2.2 Ia_~FW N2.2]PI.2]NI.4]NI.4]NI.4]

N2.2] P1.23 N1.4] AI. I]
[N1.4 [NO.2 Plata_NP1 NO.2]

[P1.2 [PO.7 in_II PO.7]

IN2.2 Buenos_NP1 N2.2] P1.2] N1.4] el. 4]
[40.2 [NO.2 Aires_NPl NO.2] [NO.2 Argentina_NP1 NO.2] NO.2]

N2.4] VI. 2] V2.2]

Sentence length: 20 words
best 1.449373e-30 all 2.667054e-27 likelihood
(Tot number of parses : 21272983202438840 

0.000543

Total Rules Applied 40 Total Explicit Rules Applied 38 ( 95.00 ~ 

Ratio of correct rules / rules applied: 16/19

Comments: ’last week’ not postmodified by ’by...~; ’la Plata ~ split;
’Buenos Aires’ split

Observation 4

In_II ---ouncing_VVG the_AT award_4N1 in_II New_NPl York_NPl the_AT
rector_44Sl of_IO the_AT university_NNLl Dr_NNSBI Nicholas_NPl
Argentato_NPl described_VVD Mr_NNSBI 4oon_NP1 as_II a_ATI prophet_NN1
of_IO our_APP$ time_NNl

Parsed sentence:
[v2.2

[P1.2 [PO.3 In_II PO.3]
IV2. i [VI. I [VO. 12 announcing_VVG VO. 12]

[N2.2 [DT.4 the_AT DT.4]
[NI.4 [NO.2 award_NNl NO.2]

[PI.2 [PO.7 in_II PO.7]
[N2.2 New_NP1 N2.2] PI. 2] NI.4] N2.2] Vl. I]

[40.2 York_NP i NO. 2] V2. i] PI. 2]
[V2.2

[N2.2 [DT.4 the_AT DT.4]
[NI.4 [NO.2 rector_NNSl NO.2]

[P1.2 [PO.7 of_IO PO.7]
[42.2 [DT.4 the_AT DT.4



[NO. 2
[NO. 2

I’I0.2 [NO. 2 univarsity_nL1 N0.2"I

[NO.2 Dr_NNSBI NO.2]NO.2]
[NO. 2 Nicholas_NP1 NO. 23 NO. 2]

lEO. 2 Argentato_NP1 NO. 2] NO. 2] N2.2] PI. 2] El. 4] N2.2]

[VI.2 [VO. 13 described_VVD VO. 13]
[N2.2
[N1.4
[NO.2 [NO.2 Mr_NNSBI NO.2] [NO.2 Moon_NP1 NO.2]NO.2]
[P1.2 [PO.7 as_II PO.7]

[N2.2 [DT.4 a_ATI DT.4]
[N1.4 [NO.2 prophet_NN1 NO.2]

[PI.2 [PO.7 of_IO PO.7]
[DT. i our_APP$ DT. I]PI.2]N1.4]N2.2]

P1.2]N1.4]
[NO. 2 t ime_NN 1 NO. 2] N2.2] Vl. 2] V2.2] V2.2]

Sentence length: 24 words
best 3.608663e-38 all 4.044410e-35 likelihood
(Tot number of parses : 919495556291413934080 

0.000892

Total Rules Applied 48 Total Explicit Rules Applied 46 ( 95.83 ~ )
Ratio of correct rules / rules applied: 18/23

Comments: ’New York’ split; no parenthetical for ’Dr..’; ’as...’ too low;
’our time’ spli$; ’of our’ PI --> PO DT

Observation 7

The_AT assembly_NN1 will_VM also_RR be_VBO discussing_WG the_AT
UK_NP1 immigra~ion_NNl laws_NN2 Hong_NPl Kong_NPl teenagers_NN2 in_II
¯ he_AT church_NNl and_CC of_RR21 church_NNl unity_NNl schemes_NN2

Parsed sentence:
Iv2.2
[N2.2 [DT.4 The_AT DT.4] [NO.2 assembly_NN1 NO.2]N2.2]
[Vl.2 [VO.9 will_VM VO.9]

[VI.I [AI.4 also_RR A1.4]
[Vl. 1 [VO.2 be_VBO VO.2]

[Vl. 1 [VO. 12 discussing_VVG VO. 12]
[N2.7
[N2.1 [DT.3 the_AT DT.3]

[NI.2 [N0.2 [N0.2 UK_NPI N0.2]
[NO. 2 immigration_NNl NO. 2] NO. 2]

[NO. 1 laws_NN2 NO. I]NI. 2]N2. I]
[N2.12
[N2.7

[NO.2 [NO.2 HonE_NP1 NO.2] [NO.2 Kong_NPl NO.2]NO.2]
IN1.2 [NO. 1 teenagers_NN2 NO. 1]

[P1.2 [PO.7 in_II PO.7]
[N2.2

[DT.4 the_AT DT.4]
[NO. 2 church_NN1 NO. 2] N2.2] PI. 2] NI. 23 N2.7]

[N2.12
[CJ.1 and_CC CJ.l]
[N2.7 [AO.4 of_RR21 AO.4]

[N1.2 [NO.2 [NO.2 church_NN1 NO.2]
[NO.2 unity_NN1 NO.2]NO.2]

[NO. 1 schemes_NN2 NO. I]NI.2] N2.7] N2.12]N2.12]



Sentence lensCh: 21 words
best 2.152796e-31 all 3.042978e-28 likelihood
(Tot number of parses : 1032440449833788 

0.000707

Total Rules Applied 42 Tot. Explicit Rules 38 ( 90.48 ~)
Ratio of correct rules / rules applied: 20/20

Comments: correct

N2.7] V1.1]V1.1IV1. l’]Vl. 2] V2.2]

0bservation 9

Parsed sentence:

More_RGR important_JJ however_RR is_VBZ that_CST the_AT biblical_JJ
writers_NN2 themselves_PPX2 thought_VVD that_CST events_NN2 that_CST
followed_VVDnatural_JJ laws_NN2 could_VM still_RR be_VBO regarded_VVN
as_CSA miraculous_JJ

Parsed sentence:

[P2. I

Ca2.5
[A2.2 [AI.5 More_RGR A1.8] [At. 1 importan¢_JJ A1.1]A2.2]
[AI.4 [AO.4 however_RR AO.4]

[Vl.2 IV0.3 is_VBZ V0.3]
[PI.2 [PO.3 that_CST PO.3]

[v2.1
[N2. I [DT.3 the_AT DT.3]

[N1.2 [A1. I biblical_JJ At. 1]
[NO. I writers_NN2 NO. I] NI.2] N2.1]

[VI. 1 IN2.1 themselves_PPX2 N2. i]
[VO.12 thought_VVD V0.12] VI.1] V2.1] PI.2] Vl.2] AI.4] A2.5]

[PI.2 [PO.3 that_CST PO.3]
[N1.2 [NO. 1 events_NN2 NO. 1]

[P1.2 [P0.3 that_CST PO.3]
[V2.1 [N2.7 [V0.13 followed_VVD V0.13]

[NI.2 [AI.1 natural_JJ AI.1]
[NO. 1 laws_NN2 NO. I] NI.2] N2.7]

[V2.8 [VO.8 could_VM VO.8]

[V2.1 [AO.4 still_RR AO.4]
[Vl. i

IV1.1 [VO.2 be_VBO VO.2]
[V1.1 [VO. 12 regarded_VVN VO. 12]

[PO.8 as_CSA PO.8] VI.I] VI.1]
[AI. 1 miraculous_JJ A1. I] Vl. I] V2.1] V2.8]

V2.1] P1.2] N1.2] P1.2] P2.1]

Sentence length: 22 words
best 2.047509e-41 all 3.249200e-38 likelihood
(Tot number of parses : 2341100946234064 

0.000630

Total Rules Applied 44 Total Explicit 38 (86.36~)
Ratio of correct rules / rules applied: 14/21

Comments: root P2; ’themselves thought’ joined; ’thought that’ split;
’as miraculous’ split; rel clause not P1 + subj gap; ’still be’ not V2
(explicit grammar very inadequate for this e.g.)




