
Using Heuristic Search to Retrieve Cases that Support Arguments

Edwina L. Rissland, David B. Skalak and M. Timur Friedman
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

{rissland, skalak, friedman}Ocs.umass.edu

Abstract1
We discuss the use of heuristic search in a graph of cases and

other domain knowledge to supply support for an argument. We
contend that for legal argument, a gap exists between the
vocabulary of constraints upon arguments and the indexing
vocabulary for cases and other domain resource knowledge. We
suggest best-first search of a graph of cases and other domain
knowledge as a means to partially close this gap. In particular,
search of the case-domain graph is driven by one of three
evaluation functions that use different levels of abstraction to
mediate between the indexing vocabulary and the task vocabulary.
We describe the BankXX system, which uses heuristic search to
retrieve cases and other domain knowledge in support of an
argument.

Introduction
Indexing and Heuristic Search

Case-based reasoning (CBR) is often used in service
a task such as teaching, planning, design or argumentation.
Part of the challenge in building CBR systems is to create a
bridge between the superficial level at which cases can be
input and the constraints of the ultimate task. A variety of
useful techniques have been used to good advantage to
provide case indexes that support the task at hand,
including, among others, influence graphs [Sycara &
Navinchandra, 1991], explanation-based generalization
[Barletta & Mark, 1988], thematic abstractions [Owens,
1988], and the declarative reification of task constraints
[Ashley & Aleven, 1991]. We focus on the task of creating
legal arguments, where the vocabulary of the constraints on
an emerging argument is different from the indexing
vocabulary immediately available for case retrieval. We
propose best-first search of a case base as one tool for case
retrieval in support of an application task such as legal
argument.

To take an extreme (but real) example of vocabulary
mis-match between a task and the immediately available
cases and indices, suppose that the cases are full-text legal
opinions and Boolean combinations of keywords are the

only indices available. Further suppose the requirement of
the argument is to supply a case that uses the opponent’s
best theory, so that one can distinguish the case from the
current problem and thereby discredit application of the
opponent’s theory. The constraints of this task cannot be
readily expressed in terms of the available indices: there is
a mis-match between the indexing and the task
vocabularies2. Barring revision of the indexing vocabulary
or a re-conceptualization of the domain, some search of the
information resources may improve case retrieval.

Indexing and search present two extremes for retrieval.
At one extreme, indices may function as database retrieval
keys, and no search of the case memory need be done, only
whatever minimal search is required to match the database
key. Cases are pre-indexed to permit immediate retrievals.
At the other extreme, search is relied on entirely. Through
an evaluation function, spreading activation, planning,
blind rummaging, or some other technique, the case space
is searched for the desired cases. Search may be useful even
in an apparently well-indexed case base, for example, if the
domain is changing rapidly, or if cases need to be retrieved
in ways not anticipated or enabled by the original indexing.

The approach in this paper is to narrow the gap
between an available indexing scheme and the requirements
of argument through the use of best-first search guided by
evaluation functions defined at various levels of
abstraction. At the lowest level--the domain level--the
evaluation function uses only information readily available
from the indexing immediately provided by domain
resource materials. At the highest level--the overall
argument leveluthe evaluation uses information
addressing the overall substance and quality of the
argument. At an intermediate level--the argument piece
level---the evaluation function uses information computable
from the domain level but geared to the needs of the
argument level.

In summary, BankXX incorporates a hybrid search-
indexing approach that couples indexing with exploration
of cases and other domain knowledge through best-first
search in order to (1) address shortcomings in the indices

1This work was supported in part by the National Science
Foundation, under grant IRI-890841, and the Air Force Office of
Sponsored Research under contract 90-0359.

2An analogous vocabulary gap between instances and their
generalizations has been noted by [Porter, Bareiss & Holte, 1990].

From: AAAI Technical Report WS-93-01. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

inherent in superficial domain knowledge, and (2) increase
the leverage obtainable from these existing indices.

In the remainder of this section we present a capsule
summary of the approach to case-base search in BankXX.
The next section describes knowledge representation in the
BankXX system, including the structure of the case-domain
graph., a graph of cases and other domain knowledge.
Next, the search mechanisms used to retrieve cases are
discussed. We then turn to experiments performed with
each evaluation technique. A discussion of related research
and a summary close the paper.

Overview of Search Model used by BankXX
BankXX creates an argument as a by-product of its

best-first search of the case-domain graph informed by one
of three evaluation functions. The argument is built
incrementally as nodes are examined and mined for their
contributions, which are collected, fit into argument
components, and amalgamated into an argument. The
critical aspects of the search model used by the system are
summarized below and described later in detail.

Search States: Set of nodes in a case-domain graph
representing either a case at some level of abstraction or a
legal theory.

Initial State: (1) Problem situation or (2) user-
specified node in the case-domain graph.

Operators on States: Set of functions that trace a
single link or a sequence of links in the case-domain graph.
Here called neighbor methods.

Goal States: None.
Termination Criteria: (1) Empty open list, or (2)

user-specified time bounds exceeded, or (3) user-specified
space bounds exceeded.

Heuristic Evaluation: Three linear evaluation
functions at different levels of abstraction.

In general, state-space search is defined by a triple:
(initial state, set of operators on states, set of goal states).
In best-fh’st search, an evaluation function is also used to
guide the exploration of the state space [Barr et al., 1981].
The search performed by BankXX differs from the usual
applications in two ways: the complexity of node
expansions through the neighbor methods and the absence
of well-defined goal states. Neighbor methods are
described in the following section. We do not include goal
states in our model because of the difficulties inherent in
defining an "argument goal" in a way that is consistent with
our informal understanding of how humans develop and
evaluate legal arguments. In short, it is hard in general to
say that an argument does or does not meet some plausible
persuasive or rhetorical goal, or even that one has
completed the supporting research.

Knowledge Representation in BankXX

Bankruptcy Domain Description
BankXX’s legal domain is an area of federal

bankruptcy law dealing with the issue of "good faith" in
proposing Chapter 13 bankruptcy plans. Chapter 13
provides that an individual debtor with regular income may
present a plan to pay off debts over time. This plan is

usually the focus of a Chapter 13 proceeding, which
specifies, among other things, what debts are to be paid to
what creditors, and to what extent partial payment will be
accepted as full satisfaction of a financial obligation. When
presented with a problem situation that describes a
proposed plan, the debts in issue, and other features of the
bankruptcy problem, BankXX provides argument support
for or against approval of the plan.

However, this approach is applicable to complex,
weak-theory domains that contain a highly interconnected
base of cases and other knowledge. Part of our motivation
for using search to build arguments is to find a general
method applicable to weak-theory domains.

Case-Domain Graph
The primary knowledge representation structure of

BankXX is the case-domain graph. Its nodes represent
legal cases or legal theories, and the links represent
connections between them. The case base is a subgraph of
the case-domain graph.

Several paths to each case in BankXX’s case memory
may be traversed, because cases are embedded in a graph,
rather than a discrimination tree (see, e.g., [Kolodner,
1983], [Turner, 1988]). Multiple paths to cases, found
through the sequential application of distinct types of
indices, provide several computational advantages: they (1)
can be coupled with distinct representations of cases at
different levels of granularity, (2) can help resolve typical
retrieval problems, such as too few or too many cases
retrieved, as described in detail in [Rissland, Skalak &
Friedman, 1993a], and (3) can increase the robustness
case retrieval in "real world" domains in which cases can
be indexed incorrectly, since mis-indexing a case by one
index does not make it inaccessible where other indices still
provide a path.

Multiple Case Representations
Case nodes represent cases from each of four different

points of view or levels of abstraction:
(1) case as collection of facts - a set of hierarchical

frames capturing entry-level factual information;
(2) case as vector of computed domain factor values

- a vector of values of factors (implemented as dimensions)
computed on the facts of representation (1);

(3) case as recurring prototypical story - a script
representing a general fact pattern or story; and

(4) case as bundle oflegal citations - atyped listof
citations.
The implementation currently contains 186 case nodes.

Theory nodes represent legal theories as a list of factors
that are necessary for determining how a particular theory
applies to a case. Not yet implemented, a legal theory node
also specifies a way to combine the factors -- for instance,
a weighting scheme -- to apply the theory. Legal theory
nodes are linked by pointers that describe the relationships
between legal theories, such as "overlaps with," "rejects,"
"is derived from," and "conflicts with." (See Figure 1.)
Legal theories have been culled from legal opinions by
ourselves. The system contains 17 legal theories.

Figure 1. A small subgraph of the case graph, showing
inter-theory links and links from theories to cases.

Nodes of like type are partitioned into subspaces of the
case-domain graph, each of which uses a designated set of
link types. For instance, in Citation-space, cases
represented as citation-bundles are connected by citation
links representing the stylized connections between a case
and the cases that it cites or that cite it in various ways.
The links in Citation-space are based on citation signals,
such as "see," "but see," and "compare," used in legal
writing ([Ashley & Rissland, 1987]), and link types, such
"affirmed," "overturned," "distinguished" used in legal
databases. See [Rissland, Skalak & Friedman, 1993a] for a
detailed description of the subspaces of the case-domain
graph, including the legal theory space and the case spaces
in which cases are represented as fact situations, domain
factor vectors, prototypes, and citation-bundles.

Neighbor Methods
Neighbor methods use links in the case-domain graph

to generate a list of potential nodes to examine in the search
of the graph. Some neighbor methods follow pointers in a
straightforward way. Others are similar to macro-operators
that trace a sequence of actual links to reflect a new, virtual
link 3. For example, one simple method (case-theory-
neighbors) gathers all the cases that have applied a theory.
Neighbor methods used by BankXX include: theory-cases-
theory, theory-prototype, cited-by, case-theory, cites-case-
theory, theory-theory, cites, and case-theory-theory-case.
These names can be interpreted as composite functions of
graph nodes. For instance, the first can be thought of as the
composite function theory(case(legal-theory-node)): find
the theories applied by any of the cases that use the theory
of the current node. (Cases may apply more than one
theory.) BankXX has 12 neighbor methods. Some
neighbor methods depend on the problem context, so that
different nodes in the case-domain graph will be opened
(discovered) for different problems.

Argument Data Structures

The Building Blocks of Argument: Argument Pieces.
We have chosen a simple representation of an

"argument" for this implementation. In this application, an

3Thus the branching factor of the search space is actually
greater than the branching factor of the static case-domain graph
consisting of the case nodes, legal theory nodes, and link edges.

argument is a collection of argument pieces, which
represent fragments of arguments or pieces of legal
knowledge that an advocate would ideally like to have to
support his or her position. The argument pieces represent
building blocks of argument. We recognize that this
idealization of argument does not reflect the logical and
rhetorical connections between the various pieces of an
argument, or the complexity of argument in general. Our
immediate goal is to gather the information necessary to
support a complete argument. The 12 argument pieces
currently used in BankXX are:
¯ cases decided for the current
viewpoint

¯ best cases5
¯ leading cases
¯ cases sharing a large
proportion of domain factors
¯ contrary cases decided for the
opposing side
¯ contrary best cases for the
opposing viewpoint

.family resemblance-
prototype:4

¯ supporting citations

¯ applicable legal theories
¯ nearly applicable supporting
legal theories
¯ the factual prototype story
category of the case
¯ factor analysis of
the current problem

Each argument piece contains a functional predicate
that determines if a node can supply that useful piece of an
argument. Argument pieces also contain an object slot to
store entities that satisfy its predicate. BankXX builds up
their content incrementally as its search proceeds, and the
collection of argument pieces is output at the conclusion of
BankXX’s processing (Figure 2). There is no argument text
generation facility within BankXX, however.

SUPPORTING-CASES: (<MYERS><SOTTER><MEMPH I S>

¯ o .)

SUPPORTING-BEST-CASES: (<SOTTER>)
LEADING-CASES: (<DEANS>)
DOMAIN-FACTOR-OVERLAP:

(<AK IN -FACTOR-ANALYS I S-CGN-D OMAI N-FACT OR>)
CONTRARY-CASES: (<BAEZ> <ASHTON> <CRUZ>
<OKOREEH-BAAH> <DEANS> <ALI>)
CONTRARY-BEST-CASES: (<ALI>)

SUPPORTING-CITATIONS:
(<SCHAITZ-CITES-RASMUSSEN-CGN-CI TATION>
<SCHAI TZ-C I TES-CALDWELL-CGN-CI TATI ON>

<SCHAITZ-CITES-RIMGALE-CGN-CITATION> ...)
APPLICABLE-SUPPORTING-THEORIES:

(<KI TCHENS-KULL-THEORY-CGN-LEGAL-THEORY>
<OLD-BANKRUPTCY-ACT-GOOD-FAI TH-DEFINIT ION>
<MEMPHI S-THEORY-CGN-LEGAL-THEORY>)
NEARLY-APPLICABLE-SUPPORTING-THEORIES: NIL
FACTD~L-PROTOTYPE-STORY: NIL

DI~NSIONAL-ANAL¥SI$-CURRENT-PROBLEM :
<CHURA-FACTOR-ANALYS I S >

FAMILY-RESEMBLANCE-PROTOTYPE: NI L

Figure 2. Example of partially instantiated argument
pieces produced by BankXX for In re Chura, 33 B.R. 558
(Bkrtcy. 1983). "CGN" means Case-domain Graph Node.

4The cases decided with the desired viewpoint that have the
greatest family resemblance to the given case.

5Based on the definition of best case used in HYPO [Ashley,
1990].

Evaluating Arguments: Argument Dimensions
Just as cases may be indexed and compared on the

basis of domain factors [Rissland, Valcarce & Ashley,
1984; Ashley, 1990], so arguments may be evaluated on the
basis of factors that capture dimensions along which
arguments may be compared and contrasted. In particular,
the third type of evaluation function is based on these
factors. They are also used to evaluate the "fmal" argument.
BankXX currently uses 5 implemented argument
dimensions:

(1) strength-of-best-case-analogies,
(2) win-record-of-theory-for-factual-prototypes,
(3) win-record-of-theory,
(4) centrality-of-theory,
(5) centrality-of-best-cases.

Space limitations prevent a complete description of
these factors, but, for example, strength-of-best-case-
analogies is based on the average number of legal factors
common to the current problem and the best cases cited in
the argument.

Indexing and Search in BankXX
In this section we discuss the operation of BankXX,

and discuss in detail the three types of evaluation functions
it uses to search the case base.

Control and Search Mechanisms
The control flow in BankXX is grounded in best-first

search of the case-domain graph. The user specifies or the
system selects a start node to begin the search. The system
iterates through a loop: using the neighbor methods,
compute the set of all nodes to which it is possible to move,
evaluate each one of these opened nodes, select the open
node with the highest evaluation function, and attempt to
use that best node in some argument piece. This loop
continues until a specified time limit is exceeded, a user-
specified number of nodes have been opened or until the
open list is empty. At the conclusion of the run, the
argument pieces are collected into an argument that is
assessed with respect to the argument factors. The
instantiated argument pieces and the evaluation by
argument dimensions are output. See Figure 3.

Input problem situaUon ~

search

ter~
not

-~ generate case graph
node n~lghl~ra

evaluate neighbors

select best node
ition criteria

~sf~ argument

..~bssess argument
I

y argument factors I
I

~rfoutput argument 1

~and assessment

instantlate argument pieces

Figure 3. BankXX control flow diagram.

termination criteria

7

Best-first Search of Case Knowledge for Argument
Generation

We have experimented with three types of evaluation
functions that differ in the level of abstraction each uses to
evaluate nodes in the case-domain graph. All the evaluation
functions are simple linear functions of the form
Y~ wi fi(c, *) where wi are scalar weights and the fi are
scalar-valued functions of the current node c. The asterisk
(*) denotes that the fi may take additional functional
arguments, described below. Since our focus is on the
degree of abstraction of the terms of the evaluation
function, the weights are arbitrary integers from [0, 10],
except that higher weights ate associated with terms
involving legal theories.

The three evaluation functions applied can be
analogized to those used in game-playing. By analogy, the
first uses empirical game board features, such as the
location of each type of piece. The second uses
intermediate-level features, such as the "center-control" or
"piece advantage" found in [Samuel, 1967]. The third
assesses the overall quality of a completed game.

Approach 1: Evaluation at the Domain Level
In approach 1, search is guided by an evaluation

function that evaluates case-domain graph nodes according
to their general potential for providing information of a
type known to be useful in argument. For instance, a
citation-bundle node can contribute case citations, a legal
theory node contributes a legal theory. This evaluation
function looks only to the type of a node--cases as facts,
cases as computed domain factors, cases as citation-
bundles, cases as factual prototype, and legal theories--that
is being evaluated.

The form of this evaluation function is:

w1 type-predl(C) + w2 type-pred2(c)+ +wn type-predn (c)

In the evaluation function of approach 1, each type-
predi is a function computed on features of the current
case-domain graph node c. These functions are currently
implemented as characteristic functions that return 1 if the
domain node is of a certain class, such as a citation-bundle
graph node, and 0 otherwise. Since there are five types of
case-domain nodes there are five terms in this evaluation
function. For the work reported in this paper, they are
weighted slightly to emphasize nodes representing legal
theories.

The question asked of a node with this evaluation
function is: "How well will this node contribute
information of a type known to be useful to argument?"
This evaluation does not check the current state of the
argument--only whether a node has the potential to
contribute information known to be useful to arguments in
general. It can cause the system to ignore information
valuable to an evolving argument, such as the prototypical
story type of the problem if one has not been found, or to
pursue information less valuable overall, such as additional
on-point cases when there is already a surfeit of them.

8

Approach 2: Evaluation at the Argument Piece Level
In approach 2, search is guided by an evaluation

function that evaluates nodes according to their
contributions to the system’s library of argument pieces.
The question asked of a node with this evaluation function
is: "How well will this node contribute directly to
instantiating the list of argument pieces?" This approach
attends to progress on a wish list of argument desiderata
represented by the argument pieces.

The form of this evaluation function is:

w1 arg-piece-predl(C~a) + w2 arg-piece-pred2(c,a)
+ ... + wn arg-piece-predn(c,a)

Each arg-piece-predi is a two-place argument-piece
predicate computed from features of the current node c and
the current state of the argument a: if the ith argument
piece can be instantiated by the current node and is not
already filled, the predicate returns 1, and 0 otherwise. This
intermediate-level evaluation function discourages BankXX
from wasting computing resources through unnecessary
bolstering of parts of the argument that are already
established. It is more informed than approach 1 and
attends to the overall evolving argument. BankXX
currently uses 12 argument pieces, and thus there are 12
terms in the evaluation function.
Approach 3: Evaluation at the Argument Dimension
Level

Approach 3 carries this attention to the overall
argument one step further by evaluating its quality. Overall
quality is assessed with the use of argument dimensions:
factors that address desirable aspects of an argument, such
as centrality of the cases cited or the coverage of cases by a
legal theory. The question asked of a node by this
evaluation function is: "How well will this node contribute
to the overall quality of the argument?"

The form of this evaluation function is:

Wl arg-dim-fcnl(c,a,a*) + w2 arg-dim-
fcn2(c,a,a*)+...+ Wn arg-dim-fcnn (c,a,a*)

Each arg-dim-fcni is an argument dimension function
that takes three arguments (c,a,a*), where a* is the
argument that would result from incorporating the
knowledge in node c into the current argument a. The
argument dimension function arg-dim-fcni returns 1 if the
current node c can improve the argument along argument
dimension i, and 0 otherwise. BankXX currently employs
five argument dimensions and thus there are five terms in
this evaluation function. Currently, the weights emphasize
legal theories in this function as well.

The search moves to a node only if the node has the
potential to make a favorable argument dimension
applicable or to improve the value of an already applicable
argument dimension. In approach 3, the search may be
thought of as being conducted in "argument space" in that
the system evaluates states representing snapshots of a
partially evolved argument as constituted by the partially
instantiated argument pieces and argument dimensions.

BankXX Performance Using Various
Evaluation Functions

In this section, we describe the system’s performance
under the three evaluation functions described in the
previous section: evaluation at the domain, argument piece,
and argument dimension levels. Our purpose is to compare
the quality of the arguments generated using the three
evaluation functions, measured in terms of both the
argument pieces and the argument dimensions. The data
given below were collected by running each of the 54 cases
in the case base as a new problem with a space resource
limit of 30 visited nodes. In order to treat each case as
presenting a new problem, all its links and any theories it
promulgated were excised from the case-domain graph. The
starting node was always the Estus case, the leading case in
this area of the law.

Quantitative comparison of several evaluation functions
In Table I, for each of 10 argument pieces, we give the

average number of nodes BankXX found by the completion
of its run6.

Argument Piece Domain Argument Argument
Eval. Fn. Piece Eval. Dimension

Fn. Eval. Fn.
Supporting cases 5.3 3.0 9.2
Best eases 1.3 2.9 1.4
..l~...~8.e~es 4.6 4.5 4.8
Overlapping factor 1.7 3.6 0
cases

...C..o.#~..apl..cas~ 5.4 3.0 8.3
Contrary best cases 1.2 2.1 1.4
Supporting 3.1 4.2 0.2
citations

.Applicable theories 1.9 1.9 0.3
Nearly applicable 0 0 0
theories
Factual prototype 0.6 0 0.2
story
Table I. Average number of nodes that fill 10

argument pieces.
These preliminary data suggest that the argument-piece

evaluation function engenders a somewhat more balanced
argument than the other two, as expected. For instance, it
caused retrieved cases to be spread more evenly over a
variety of types, whereas the other two over-concentrate
cases in supporting cases and contrary cases. For instance,
the evaluation function based on argument dimensions
retrieved cases at the expense of completing other argument
pieces, such as applicable theories and supporting
citations.7

6We do not provide data for two argument pieces: the factor-
analysis-of-the-current-problem piece was computed for each
ease, thus making its value uniformly 1, and the family-
resemblance-prototype piece is being revised.

7It also retrieved no cases with significant domain factor
overlap simply because no implemented argument dimension
addresses cases that are somewhat similar to the current problem
but that are not "best" eases.

Comparison of Arguments along Argument Dimensions
Arguments may be assessed for quality in a number of

ways. For this experiment, we have used the argument
dimensions to assess the quality of the argument ultimately
generated for each case. For each of the three evaluation
functions, Table II gives the average argument dimension
values for the arguments created using that function. Thus
the argument dimensions play two roles: they drive the
search in the argument dimensions evaluation function, but
are used to assess the final quality of the argument for each
of the evaluation functions used.

Argument Domain Argument Argument
Dimension Eval. Fn. Piece Eval. Dimension

Fn. EvaL Fn.
Strength of best case 0.2 0.3 0.2

.____an__a!oj~ies
Theory win record for 0.1 0.1 0.03
prototype
Win record of theol. 0.4 0.4 0.1
Centrality of theory 4.8 4.8 0.8
Centrality of best 0.1 0.1 0.2
cases

Table H. Average value along each argument
dimension for the arguments created using each of the three
levels of evaluation abstraction, computed over the 54 cases
in the case base.

It may be surprising that the evaluation function based
on argument dimensions performed somewhat less well
overall than the other two functions. We speculate that the
argument dimensions may be too abstract to be used alone
to drive the search. Intuitively, they may "flatten" the
search space and fail to grade adequately the potential
utility of a node for argument. The domain and argument
piece level evaluations performed comparably according to
the argument dimensions. In future research we plan to
extend the set of dimensions to capture more and subtler
aspects of argument quality.

That no one level of evaluation stands out as best is
consistent with the complexity of argument generation,
which, we argue, requires that control decisions take
various levels of constraints into account simultaneously
[Skalak & Rissland, 1992]. While these statistics represent
average results, a comparison of an argument created by
BankXX with an actual judicial opinion is gi~,en in
[Rissland, Skalak & Friedman, 1993b].

Related Research
Other retrieval systems have organized case memory as

a graph and permit multiple paths to a case. Kolodner’s
CYRUS [1983] is perhaps the best classical example of a
multiply-indexed case memory. Turner’s MEDIC program
[1988] incorporates several different types of knowledge
structures in a case memory of linked discrimination nets,
which allow multiple paths to diagnostic schemata. The
PROTOS program [Bareiss, 1989] uses a fixed strategy for
classification that takes advantage of three kinds of
indexing knowledge: reminding, prototypicality and

feature differences. The measure of prototypicality of an
exemplar is incrementally learned by PROTOS on the basis
of expert user feedback. Rose and Belew [1991] have
created a hybrid symbolic and sub-symbolic system,
SCALIR, that uses a variety of inter-case links that are
known a priori (including Shepard’s citation links) and
applies West’s key number taxonomy as citation links in a
network. However, SCALIR applies a spreading numerical
activation algorithm to search the network, rather than
heuristic best-first search. Direct Memory Access Parsing
(DMAP, [Martin, 1990]) is a case-based architecture that
uses a semantic network of case frames that is searched via
a marker-passing algorithm to instantiate frames that are
expected in the problem context. However, none of these
systems uses the constraints of argument formation --
incorporated into a classical heuristic evaluation function

to drive the search of the case base.
Search has been applied in at least two systems to

create arguments or to perform parts of the argument
generation task [Bhatnagar, 1989] and [Branting, 1991].
Bhatnagar’s algorithm involves search of a hypergraph
using A* search, but depends on the determination of
probability of the truth of a proposition in a potential
model. Branting’s GREBE uses A* search to do case
matching preparatory to making an argument in the area of
worker’s compensation law.

The problem orientation of research into "case-based
search" m how previous solution paths prune a search
space [Bradtke & Lehnert, 1988], [Ruby & Kibler, 1988]

is to be contrasted with this project’s research
orientation. These reported experiments with case-based
search used case retrieval to guide search for a prototypical
search problem, the 8-puzzle. This project investigates the
"complementary" task: how to use search to guide case
retrieval in a general case-based problem setting.

Other systems have made use of "utility" or "cost"
functions in case search and retrieval. Sycara’s
PERSUADER [1987] is a CBR system that created
arguments in the domain of labor negotiation by searching
a belief structure, which is a graph of the "persuadee’s"
goals and subgoals and their utilities. Veloso and Carbonell
[1991] have studied how to balance the relative costs of
search and case retrieval in a hybrid architecture combining
a search-based planner with an analogical reasoner.

Summary
In this paper we have discussed how case retrieval may

be performed using heuristic search of a knowledge base
that uses a variety of indices and interconnections.
Preliminary experiments with our BankXX system show
that the paradigm of best-first search can be profitably
employed in a case-based argument generation system, and
that evaluation functions can help bridge the gap between
simple low-level domain indices and complex higher level
argument considerations. We are continuing to study the
level of abstraction appropriate for the heuristic evaluation
of case and domain information as well as the problem of
argument evaluation.

10

References
Ashley, K. D. (1990). Modeling Legal Argument:

Reasoning with Cases and Hypotheticals. Cambridge, MA:
M.I.T. Press.

Ashley, K. D. & Aleven, V. (1991). A Computational
Approach to Explaining Case-Based Concepts of Relevance
in a Tutorial Context. Proceedings, Case-Based Reasoning
Workshop 1991, 257-268. Washington, D.C. Morgan
Kaufmann, San Mateo, CA.

Ashley, K. D. & Rissland, E. L. (1987). But, See,
Accord: Generating Blue Book Citations in HYPO.
Proceedings of the First International Conference on AI
and Law, 67-74. Boston, MA. ACM.

Bareiss, E. R. (1989). Exemplar-Based Knowledge
Acquisition. Boston, MA: Academic Press.

Barletta, R. & Mark, W. (1988). Explanation-Based
Indexing of Cases. Proceedings, Case-Based Reasoning
Workshop 1988, 50-60. Clearwater Beach, FL. Morgan
Kaufmann.

Barr, A., Feigenbaum, E. A. & Cohen, P. (1981). The
Handbook of Artificial Intelligence. Reading, MA:
Addison-Wesley.

Bhatnagar, R. K. (1989). Construction of Preferred
Causal Hypotheses for Reasoning with Uncertain
Knowledge. Ph.D. Thesis, Univ. of Maryland, College
Park, MD.

Bradtke, S. & Lehnert, W. G. (1988). Some
Experiments with Case-Based Search. Proceedings of
AAA1-88, the Seventh National Conference on Artificial
Intelligence, 133-138. St. Paul, MN. Morgan Kaufmann.

Branting, L. K. (1991). Building Explanations from
Rules and Structured Cases. International Journal of Man-
Machine Studies, 34, 797-837.

Kolodner, J. L. (1983). Maintaining Organization in
Dynamic Long-Term Memory. Cognitive Science, 7(4),
243-280.

Martin, C. E. (1990). Direct Memory Access Parsing.
Ph.D. Thesis, Yale University, New Haven, CT.

Owens, C. (1988). Domain-Independent Prototype
Cases for Planning. Proceedings, Case-Based Reasoning
Workshop 1988, 302-311. Clearwater, FL. Morgan
Kaufmann, San Mateo, CA.

Porter, B. W., Bareiss, R. & Holte, R. C. (1990).
Concept Learning and Heuristic Classification in Weak-
Theory Domains. Artificial Intelligence, 45,229-263.

Rissland, E. L. & Skalak, D. B. (1991). CABARET:
Rule Interpretation in a Hybrid Architecture. International
Journal of Man-Machine Studies, 34, 839-887.

Rissland, E. L., Skalak, D. B. & Friedman, M. T.
(1993a). Case Retrieval through Multiple Indexing and
Heuristic Search. To appear, Proceedings of IJCAI-93,
Chambery, Savoie, France. International Joint Conferences
on Artificial Intelligence.

Rissland, E. L., Skalak, D. B. & Friedman, M. T.
(1993b). BankXX: A Program to Generate Argument
through Case-Based Search. To appear, Proceedings,
Fourth International Conference on Artificial Intelligence
and Law. Amsterdam, The Netherlands.

Rissland, E. L., Valcarce, E. M. & Ashley, K. D.
(1984). Explaining and Arguing with Examples. AAAI-84,
Proceedings of the National Conference on Artificial
Intelligence. Austin, TX. AAAI.

Rose, D. E. & Belew, R. K. (1991). A Connectionist
and Symbolic Hybrid for Improving Legal Research.
International Journal of Man-Machine Studies, 35, 1-33.

Ruby, D. & Kibler, D. (1988). Exploration of Case-
Based Problem Solving. Proceedings, Case-Based
Reasoning Workshop 1988, 345-356. Clearwater Beach,
FL. Morgan Kaufmann, San Mateo, CA.

Samuel, A. L. (1967). Some Studies in Machine
Learning using the Game of Checkers II - Recent Progress.
IBM J. Research and Development, 11, 601-617.

Skalak, D. B. & Rissland, E. L. (1992). Arguments and
Cases: An Inevitable Intertwining. Artificial Intelligence
and Law: An International Journal, 1(1), 3-48.

Sycara, K. P. (1987). Resolving Adversarial Conflicts:
An Approach Integrating Case-Based and Analytic
Methods. Ph.D. Thesis, School of Information and
Computer Science, Georgia Institute of Technology.
Atlanta, GA.

Sycara, K. P. & Navinchandra, D. (1991). Influences:
A Thematic Abstraction for Creative Use of Multiple
Cases. Proceedings, Case-Based Reasoning Workshop,
1991, 133-144. Washington, DC. Morgan Kaufmann, San
Mateo, CA.

Turner, R. (1988). Organizing and Using Schematic
Knowledge for Medical Diagnosis. Proceedings, Case-
Based Reasoning Workshop 1988, 435-446. Clearwater
Beach, FL. Morgan Kaufmann, San Mateo, CA.

Veloso, M. M. & Carbonell, J. G. (1991). Variable-
Precision Case Retrieval in Analogical Problem Solving.
Proceedings, Case-Based Reasoning Workshop 1991.
Washington, D.C. Morgan Kaufmann, San Mateo, CA.

11

