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Abstract which PQ(x, y). For example, each time a learning ap-

Knowledge to guide search can be represented as a
preference predicate PQ(x, y) expressing that state
x is preferable to state y. Interactions by a learn-
ing apprentice with a human expert provide an op-
portunity to acquire exemplars consisting of pairs
that satisfy PQ. CIBL (compositional instance-
based learning) is a strategy for learning prefer-
ence predicates that permits multiple exemplars
to be composed, directly exploiting the transitiv-
ity of PQ. An empirical evaluation with artificial
data showed that CIBL is consistently more ac-
curate than an instance-based learning strategy
unable to compose exemplars. Moreover, CIBL
outperforms decision tree induction when the eval-
uation function Q underlying PQ contains one or
more extrema or a severe discontinuity.

Introduction
Heuristic search is guided by estimations of the rela-
tive desirability of alternative states in a state space.
For example, A* uses an evaluation function f(n) 
determine the node ni for which the minimal cost path
constrained to go through n~ is estimated to be least.
Knowledge of the relative desirability of two states can
be expressed as a preference predicate [Utgoff and Sax-
ena, 1987] PQ(x,y) =_ [Q(x) > Q(y)], where Q(n) is an
evaluation function, like A*’s f(n), that expresses the
"quality" of state n.

Acquisition of a preference predicate PQ for a given
state space obviates the task of acquiring the specific
underlying evaluation function Q, because Q is use-
ful in search only for selecting the best alternative
state. Moreover, in the context of learning appren-
tice systems,1 information about an evaluation func-
tion may be acquired in the form of pairs (x, y) for

1 Learning apprentice systems have been defined as "in-
teractive knowledge-based consultants that directly as-
similate new knowledge by observing and analyzing the
problem-solving steps contributed by their users through
their normal use of the system" [Mitchell et al., 1985].

prentice suggests a state sl and the expert rejects sl in
favor of some other state s2, the apprentice has an op-
portunity to acquire the training instance PQ(s~, sl).

Our interest in acquisition of preference predicates
arises from a project to develop an intelligent assis-
tant for scheduling ground-based telescope observa-
tions, the Observing Assistant. A fundamental require-
ment for designing useful observation schedules is the
ability to distinguish which of any pair of alternative
schedules is preferable. However, we found that as-
tronomers frequently lack clearly articulated criteria
for preferring one schedule over another. Moreover, it
appears that individual astronomers may differ in their
preferences. These factors suggested that devising an
a priori evaluation function for observation schedules
would be difficult and would lead to inflexibility.

However, interactions with an astronomer using
an observing assistant provide an opportunity to ac-
quire training instances: whenever a user rejects the
observing assistant’s suggested schedule, schedule1
in favor of some alternative, schedule2, the ob-
serving assistant can acquire the training instance
PQ(schedule2, schedule1). Thus, a central component
of the task of learning how to design observation sched-
ules appropriate for a particular astronomer consists of
acquiring a preference predicate PQ from a set of train-
ing instances generated during interaction with the as-
tronomer.

Previous approaches to acquisition of preference
predicates from sets of training instances have used in-
ductive learning methods to form generalizations from
sets of training instances [Utgoff and Saxena, 1987;
Utgoff and Clouse, 1991]. One approach has been to
use decision tree induction algorithms, such as ID3
[Quinlan, 1986], to induce a general representation for
PQ. An alternative approach, termed the state pref-
erence method, uses parameter adjustment to learn a
set of feature weights W such that for every training
instance, PQ(x,y), W(F(x) - F(y)) > 0, where 
is a vector of numeric attributes representing state n
[Utgoff and Clouse, 1991].

However, there is reason to believe that the underly-
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ing evaluation function Q for astronomical observation
schedules, like preference predicates in many other do-
mains [Callan et hi., 1991], is typically not linear, that
is, the instances of PQ are not linearly separable. As a
result, learning algorithms that presuppose linear sep-
arability, such as the state preference method, are in-
appropriate for this domain.

Decision tree induction algorithms such as ID3 are
suitable for nonlinearly separable data. However, the
performance of decision tree induction algorithms is
often weaker than that of instance-based algorithms
when the training set is sparse or the concept being ac-
quired is highly "polymorphic" [Aha, 1992]. Since we
believe that these factors will often characterize acqui-
sition of observation scheduling preference predicates,
our attention turned to instance-based approaches to
this problem.

Instance-Based Learning of Preference
Predicates

Instance-based learning (IBL) is a strategy in which
concepts are represented by exemplars rather than by
generalizations induced from those exemplars [Aha,
1990; Stanfill and Waltz, 1986]. Perhaps the simplest
form of instance-based learning is k-nearest-neighbor
(k-NN) classification, which classifies a new instance
according to the majority classification of its k nearest
neighbors in feature space. In most recent IBL sys-
tems, k = 1 [Aha, 1990].

We have implemented a straightforward 1-NN strat-
egy for learning preference predicates, which we term
1ARC. 1ARC forms a model of a preference predicate,
given training instances that consist of pairs of objects
for which the preference predicate PQ is satisfied. Each
training instance PQ(X, Y) is represented as a directed
arc Y ---* X in feature space. We will adopt the nota-

tion XY; note that arcs point "uphill" towards ob-
jects of higher quality, i.e., the head of an arc is pre-
ferred to the tail. For example, on a two dimensional
feature space S = ~2, the set of training instances
(PQ(A, B), PQ(C, D), PQ(E, r)} is represented by the

training arcs A~B, C~D, and E~F as shown in Figure 1.
These training instances represent relationships such
as "object A is preferred over object B".

Suppose a new pair of objects, X and Y, need to
be ranked. Ranking X and Y is equivalent to deter-
mining which of the predicates PQ(X, Y) or PQ(Y, X)
is satisfied. The 1ARC algorithm begins by finding
the training instance (training arc) that best matches

the hypothesis PQ(X, Y) -- XY. The dissimilarity be-

tween the proposed arc X~Y and a training arc is mea-
sured by the sum of the euclidean distances between
their two heads and their two tails. For example, as

shown in Figure 2, the training arc E~F best matches

)~Y with a dissimilarity of dist(Y, F) + dist(X, rep-
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Figure 1: Training arcs.
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resented by the dotted lines. The dissimilarity of the
best match is a measure in the confidence in the hy-
pothesis PQ(X, Y).
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Figure 2: Best match to XY.

In a similar fashion 1ARC then finds the best match
and confidence measure for the alternate hypothesis
PQ(Y, X). The stronger of the two hypotheses deter-
mines 1ARC’s estimate of the ranking between X and
Y.

A natural extension to 1ARC is to exploit the transi-
tivity of PQ. For example, given the situation in Figure
2, it should be possible to conclude PQ(X, Y) by the
reasoning "X is close to C; C is preferred to D; D is
close to A; A is preferred to B; B is close to Y". This
composition of instances is different from the majority
vote policy of standard k-NN methods for k > 1. Such
an extension is described in the next section.

Compositional Instance-Based Learning
CIBL (Compositional Instance-Based Learning) is 
strategy that permits multiple training instances to
be composed to rank a new pair of objects. Just like
1ARC, CIBL forms a model of a preference predicate,
given training instances represented by arcs such as

AB. When asked to rank two new objects, X and Y,
CIBL attempts to find a path from Y to X by com-
posing training arcs, that is, by connecting them se-
quentially. Such a path seeks to follow a contour of
the underlying evaluation function that has positive
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slope, to establish that object X is preferred to object
Y. CIBL also attempts to find a path from X to Y to
establish that object Y is preferred over object X. The
better of the two paths found determines the ranking
of X and Y. This search for paths in feature space that
follow arcs can be reduced to a simple search for paths
between nodes in a conventional graph.

To illustrate this process, suppose again we have the
training arcs shown in Figure 1. Given two new objects
to rank, X and Y, CIBL begins by searching for a path
from Y to X, supporting the hypothesis PQ(X, Y) =

XY. As shown in Figure 3, to construct a path from Y
to X, CIBL forms the uncertain arcs G1, G2, and G3.
The uncertain arc G1 connects the starting object, Y,
with the tail of a nearby training arc, B. The uncertain
arc G2 connects the head of a training arc, A, with the
tail of another training arc, D. The uncertain arc G3
connects the head of a training arc, C, with the goal
object, X. The cost of the resulting path from Y to
X is the sum of the euclidean lengths of the uncertain
arcs G1, G2, and G3; the training arcs have zero cost.
In a similar fashion, a path is constructed from X to
Y. The best path, corresponding to the best estimate
of the ranking of X and Y, is taken to be the shorter
path. In forming a path that uses multiple training
arcs, CIBL is composing multiple chunks of knowledge
gained from previous experience.

featurel
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Figure 3: Uncertain arcs added.

CIBL constructs an uncertain arc from the head of
each training arc to the tail of every other training arc,
forming a dense graph with two special nodes, X and
Y. The standard Dijkstra algorithm [Aho et al., 1974]
is then used to find the lowest cost path connecting
X and Y, where edges representing training arcs are
assigned zero cost and edges representing the uncertain
arcs are assigned a cost equal to their euclidean length.
For clarity, Figure 3 omits some uncertain arcs.

The assumption underlying the formation of an un-
certain arc from the head of a training arc to the tail
of another training arc is that objects in feature space
that are near each other are more likely to have simi-
lar quality, as measured by the underlying evaluation
function, than objects that are farther apart. The for-
mation of uncertain arcs may be viewed as a kind of

local or "lazy" generalization. An uncertain arc may,
of course, be erroneous; its head may not be preferred
over its tail. The degree to which an uncertain arc
may misrank its head and tail depends on the steep-
ness of the underlying evaluation function in that area.
If CIBL evaluates the predicate PQ (X, Y) using a path
that contains erroneous uncertain arcs then the truth
value of PQ(X, Y) that CIBL reports maybe incorrect.

Empirical Evaluation
We anticipated that CIBL’s ability to compose multi-
ple instances would lead to better performance than
1ARC under all conditions except extremely low num-
bers of training instances, when they would be equiv-
alent. Moreover, we hypothesized that CIBL would
outperform decision tree induction for "irregular" eval-
uation functions, e.g., those having discontinuities or
changes in the sign of their derivative.

To test these hypotheses, we compared the accuracy
of CIBL to that of 1ARC and ID3 on the task of learn-
ing preference functions, PQ, for a variety of evaluation
functions, Q. All but one of the evaluation functions
were defined on the feature space S = [0, 1] × [0, 1].
ID3 was modified to handle real-valued features in the
manner discussed by Quinlan [Quinlan, 1986]. For each
function, we randomly generated instances of the asso-
ciated preference predicate of the form < +, X, Y >
or < -,X,Y >, representing the knowledge "X is
preferred over Y" or "X is not preferred over Y" for
X, Y C S. Each model was trained on a set of instances
of size [[TS[[ 6 {2,8, 32,128} and was then tested on
a different set of instances of size 1000. A record of
the incorrect rankings produced was kept and used to
calculate an error rate for each < model, Q, ][TS[] >
triplet. A more detailed description and a list of the
evaluation functions tested is in the appendix.

The testing confirmed two expected behaviors. For
all models and evaluation functions, the error rate
dropped with increasing [[TS[]. For each evaluation
function, eliminating errors of small magnitude from
the error rate calculation did not change the relative
accuracy ranking of the three models.

We found that for all evaluation functions, CIBL had
a lower error rate than 1ARC. The largest difference is
shown in Figure 4 for Q3, a sinusoid, at ]]TSI] = 128:

ErrorP~teCiBL = 16.5

ErrorRatelARC = 22.5
On these data sets, CIBL’s strategy of composing mul-
tiple exemplars is clearly superior to 1ARC’s tradi-
tional instance-based approach.

We expected ID3 to perform better than CIBL on
"smooth" evaluation functions, e.g., those that have
no change in the sign of their derivative. Indeed, ID3
outperformed CIBL for the planes Qt and Qs, and the
exponential Q6. A surprise was that ID3 and CIBL
performed equally on the folded plane Qv, a function
with an abrupt change in the sign of its derivative. We

72



0.50

~. 0.40
o

A

0.30
I)

v 0.20

<~ 0.10
Ld

0.00

FUNCTION Q3, sinusoid
,-i- i !

+

I I I I

2 8 32 128
Train;ng Set Size

4 test sets of 1000 instances each

0.50

~. 0.40
o

A

0.30

o
e 0.20

o 0.10
,,h

0.00

FUNCTION Q8, 2-D quadratic in 3-D
l

x
n
+

I I I I
2 8 .32 128

Train;ng Set S]ze
4 test sets of 1000 instances each

Figure 4: Accuracy of Q3 Figure 6: Accuracy of Qs.

found that both 1ARC and CIBL were significantly
better than ID3 on the quadratic Q2 (Figure 5), the
sinusoidal Q3 (Figure 4), and the crossed planes Q4.
These functions exhibit changes in the sign of their
derivatives in the form of local extrema or a severe
discontinuity.
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Figure 5: Accuracy of Q2.

As expected, the addition of an irrelevant feature to
the feature space--a feature that has no effect on the
evaluation function--did not affect ID3’s performance.
CIBL’s accuracy was degraded by the addition of an
irrelevant feature, as shown in the testing data on Q8 in
Figure 6. Qs is the same 2-D quadratic as function Q2,
with an irrelevant third feature added. The problem is
that CIBL’s euclidean distance metric, used to assign
costs to uncertain arcs, counts Ml features equally.

The sensitivity to irrelevant features exhibited by
CIBL has been observed in other studies of instance-
based learning [Aha, 1989]. Techniques for reducing
this sensitivity were demonstrated by Aha and Gold-
stone [Aha and Goldstone, 1990]. However, composing
exemplars tends to exacerbate the credit assignment
problem of identifying low-relevance features.

The Impact of Representation on
Preference Predicate Acquisition

The empirical evaluation indicates that the rela-
tive performance of instance-based and inductive ap-
proaches to preference predicate acquisition depends
on the nature of the underlying quality function Q. If Q
is irregular, e.g., has discontinuities or local extrema,
an instance-based approach such as CIBL is better,
whereas if Q is smooth, an inductive approach is su-
perior. However, the nature of Q depends critically on
the representation of instances.

If instances are represented in terms of raw observ-
ables, any quality function on those instances is likely
to be extremely irregular. For example, if chess posi-
tions are represented purely in terms of the locations
of each piece on the board, the evaluation function will
be extremely irregular, because changing the position
of a single piece can drastically alter the evaluation of
the position. If instances are represented in terms of
derived or abstract features, however, the evaluation
function may become much smoother. For example,
if chess positions are represented in terms of strategic
features such as control of files or pawn structure, or in
terms of tactical features such as the existence of pins
or the security of the king, an incremental change in a
feature will usually change the evaluation function only
incrementally. The ideal instance representation for
the acquisition of preference predicates would include
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the quality function Q itself as a derived feature.2

Thus, a quality function that is a highly irregu-
lar when applied to a low abstraction representation
may become smooth when applied to a higher abstrac-
tion representation. This suggests that the real issue
in choosing between instance-based and inductive ap-
proaches to acquisition of preference predicates may
be the nature of the representation of the instances. If
instances are represented at a low level of abstraction,
an instance-based approach like CIBL may be supe-
rior because of the irregularity of the quality function
when applied to such descriptions. Induction may be
more appropriate if instances are represented in terms
of more abstraction features.

Related Work
Previous work addressing the composition of exemplars
has focused on ease fragments or "snippets." CADET
[Syeara and Navinehandra, 1991] synthesized new de-
signs by combining parts of multiple previous designs.
Similarly, CELIA [Redmond, 1990] performed diagno-
sis using portions of multiple cases acquired through
"explanatory apprenticeship." GREBE [Branting and
Porter, 1991] generated legal arguments by combin-
ing portions of multiple legal precedents. CIBL differs
from these appro~hes in that it composes entire exem-
plars rather than portions of exemplars. This reflects
the fact that CIBL’s exemplars--preference predicate
instances--are far simpler than the cases in CADET,
CELIA, or GREBE.

Instance-Based Learning vs.
Case-Based Reasoning

The distinction between instance-based learning and
case-based reasoning is relatively ill-defined. In gen-
eral, however, instance-based learning can be viewed
as a specialization of ease-based reasoning typified by
the following characteristics:

¯ Exhaustive matching rather than indexing.

¯ No case adaptation.

¯ Instance representation in terms of attribute-value
pairs rather than complex structures.

Instance-based learning systems exhibiting these char-
acteristics include MBRtalk [StanfUl and Waltz, 1986]
and Aha’s IB1 - IB4 [Aha and Goldstone, 1990].

Case-based reasoning research has typically em-
phasized knowledge-intensive approaches to indexing
(e.g., remindings compiled from explanations in Pro-
tos [Porter et al., 1990land the complex episodic mem-
ory organization developed in Cyrus [Kolodner, 1984]),

2A well-known illustration of the dependence of induc-
tive learning techniques on the representation of instances
is Quinlan’s experience that devising a set of derived fea-
tures for chess board positions sufficient to enable ID3 to
induce a decision tree for "lost in 3-ply" required 2 person-
months [Quinlan, 1983].

adaptation (e.g., operator sequence reuse in deriva-
tional analogy [Carbonell, 1986] and in CHEF [Ham-
mond, 1986]) and complex case representations (e.g.,
the relational representations used in GREBE [Brant-
ing, 1991] and most case-based design and planning
systems).

1ARC is a typical instance-based learning algorithm.
CIBL, by contrast, differs from typical instance-based
learning algorithms in that it performs case adapta-
tion. Rather than directly applying the solution (i.e.,
ordering) in a previous instance to a new instance,
CIBL composes multiple previous solutions to find a
solution to a new case. However, the current imple-
mentation of CIBL uses an attribute/value pair repre-
sentation and does not perform indexing.

Future Work
Our preliminary investigation of CIBL suggests a num-
ber areas for future investigation:

¯ Evaluation using actual astronomical data. The rel-
ative performance of CIBL and inductive approaches
to learning preference predicates remains to be em-
pirically assessed with actual astronomical schedul-
ing data. The completion of the Observing Assistant
should make such data available.

¯ Similarity metric adaptation. CIBL’s euclidean dis-
tance metric rests on the assumption that all at-
tributes are equally important. Matching would
be improved if the distance function were adjusted
based on ranking accuracy.

¯ Noise handling. The current evaluation assumed
noise-free data. It may be possible to handle noisy
data by assigning nonzero cost to training ares that
participate in incorrect rankings.

¯ Alternative representations. Instances in many do-
mains may be desribed in terms of symbolic, rather
than real-valued, features. To be useful in such do-
mains CIBL needs to be extended to handle such
features.

* Comparison with other learning algorithms. Addi-
tional approaches to acquiring preference predicates
to which CIBL could be compared include a k-NN
version of 1ARC (where the ordering of two states is
determined from the k nearest arcs for k > 1) and
backpropagation.

Conclusion
This paper has presented a strategy for learning pref-
erence predicates that permits multiple exemplars to
be composed. This strategy permits the transitivity of
PQ to be directly exploited. An empirical evaluation
with artificial data showed that CIBL was significantly
more accurate for all evaluation functions tested than
1ARC, an IBL strategy unable to compose exemplars.
In the absence of irrelevant features, both CIBL and
1ARC outperform ID3 when the underlying evaluation
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function contains one or more extrema or a severe dis-
continuity. In the absence of extrema or discontinuities
or when irrelevant features are present, ID3 outper-
forms the instance-based approaches.
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Appendix: Details of Testing

Functions Tested
lxl0 plane
Q1(fl, 12) : 11 + 1012

quadratic at (0.5,0.5)
Q2(fl, f2) = (fl 0. 5)2 q- (f2 - 0. 5)2

2-cycle sinusoid
Q3(fl,f2) si n(27r(ft q- f2)

crossed planes

f f2 if fl _< 0.5
Q4(I1,f2) =~ l-f2 otherwise

lxl plane
Qs(fl, 12) = fl -{- f2

exponential
Q6(fl, f2) = exp(f? 
folded plane

f fl "{" f2 if fl _~ 0.5
Q77(f1 ,f2) - ~ 1+f2-fl otherwise

2-D quadratic in 3-D

Qs(fl, f2, f3) - (fl -- 0.5) 2 -I- (f2 -- 0.5)2

Testing Notes
Each test triplet, < model, Q, HTSH >, was repeated
with four different training sets and four different test-
ing sets containing 1000 instances each. Error rates
were computed by counting the errors from the four
tests and dividing by 4000.

ID3 cannot learn training arcs directly. The relevant
properties of a training arc--the location of the head,
the location of the tail, the normalized direction, and
the magnitude---must be encoded as a feature vector of
real values as shown below. For each training instance
PQ(H,T), ID3’s training set contained a positive and
a negative instance of the concept "is preferred to" as
shown below.

< +,T,H,(H-T)/IIH-TII, IIH-TII >

< -,H,T, (T- n)/lln TII, li B - TII >

References
Aha, D. W. and Goldstone, R. L. 1990. Learning at-
tribute relevance in context in instance-based learn-
ing algorithms. In Twelfth Annual Conference of the
Cognitive Science Society. 141-149.

Aha, D. 1989. Incremental, instance-based learning of
independent and graded concepts. In Proceedings of
the Sixth International Workshop on Machine Learn-
ing. 387-391.

Aha, D. 1990. A Study @Instance-Based Algorithms
for Supervised Learning Tasks. Ph.D. Dissertation,
University of Claifornia at Irvine.

Aha, D. 1992. Generalizing from case studies: A
case study. In Proceedings of the Ninth International
Workshop on Machine Learning. 1-10.

Aho, A.; Hopcroft, J.; and Ullman, J. 1974. The de-
sign and Analysis of Computer Algorithms. Addison-
Wesley Publishing Co.

Branting, L. K. and Porter, B. W. 1991. Rules and
precedents as complementary warrants. In Proceed-
ings of Ninth National Conference on Artificial Intel-
ligence, Anaheim. AAAI Press/MIT Press.

Branting, L. K. 1991. Integrating Rules and Prece-
dents for Classification and Explanation: Automat-
ing Legal Analysis. Ph.D. Dissertation, University of
Texas at Austin.

Callan, J.; Faweett, T.; and Rissland, E. 1991. Adap-
tive case-based reasoning. In Proceedings of the Third
DARPA Case-Based Reasoning Workshop. Morgan
Kaufmann. 179-190.

Carbonell, J. G. 1986. Derivational analogy: s the-
ory of reconstructive problem solving and expertise
acquisition. In Carbonell, J. G.; Michalski, R. S.; and
Mitchell, T. M., editors 1986, Machine Learning, vol-
ume 2. Tioga, Palo Alto, CA. 371-392.

Hammond, K. 1986. Case-Based Planning: An In-
tegrated Theory of Planning, Learning, and Memory.
Ph.D. Dissertation, Yale University.

Kolodner, J. 1984. Retrieval and Organizational
Strategies in Conceptual Memory: a Computer Model.
Lawrence Erlbaum Associates, Hillsdale, NJ.

Mitchell, T.; Mahadevan, S.; and Steinberg, L. 1985.
Leap: A learning apprentice for vlsi design. In Pro-
ceedings of the Ninth International Joint Conference
on Artificial Intelligence. Morgan Kaufmann.

Porter, B. W.; Bareiss, E. R.; and Holte, R. C. 1990.
Concept learning and heuristic classification in weak-
theory domains. Artificial Intelligence Journal 45(1-
2).
Quinlan, J. R. 1983. Learning efficient classification
procedures and their application to chess end games.
In Carbonell, J. G.; Michalski, R. S.; and Mitchell,
T. M., editors 1983, Machine Learning, volume 1.
Tioga, Palo Alto, CA. 463-482.

75



Quinlan, J. R. 1986. Induction of decision trees. Ma-
chine Learning 1:81-106.

Redmond, M. 1990. Distributed cases for case-based
reasoning; facilitating use of multiple cases. In Pro-
ceedings of AAAI-90, Boston. American Association
for Artificial Intelligence.

Stanfill, C. and Waltz, D. 1986. Toward memory-
based reasoning. Communications of the ACM
29(12).
Sycara, K. and Navinchandra, D. 1991. Influences: a
thematic abstraction for creative use of multiple cases.
In Proceedings of the Third DARPA Case-Based Rea-
soning Workshop. Morgan Kaufmann. 133-144.

Utgoff, P. and Clouse, 1991. Two kinds of training
information for evaluation function learning. In Pro-
ceedings of Ninth National Conference on Artificial
Intelligence, Anaheim. AAAI Press/MIT Press. 596-
600.
Utgoff, P. and Saxena, S. 1987. Learning a preference
predicate. In Proceedings of the Fourth International
Workshop on Machine Learning. 115-121.

76




