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Abstract”

We describe how a genetic algorithm can identify
prototypical examples from a case base that can be used reliably
as reference instances for nearest neighbor classification. A
case-based retrieval and classification system called Off
Broadway implements this approach. Using the Fisher Iris data
set as a case base, we describe an experiment showing that
nearest neighbor classification accuracy of over 95% can be
achieved with a set of prototypes that constitute less than 5% of
the case base.

Introduction

One of the fundamental problems of case-based
reasoning (CBR) is to ensure that exhaustive examination
of every case in case memory need not be performed to
retrieve the most similar or the most relevant cases. A
variety of indexing and other strategies have been brought
to bear successfully on this problem.

In particular, nearest neighbor case retrieval and
classification systems have dealt with the problem of
exhaustive case comparison. One class of solutions is to
pre-process cases into data structures that enable fast
nearest neighbor retrieval, such as Voronoi diagrams
[Preparata & Shamos, 1985] or kd-trees [Moore, 1990].
An alternative approach is to perform exhaustive
comparison, but to use parallel, distributed memory
hardware [Stanfill & Waltz, 1986]. For tasks that do not
require that all instances be stored in case memory, a third
alternative is to reduce the number of reference instances
in the case base!.

Reducing the number of instances used for nearest
neighbor retrieval has been a topic of research in the
pattern recognition and instance-based learning
communities for some time, where it is sometimes
referred to as the “reference selection problem.”
Approaches to the problem have included storing
misclassified instances (e.g., the Condensed Nearest

* This research was supported in part by the National
Science Foundation, contract IRI-890841, and the Air Force
Office of Sponsored Research, contract 90-0359.

1Legal argument is an example of a task for which it would
be dangerous to eliminate any case from memory.
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Neighbor algorithm [Hart, 1968], the Reduced Nearest
Neighbor algorithm [Gates, 1972], IB2 [Aha, 1990]);
storing only training instances that have been correctly
classified by other training instances [Wilson, 1972];
exploiting domain knowledge [Kurtzberg, 1987]; and
combining these techniques [Voisin & Devijver, 1987].
(For discussions of these approaches, see generally [Aha,
1990].) For example, for numeric prediction tasks, Aha’s
IB2 (also called CBL2) algorithm saves only those
training instances whose prediction error is above a given
tolerance threshold [Aha, 1990]. Other systems deal with
reference selection by storing averages or abstractions of
instances. In this paper we describe a novel approach to
reference selection: apply a genetic algorithm to identify
small sets of instances that may be used as references for
nearest neighbor retrieval.

This paper is an interim report on on-going research
in which we describe a case retrieval and classification
system called Off Broadway. We present an experiment
on the Fisher Iris data set [Fisher, 1936}, [Murphy & Aha,
1992] showing that Off Broadway achieves classification
accuracy of over 95% with fewer than eight reference
instances. Related research is discussed, and proposed
work and a summary end the paper.

Off Broadway

Off Broadway is a case retrieval and classification system
that performs classification based on a 1-nearest neighbor
algorithm. The system attempts to learn a set of
distinguished cases (prototypes) that have demonstrated
classification power.

The system maintains a population of sets of
potentially prototypical cases, where each prototype set is
a subset of a fixed cardinality of the case base. Each set
of prototypes is evaluated by its classification accuracy on
a set of training cases, where the class of each training
case is compared with the class of the prototype that is its
nearest neighbor in a prototype set. A genetic algorithm
is used to search the space of prototype sets in order to
find a set with superior classification accuracy. We show
that sets of prototypes can evolve whose classification
performance on the Iris data set have success rates
comparable to reported nearest neighbor algorithms that
use much larger subsets of the data set.



The connotation of “prototype” suggests one of a
small number of distinguished instances. For example,
the number of leading cases on a particular legal issue is
usually very small, often just one or two cases. Our
immediate focus, therefore, is on identifying a very small
number of cases as prototypes, and we arbitrarily look to
designate fewer than 5% of the Iris data base as
classification prototypes. Two general benefits of using
nearest neighbor classification prototypes as surrogates
for a much larger case set are obvious:

» decreased time to perform classification, since
classification involves comparison with only a handful of
prototypical cases; and :

+ decreased memory requirements, since only the
prototypes need be stored in short-term memory.

One specific benefit of our approach is that no expert
domain knowledge is needed to identify prototypical
cases. Case-based reasoning often is used in domains
lacking strong, operational domain theories, and so the
absence of reliance on domain knowledge is an important
aspect of our approach.

Genetic Algorithms

Genetic algorithms (GAs) are a class of adaptive search
techniques that have often proven effective for searching
large search spaces [Goldberg, 1989]. GAs maintain a
population of members, usually called “genotypes™ and
classically represented by binary string, which can be
mutated and combined according to a measure of their
worth or “fitness”, as measured by a task-dependent
evaluation function. As described in [Holland, 1986], the
basic execution cycle of a typical GA is straightforward:

1. Select pairs of population members from the
population according to fitness, so that stronger members
are more likely to be selected.

2. Apply genetic operators to the pairs, creating
offspring. Random mutation of a population member is a
typical operator. Another genetic operator, “‘crossover”
exchanges a random segment between two members of
the population.

3. The members of the population with the lowest
fitness are replaced by the offspring.

4. Return to 1. unless certain termination criteria
have been satisfied, such as the creation of an individual
whose fitness meets some threshold, or the stabilization of
the population,

In this application, the search space is the set of all
subsets of a fixed cardinality of a case base. If n
prototypes are selected from a case base of m cases, there
are C(m, n), “m choose n”, possible sets of prototypes.
For our experiments using the Iris data set, m=120 (30
cases are reserved for testing) and n <8, so the search
space is still quite large.

While GAs have been used in the past for rule-based
classification (e.g., [Holland, 1986], [De Jong, 1990], [De
Jong & Spears, 1991]), there has been recent interest in
exemplar-based classification techniques using GAs
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[Kelly & Davis, 1991] as well. De Jong and Spears point
out that the two concept description languages in general
use in machine learning are decision trees and rules. The
research in this paper investigates a third description
language that is symptomatic of exemplar-based
approaches to classification: the cases themselves. Our
approach is an example of the “single representation
trick” applied elsewhere in machine learning (see [Barr, et
al.,, 1981]), in which instances and instance
generalizations are expressed in the same language (e.g.,
[Michalski & Chilausky, 1980]). However, we use this
trick in reverse: here the concepts are expressed in the
language of cases, rather than expressing instances in the
generalization language.

We see several advantages to this exemplar-based
approach to concept description. Given a fixed case base,
the set of concept descriptions is finite, and therefore
possibly more tractable than description languages that
admit infinitely many concept descriptions. Second, there
is minimal bias in the concept representation language of
the cases: the only bias is implicit in the cases that have
already been exposed to the system through inclusion in
the case base. We view the presence of minimal bias as
an advantage supporting wider applicability of this
approach, although we speculate with [De Jong & Spears,
1991] that performance may suffer on tasks that are
amenable to some a priori bias in the concept description
language.

Details of the Genetic Algorithm to Identify Sets of
Prototype Cases

Basic Approach: In general terms, Off Broadway’s
GA is a generational genetic algorithm that uses uniform
crossover and a stochastic remainder without replacement
selection procedure. The GA maintains a population of
individuals, where each individual is a set of n prototypes.
Each prototype is a member of a fixed case base. Here we
report on experiments in which n ranges from 3 to §,
which represent prototype sets constituting less than
approximately 5% of the entire case base. The fitness of
each member of the population is its classification
accuracy. Our basic approach is analogous to the
Pittsburgh (“Pitt”) approach to optimizing rule sets
[Smith, 1983] in that organisms in the population are sets
of prototypes, rather than individual prototypical cases.

Encoding: Each prototype set is encoded as a binary
string, which is conceptually divided into n substrings,
one for each of the n prototypes, where each substring
encodes an index into a case base stored as an array
(Figure 1). The length of the binary string encoding a
prototype set is the number of bits required to represent
the largest index of a case in the case base, multiplied by
the number of prototypes, [ logg m] * n, where m is the
number of cases in the case base.
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Figure 1. Each organism in the genetic population is
a binary encoding of a set of indexes into a case base
array.

Evaluation Function: The fitness of each set of
prototypes in the population is determined by its
classification accuracy, specifically, the percentage of the
training set of cases that it correctly classifies. A training
case is correctly classified by a prototype set if the
training case’s class equals the class of the prototype that
is its 1-nearest neighbor in the prototype set.

The similarity function used in this nearest neighbor
computation is simple, particularly since the Iris cases are
represented by numerical features. The raw values for
each case feature are linearly scaled from 0 to 100, where
any value less (greater) than three standard deviations
from the mean of that feature’s value across all cases is
assigned the value 0 (100). To compute the similarity
distance between two cases, we first calculate the feature-
by-feature difference of two cases with these scaled
values. The unweighted arithmetic average of such
differences over all the features of a case is the similarity
distance between the two cases. The prototype with the
smallest such similarity distance to a test case is its
nearest neighbor. The ReMind case-based reasoning
development shell has previously incorporated a similar
approach to nearest neighbor similarity assessment
[Cognitive Systems, 1992].

Initialization: The population is initialized to a
random population of 20 prototype sets.

Operators: Mutation and crossover operators
effectively alter the set of prototypes by changing the
index of one or more members of each prototype set.
Crossover splits may occur anywhere within an organism.
The probability of mutating an organism (not a single
locus) was fixed at 0.03. The crossover probability was
setat0.7.

Off Broadway is implemented in Macintosh Common
Lisp v.2.0 using CLOS. Part of the system instantiates a
shell for creating GA applications available from GNU
software [Williams, 1992].

We now turn to an experiment to identify prototypes
for classification.

Experiment: Classification by Off Broadway

We have performed a set of experiments to demonstrate
the identification of prototypes by GA using the UCI Iris
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data set of 150 Iris types [Murphy & Aha, 1992]. Each
Iris case has four rational-number features (sepal length,
sepal width, petal length, petal width) and is assigned one
of three classifications (Iris-setosa, Iris-versicolor, Iris
virginica.) The database contains 50 cases of each
classification. An example of an Iris case is

(5.1 3.5 1.4 0.2 Iris-setosa).

Our experimental methodology was to perform 5-fold
cross validation of the classification performance of Off
Broadway. The case base was randomly partitioned into 5
groups of 30 cases. For each validation, we used one of
the partitions of 30 random cases as testing instances and
reserved the remaining 120 instances for training.
Prototypes were selected only from the training sets and
were used to classify the 30 test instances. We tested the
classification accuracy of sets of n prototypes determined
by Off Broadway, where n varied from 3 to 8. Our lower
limit was 3 prototypes in these experiments, since the Iris
data set contains three classes of Iris types.

For each partition, the GA was run until it performed
100 evaluations of the training set, approximately 6
generations on average, taking approximately 10 minutes
on average on an Apple Macintosh IIx.

Iris cases were stored in a case array in the order in
which they appear in the UCI Iris database file, where
they are grouped by class. Recall from the description of
the algorithm that the order of the stored cases may be
relevant because the members of the GA population
encode indexes into this case array.

We were primarily interested in the classification
accuracy of the best performing member of a population,
Average best performance for the learned prototype
systems was computed using the following procedure.

a. With the number of prototypes in each prototype
set fixed, we divided the cases base into five random
partitions, each consisting of a 120-element training set
and a 30-element test set, as described in the second
paragraph in this section.

b. For each of the five partitions of the case base, we
determined the maximum percentage of the 30 test cdses
correctly classified by an individual in the population of
20 prototype sets after 100 evaluations of the population.

¢. Finally we computed the average of the resulting 5
maxima. This average is reported in the second column of
Table 1, labeled “GA Prototypes Ave. Max. Correct”.

Prototypes (n) GA Prototypes
Ave, Max. Correct (%)
f 3 28.6 (95.3%)
Il 4 29.2 (97.3%) If
it 5 28.6 (95.3%)
I 6 29.0 (96.7%)
( 7 29.2 (97.3%)
|| 8 28.8 (96.0%) It

Table 1. Average maximum performance for learned
prototype sets, using test sets of 30 instances.



The basic result, which is reported in Table 1, shows
that the small number of prototypes identified by Off
Broadway performed with greater than 95% classification
accuracy in the 5-fold cross validation experiments using
the Iris data set. The data in Table 1, which show the
average best performance of a member of the final
population, reflect how the algorithm would probably be
used in practice: a best performing member of the
population would be identified and used as a surrogate for
the entire case base.

These results are comparable to or better than a
number of reported nearest-neighbor methods. [Weiss &
Kapouleas, 1989], for example, report a correctness of
96% for nearest neighbor retrieval on the Iris data set,
using a leaving-one-out evaluation methodology. Our
approach performed significantly better than the 76.6%
correct given in [Fertig & Gelernter, 1991], which in tun
performed slightly better than the “neighborhood census
rule” described in [Dasarathy, 1980]. In one run, [Gates,
1972] reported 100% classification accuracies using the
condensed nearest neighbor rule and the reduced nearest
neighbor rule, which used 20 and 15 reference instances,
respectively. It is unclear whether cross-validation or
some other experimental test was performed to confirm
this result, however. By pre-processing the raw Iris data
and using a 1-nearest neighbor algorithm, Gates also
reported classification accuracies from 93.3% to 96.7%
using from 15 to 31 reference instances. Finally, using
from 3 to 6 “pathological” reference instances, Gates
found classification accuracy varied from approximately
17% to 40%. See [Gates, 1972] for descriptions of these
and related experiments.

Limitations of Off Broadway

The current implementation is limited by the assumption
that the number of prototypes desired is fixed a priori, in
advance by the user, and is supplied as a parameter to the
system. However, since GAs using the Pitt approach have
explored variable-length rule sets, we believe that a fairly
minor re-implementation of the system would dispense
with this assumption.

One important limitation of the research reported here
lies with the simplicity of the Iris data set, and we plan to
test the approach on more complex data sets. In the Iris
data set, one class is linearly separable from the other two,
but the other two are not separable from each other. We
have begun to gather evidence that shows, in fact, that sets
of prototypical instances may be relatively easy to find in
the Iris domain.

Other data sets may also include elements that are
more clearly prototypical, as that term is usually used.
For example, the LED-7 display domain for light-emitting
diodes [Murphy & Aha, 1992], contains obvious
prototypical elements, the correct numerals themselvesZ.

2"The problem of reading printed characters is a clear-cut
instance of a situation in which the classification is based
ultimately on a fixed set of 'prototypes'." [Minsky, 1965, p. 21].
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Related Research

GA classification systems have been created by [Kelly &
Davis, 1991] to learn real-valued weights for features in a
data set and by [De Jong & Spears, 1991] to learn
conceptual classification rules. Our approach is similar to
De Jong and Spears’s in that they used a Pitt approach to
defining their population, and applied the same
straightforward fitness function for each individual in
their population, the percentage correct on a set of training
examples. However, an important distinction with this
work is that De Jong and Spears used classification rule
sets as population individuals, rather than prototypical
cases.

Protos [Bareiss, 1989] is a good example of a case-
based reasoning system that relies on case prototypes for
classification. An exemplar that is successfully matched
to a problem has its prototypicality rating increased. The
prototypicality rating is used to determine the order in
which exemplars are selected for further, knowledge-
based pattern matching. Protos is an intelligent
classification assistant and the prototypicality rating may
be increased based in part on the actions of the
supervising teacher. The ReMind case-based reasoning
development shell [Cognitive Systems, 1992] also
incorporates a facility for the user to select prototypes to
further index a case base.

Approaches to reducing the number of reference
instances for nearest-neighbor retrieval were discussed
generally in the introduction.

This line of research is an immediate outgrowth of
two projects from our group. In [Skalak & Rissland,
1990] we suggested and evaluated a case-based approach
to the problem of reducing the number of training
instances needed to create a decision tree using IDS5
[Utgoff, 1988]. Recently we described a system called
Broadway [Skalak, 1992] that represents cases as
blackboard knowledge sources whose preconditions
invoke local similarity functions that apply only within a
closed neighborhood of each case in the space of cases.
The connection between the current project, Off
Broadway, and Broadway is that the set of prototypes
learned by Off Broadway tessellates the case space into
local neighborhoods (as for any nearest neighbor
algorithm), where each neighborhood contains the volume
of cases in case space for which a particular prototype is
the nearest neighbor.

Future Work and Summary

A next step in the Off Broadway system is to learn what
similarity metric applies in each region in which a specific
prototype is the nearest neighbor. We are investigating
an algorithm that uses a version of the absolute error
correction rule [Nilsson, 1990] together with a state
preference method [Utgoff & Clouse, 1991] to learn a
similarity function for each such region.

In summary, Off Broadway attempts to learn sets of
case classification prototypes using a genetic algorithm.



We have applied Off Broadway to classify elements of the
Iris database and have shown that classification
performance better than or equal to that achieved using
much larger reference sets can be achieved using fewer
than 8 Iris cases as classification prototypes.
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