
Planning from partial and multiple episodes in a
case-based planner

Robert McCartney*

Department of Computer Science and Engineering

University of Connecticut

Storrs, CT 06269-3155
robert@cse.uconn.edu

Abstract

Case-based planning deals with two of the prob-
lems inherent in classical planning methods: the
difficulty of determining the effects of a sequence
of actions, and the inefficiency of building large,
complex plans from low-level primitive actions. A
plan is developed from a single case (a previous ex-
ecution), and the execution of that plan provides
another case from which to plan. In this paper
we extend this model by allowing plan generation
from multiple cases and parts of cases. These ex-
tensions are consistent with the approximate na-
ture of case-based planning, and require limited
additional information to be stored with the cases.

Introduction

Case-based planning deals with two of the problems in-
herent in classical planning methods: the difficulty of
determining the effects of a sequence of actions from
knowledge about the individual actions, and the ineffi-
ciency of building large, complex plans from low-level
primitive actions. The insight is that it can sometimes
be easier to plan by modifying a previously executed
plan than by planning from scratch, and that if the do-
main is reasonably benevolent, the new plan is likely to
have the same results as the old one. Under the case-
based approach, previously executed plans (cases) take
the role of plan operators, or schemas. How the set of
primitive actions lead to the effects, whether individu-
ally or through interactions, is unimportant: the plan
is based on the case as a whole. Using case-based plan-
ning at its most basic, a plan is developed from a single
case, and the execution of that plan provides another
case from which to plan.

An obvious extension of this model is to allow plans
to be developed from multiple cases or parts of cases.
As an example of the first, a plan to repair a door
handle and change the shock absorbers on an auto-
mobile might be generated by generating a plan to do
each task (from individual cases), then merging the

*This work has been supported in part by the National
Science Foundation, grant IRI-9110961.

two plans into one that does both. The execution of
this plan will provide a case that does both repairs; it
would be desirable if this new case could provide the
information from which to plan either repair. Given
that we can plan both from multiple cases and from
parts of cases, we can generate more complex plans
by combining plans generated from parts of multiple
cases (so, for example, the door handle-shock absorber
case and a case of adjusting the brakes and aligning
the wheels could be used to generate a plan to change
the shocks and align the wheels). At the logical limit,
we could plan by combining primitive actions as with
a classical planner.

Case-based plan generation (idealized)

In this paper, we present a model for planning from
multiple and partial cases that makes minimal informa-
tion demands on the representation of cases: in partic-
ular, it does not demand that the relationships between
actions and effects be known or explicit. Our goal is to
characterize the mechanisms common to virtually all
casc-bascd planning systems, then examine how gener-
ation of plans from multiple and partial episodes might
be done within extensions to this characterization. The
point of this paper is to examine these problems within
an idcalizcd, simplified model, and try to identify prob-
lems, concerns, and possible solutions that would arise
(and have ariscn) when designing and implementing
real systems.

Case-based planning, as typified by CHEF [Ham-
mond, 1989], is an integrated approach to planning,
execution, and learning: plans are generated by adapt-
ing executed plans, the plan is verified by execution (or
simulated execution), and the system learns as a result
of that generation and execution. Generally speaking,
case-based planning systems do not generate correct
plans, but are either expected to learn to avoid incor-
rect plans over time, or arc used in domains where the
occasional incorrect plan is not a problem1; minimally

IExceptions to this arc the PRIAR system [Hendler
and Kamphampati, 1988] and the SPA system [Hanks and
Weld, 1992]. These use case-based techniques for increased
efficiency only.

94

From: AAAI Technical Report WS-93-01. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

these systems learn by acquiring the results of their
own executions. In this paper we are only concerned
with the process of plan generation, not with the execu-
tion and learning components of a case-based planner,
but the approaches offered here are designed to work
within and interact with other parts of an integrated
planning-execution-learning system.

A number of case-based planning systems use a hy-
brid approach for plan generation, combining features
from case-based planning with features from classical
approaches--JULIA [Hinrichs, 1991], for example, com-
bines case-based planning with hierarchical problem
solving and constraint-propagation. In this paper we
examine the purely case-based process, not because it
is superior to the hybrid approach, but simply because
it may be easier to examine certain problems in iso-
lation; any progress in this area should also lead to
progress with the hybrid approaches as well.

Finally, much of the emphasis in case-based rea-
soning has been on similarity assessment, efficient re-
trieval, and adaptation. We do not consider these
problems in this paper because our focus is elsewhere,
but this should not imply that these problems are easy,
or insignificant, or that we have soNed them.

In the following sections, we first present a simple
model for case-based plan generation from a single
case, including a representation of plans and episodes
that supports this generation. Next, we look at how
this model might be extended to allow plan genera-
tion from multiple and partial cases, including assump-
tions and information requirements. Next, we look at
some practical considerations and observations from
our work with a particular case-based planning sys-
tem that supports planning from multiple and partial
cases. Finally, we discuss how other researchers have
considered these issues.

Planning from a single case

Informally, case-based plan generation involves retriev-
ing a previously executed plan (a ease), and modify-
ing it so that its effects include the current goal and
its context matches the current situation (things that
were true when the case was executed will be true when
the plan is executed). This "plan" is meant to be re-
played in the current situation, with the expectation
that the effects in the plan will occur when it is exe-
cuted. Notably, the relations between the actions in
the case and the various effects are Not necessarily ex-
plicit. We assume two things about our cases: the
sequence of actions in a case led to the set of effects in
that case, and that if we execute a similar sequence of
actions in a similar context, we will get similar effects.
These assumptions allow case-based plans to be gen-
erated with a minimal domain theory vis-a-vis actions
and their effects, and allow us to avoid much of the
complexity inherent in predicting the effects of a se-
quence of actions from knowledge about the individual
actions’ effects.

A case representation that supports this simple view
of case-based planning can be based on two distin-
guished situations (points in time): the initial situa-
tion (before execution) and the final situation (after
execution). The case includes facts for each of these
situations, facts that are true over intervals of time
that fall somewhere between these situations, actions
that occur at various points between these situations,
and temporal constraints relating these actions. By
our assumptions, cases can generally be replayed: that
is, if we execute the plan starting from a point where
all of the initial situation facts hold, and we execute
the actions subject to their temporal constraints, then
the facts in the final situation will hold after the ex-
ecution, and the intermediate facts will hold at the
appropriate intermediate times. The represented case
is actually an approximation of one that will always
replay; it may not include some of the salient facts
and actions (necessary for the case to replay) and may
include some superfluous facts and actions. Adapta-
tion can be introduced to this model by defining adap-
tations as transformations of cases that preserve be-
havior; if a case can generally be replayed, so can the
transformed version of that case if the adaptation is
applicable to the situation.

Given such a representation, we can represent a goal
as a subset of a case; a partial specification of some
desired behavior. Plan generation, then, is the process
of finding a case and a set of adaptations, such that the
goal is a subset of the adapted case; the adapted case
is the plan, and it can be executed by simply "doing
it again." This model is presented more formally in
the Appendix. This leads to a close correspondence
between plans and cases: each plan corresponds to the
adaptation of a single case.

Multiple and partial cases

Multiple cases

Informally, using multiple cases should work as follows:

1. Find a set of cases that combine to satisfy your goals.

2. Generate a plan from each case.

3. Merge2 the set of plans into a single one.

In the previous section (and in the Appendix), we dis-
cussed step 2 of this process, generating a plan from
a single case. To plan with multiple cases, we need
two additional mechanisms, one to partition the goals
among individual cases and one to take a set of plans,
each solving part of the goal, and merge them into a
single plan that solves the entire goal.

Partitioning the goals among cases can be done by
finding the set of plans that solve part of the goal, then
choosing a set of plans that "cover" the goal set. This

2We use the term merge in a generic sense, that of com-
bining the propositions and actions of separate plans into
a single plan. This is distinct from the usage in [Foulser et
al., 1992], who use it to describe certain plan optimizations.

95

potentially may be difficult, depending on whether or
not there is some notion of optimality of the parti-
tioning; if the constraint is the minimum or maximum
number of cases, this reduces to set cover, an NP-
complete problem [Aho et al., 1974], even if all of the
partial plans have been generated. In most domains
we have to deal with this to some degree: optimality
may not be necessary, but there will likely be different
costs associated with using different sets of cases.

When merging a set of plans into a single plan, we
face two issues: synchronization and partial plan in-
teraction. Consistent with the general approach of
case-based planning, we can assume that partial plans
do not interact unless we have reason to believe that
they will--in most domains where case-based plan-
ning might be appropriate we are unable to detect
such potential interactions anyway--and then try to
repair problems caused by such interactions at execu-
tion time. Over time, we would hope to learn to avoid
combining partial plans that led to problems in the
past.

Synchronization is still an important issue,
however--the situations mentioned in the goals need
to be consistent across the set of partial plans. How
this is to be accomplished depends on how the goal
is partitioned: what situations, if any, are shared by
different partial plans.

Under certain conditions, plans can be combined se-
quentiaily. Consider a goal that can be satisfied by
combining two plans A and B, where A’s initial situ-
ation is the initial situation of the goal, and B’s final
situation is the final situation of the goal. If B’s initial
situation propositions are a subset of A’s final situa-
tion propositions, then B can immediately follow A.
Failing this, if each of B’s initial situation propositions
is either a proposition of A or in the initial execution
situation, then B can follow A if we can assume that
B’s initial situation propositions persist from where we
know they are true until B’s initial situation.3

For some situations, sequential combination is not
possible: the component plans share situations (such as
the initial or final situations of the plan). In this case,
we make use of any temporal information present in
the plans being merged. As discussed in the Appendix,
our formal model allows ordering constraints (such as
precedes(S~, S.)~ and time stamps such as value-in(~S~,
clocb.time) = T) to be placed on situations. Any
temporal relations between situations in the final plan
must reflect those in the constituent plans.

In simple cases, for example when two plans have the
same initial situation, it may be possible to achieve this
by simply normalizing the partial plans to a common
relative clock time. For cases when more than one situ-

a Actually, we could use something like TWEAK’s modal
truth criterion [Chapman, 1987], that is, show that the
proposition is always true before B, or if it is false in some
situation before B we can show that it becomes true in a
situation between that situation and the start of B.

ation needs to be shared, however, the problem is more
serious, requiring various adjustments and persistence
assumptions. A particularly interesting simple case is
the one where two partial plans need to share the same
initial and final situations. If the partial plans have dif-
ferent durations, then one or both need to be adjusted.
The methods for changing the duration are generally
domain-dependent; in some domains it may be possible
to increase the duration of the shorter plan by inserting
a predecessor to the initial situation or a successor to
the final situation and assuming that the appropriate
propositions persist. This is not possible in general;
if we allow global temporal constraints, such as a con-
traint on the duration of the plan, it may be impossible
to produce a plan within that constraint by merging a
set of partial plans that are all within the constraint.

For either the sequential or parallel approaches to
lead to a correct plan, the plans must not interfere
with each other. Unless we can reason about resource
constraints and interactions of the actions from the two
plans, we will sometimes find that the combined plans
do not do what we expected.

Partial cases
Similarly, an informal description of planning from a
partial case is as follows. Given a goal,

1. Find a part of a case that satisfies your goals.

2. Generate a plan from that part of a case.

To do this requires that we be able to extract par-
tial cases from which to plan, in particular, partial
cases that include the initial situation information cor-
responding to preconditions for the partial plan. This
is not necessarily possible given our model for case-
based planning: even for a well-behaved case (one that
gives sufficient conditions to allow replay to succeed),
there is no assumption about the effects of subsets of
the plan actions, nor is there any assumption that the
intermediate data are complete in terms of predicting
what is true at intermediate parts of the plan. This
aside, we can propose two characteristics of these ex-
tractable partial plans that support their use.

First, the partial cases should be cases: they should
have identifiable initial and final situations, and they
should be self-contained relative to their events (any
ordering constraint in the partial case must be in terms
of events in that partial case). Second, all of the infor-
mation in the partial case is information that is in the
complete case, that is, if & is a partial case of case C,
then propositions-oj~ C’) C proposi~ions-o~ C)4

These partial cases can be used in planning as if
they were complete cases, and they may or may not
result in working plans. They are cases, and we can
still assume that they generally can be replayed, but

4The propositions of a case are the facts and actions of a
case without distinguishing the initial and final situations.
This allows a partial case’s initial and final situations to be
different from those in the case of which it is a part.

96

the assumption is weaker, as the evidence of it work-
ing is only in the context of the case that it is part
of. Moreover, forcing it to be a subset of the case may
make it a worse approximation, since salient informa-
tion for the partial case need not be salient for the case.
As with the cases, the predictive quality of the partial
cases may be best assessed by experience, a problem
made more difficult since a "good" partial case may be
contained in a "bad" case.

Combining partial and multiple plans

Both multiple and partial cases can be used in the same
case-based planner; indeed, given the nature of a case-
based planner reusing its executions it seems likely that
using one would imply the use of the other:

¯ If we plan by combining multiple plans, the resulting
case is one that has identifiable partial cases: the
parts corresponding to each multiple plan.

¯ If we plan from partial plans, the extraction of par-
tial cases provides examples (in the original cases)
executed plans that could be viewed as combinations
of multiple cases--the associated partial plans.

More importantly, if we have both of these methods, we
have the flexibility to plan by combining parts of more
than one execution. While these plans may not be
as reliable as ones generated from a single execution,
it should greatly increase the range of plans we can
generate.

Augmenting the representation

The primary representational concern here is how to
support extracting partial cases from cases. This could
be done on the fly, extracting partial cases as they were
needed, but this has two disadvantages: it requires a
good deal of reasoning about the case during genera-
tion, and it ignores the information about partial cases
that has been learned from previous plan generations.
The alternative is to explicitly represent the partial
plans of a given case. This would allow easy extraction
of partial cases, and provide a notation for the "parts"
in cases obtained by executing plans generated from
multiple cases. While we might choose to extract some
partial cases as needed, the easy availability of this in-
formation from executions suggests that we augment
the case representation by another element, the set of
partial cases. These partial cases may in turn have
partial cases associated with them, so a given partial
case may have a number of successively containing su-
percases. Once the case or subcase has been chosen to
use to generate all or part of a plan, its partial case
information is no longer used in generating that plan,
but it can easily be included in the case resulting from
the new plan’s execution.

Practical considerations and
observations

Planning from multiple and partial cases is supported
in COOKIE [McCartney, 1990], an integrated case-based
planning and execution system that works in the do-
main of meal planning and preparation. Some of the
methods have been simplified or otherwise influenced
by the system’s domain; the knowledge representation
has been affected by the interpretation of goals by
agents specifying the goals in using this system. Al-
though certain practical considerations are reflected in
this system, it is essentially true to the model presented
in the last few sections.

The goals supplied to COOKIE are sets of proposi-
tions that may include variables: variables are bound
via unification with propositions in the case, and a case
satisfies a goal if the goal is a subset of the case. The
goals given to COOKIE are typically underconstrained:
for a given goal there are multiple possible cases (or
combinations of cases) to satisfy it. COOKIE generates
plans in order, favoring single episodes over multiple
episodes and cases requiring no adaptation over those
requiring adaptation. When it is necessary to plan
from multiple cases, the goals are partitioned using a
greedy algorithm, choosing the case that matches the
most of the goal, then the one that matches the most
of the remaining goal, and so on. The system pro-
poses a solution that meets the user goals, then allows
the user to ask for other solutions interactively for the
same or a modified goal (more about this below). Once
an acceptable plan is generated, the execution monitor
DEFARGE [McCartney and Wurst, 1991] controls the
execution of the plan via interaction with an external
cook. The results of the execution are stored as a new
case.

Two considerations in COOKIE regarding the use of
multiple and partial plans bear further explanation:
how multiple plans are synchronized, and how partial
plans are identified and chosen.

Synchronization of multiple plans

One characteristic of COOKIE’s episodes is that the fi-
nal situation of a meal preparation is when the meal is
served (with certain exceptions, such as desserts). Syn-
chronization, therefore, is typically done on the final
situation--multiple plans are made equal in duration
by adding time to the beginning of the shorter subplans
(after the initial situation, before its first action). This
is a reasonable approach in this domain: it is based on
the assumption that facts are more likely to persist be-
fore the cooking has started than after. It also has the
effect of synchronizing the initial situations, so all of
the initial conditions can be verified before execution
commences--akin to the notion of collecting all of the
ingredients before starting.

97

Choosing the right partial plans
The cooking episodes stored in COOKIE typically have a
number of partial casesmmeals are usually made up of
a number of somewhat disjoint dishesmand these par-
tial cases often have partial cases of their own. For
a typical American Thanksgiving dinner, for exam-
ple, there are partial plans corresponding to stuffed
turkey, various vegetables, desserts, and beverages.
The stuffed turkey partial plan has a partial plan cor-
responding to preparing stuffing, which in turn has
partial plans related to cubing bread and preparing
sauteed onions, and so on. Suppose the system is given
the goal of preparing stuffing. Is the appropriate case
the stuffing subcase, the turkey-and-stuffing subcase,
or the Thanksgiving dinner case in entirety? Any of
these would satisfy the goal under the definition. Orig-
inally, COOKIE used the "minimal partial plan" crite-
rion: choose the smallest partial case that satisfies the
gotd. While this may be reasonable in some domains,
it was not here: implicitly, a goal in this domain means
"a meal in which this goal is met"; if I ask for pasta, I
would also like a sauce even if I did not mention it. On
the other hand, a "maximal partial plan" criterion also
can have problems: if I request parts of three meals I
do not necessarily want all of the parts of all three.

For some domains one of the extreme criteria may
be appropriate, or it may be possible to determine the
goal-speclfier’s intent from the goal. Our solution is
to involve the user: we offer the user the plan made
up from maximal partial plans, then allow him or her
to specify what parts of the plan to keep. The system
then uses the minimal partial plan criterion on the new
goal: the original goal plus the user-identified charac-
teristics. This is rather a hack, but it allows the use of
highly underconstrained goals. This process of refin-
ing specifications based on what they lead to has been
useful in other domains--software design for example
[Balzer, 1985]~where the goals do not adequately cap-
ture all of the success criteria.

Resource conflicts and optimizations

In COOKIE, no attempt is made to recognize potential
resource conflicts inherent in merging plans. Although
many of these conflicts could be detected fairly easily,
some are quite subtle (if an oven has been used for bak-
ing, it stays too warm for letting bread rise for a long
time after it has been turned off, for example). Our ra-
tionalization is that the easily-detectable conflicts are
probably the easiest to repair at execution time, so the
efforts are being put into repair mechanisms that could
be useful for difficult to detect conflicts as well. Simi-
larly, we do not attempt to optimize merged plans, al-
though the potential for merging subplans (like cooking
two things in the same pan) certainly exists. If a plan
has been optimized by combining steps, we can still
represent the individual parts by including the shared
steps in each partial plan, so inclusion of some opti-
mization in merging would cause no great problems

for future reuse of parts.

Related work

A number of other researchers have looked at the prob-
lem of multiple/partial cases in planning.

The use of MACROPS by STRIPS and PLANEX [Fikes
et el., 1972] illustrated the approach: after a plan was
generated, it was generalized into a MACROP, or macro-
operator, which encoded the structure of the plan in
a table. This MACROP can be used in generating sub-
sequent plans; in fact, it defines a set of partial plans.
Once the desired characteristics are chosen, the appro-
priate operator sequence (a subset of the sequence in
the original plan) can be extracted and used as an op-
erator.

PLEXUS [Alterman, 1988] planned by adapting spe-
cific previously developed plans when faced with a sim-
ilar situation. If a failure occurred during execution,
one of the alternative ways to repair the failure was
to patch in part of a different plan. This was possible
in part because of the amount of detailed information
associated with the partial plans: preconditions, goals,
and taxonomic relations for example.

CELIA [Redmond, 1990], a case-based problem solver
used for automotive troubleshooting, plans and exe-
cutes sequences of diagnostic procedures by using parts
of multiple diagnosis cases. Each diagnosis is struc-
tured into subsequences of events called snippets. Snip-
pets are associated with the goals that they lead to,
plus applicability conditions for their use, their effects,
and what snippets they followed and preceded in the
original case. These are combined sequentially dur-
ing execution based on the result of executing previous
snippets in the sequence. They provide explicit partial
plans, and their containing case provides a potential
sequence of snippets to solve a particular problem.

The multicase [Zito-Wolf and Alterman, 1992] pro-
vides another method for representing and combining
partial plan information. The multicase is a structure
for representing a number of episodes. It starts with a
simple directed graph representing a sequence of oper-
ations, then combines graphs that do similar tasks by
merging common subsequences. The resulting graph
defines a set of possible sequences, each case being a
traversal of this graph corresponding to one possible
sequence. The choice points in the graph correspond
to alternative partial plans; planning can be viewed as
choosing the paths in the traversal. This approach pro-
vides a highly storage efficient alternative to snippets,
with the advantage that not only actual neighbors of
partial cases are easily found, but potential neighbors
as well. The combination of partial cases is sequential
and constrained by multicase topology.

One difference between these approaches and the one
in COOKIE is that these other systems use partial plans
sequentially, while in COOKIE partial plans arc usu-
ally merged in parallel. For sequential combination,
the position within a sequence can be quite useful; the

98

equivalent information in COOKIE for a partial plan is
what other partial plans were executed with it in par-
allel, information that is included implicitly in the case
representation.

A more fundamental difference may be due simply to
COOKIE’S notion of goal as a subset of an episode; given
this, if a partial plan satisfies a goal, then its containing
plan (and all superplans) will likely satisfy it as well (as
long as they violate no constraints). COOKIE’s merging
of complete plans, then allowing further specification
to determine which partial plans to keep, is reason-
able for situations with underspecified goals, and the
specification of hierarchies of partial episodes means
that the decision on what part of the episode should
be used is made at generation time rather than at stor-
age time--each case can provide a number of possible
plans at different levels of granularity.

The NoLIMIT nonlinear problem solver [Veloso et
al., 1990] does the equivalent of extracting partial plans
on the fly. It builds a partial-order of operations from a
totally ordered sequence of operators, which identifies
partial plans that can potentially be executed in paral-
lel. Following this, it uses this representation to reason
about resource allocation among the parallel subplans.
To build these partial orders (in NOLIMIT) requires
detailed information about operator effects and pre-
conditions that a case-based planner would not gen-
erally have. However, this work suggests the possibil-
ity of generating a partial-order from information that
is available (explicit ordering dependencies) or easily
inferred in the context of a case-based planner; the
partiai-order generated will likely be less complete than
those used in NOLIMIT, but may still be quite useful.
This area is one that we are currently exploring with
COOKIE.

Conclusions

This paper presented a simple approach to planning
from multiple and partial cases in a case-based planner.
The approach puts minimal information requirements
on the represented case, and is based on straightfor-
ward assumptions about non-interaction between par-
tial plans. It does not produce plans that are guar-
anteed to succeed--which would be unrealistic given
that the underlying model of planning from a single
case cannot do this--but proposes solutions that have
some likelihood of success. The approach increases the
range of plans that a case-based planner can generate
from a given case-base without making unrealistic as-
sumptions on how well the planner can reason about
the state of the world during the execution of a plan.
Little in this approach is new--most of the function-
ality of this approach has been realized in a number
of systems--but it provides a simple model that can
be used as a basis for comparison and explanation of
alternative case-based planning approaches and imple-
mentations.

Acknowledgements
Many of the ideas contained in this paper came from
discussions with current and former members of the
COOKIP. group at UConn: Barbara Cuthill, Jung-Jin
Lee, Ben Moreland, Madeleine Pukinskis, David Tow-
ers, Alma Whitten, and Karl Wurst. Thanks also to
Kate Sanders for technical and editorial discussions,
and to David Leake and the anonymous reviewers
whose suggestions I tried to incorporate. This work
has been supported in part by the National Science
Foundation, grant IRI-9110961.

References
Aho, Alfred V.; Hopcroft, John E.; and Ullmann, Jef-
frey D. 1974. The design and analysis of computer
algorithms. Addison-Wesley, Reading, MA.

Alterman, Richard 1988. Adaptive planning. Cogni-
tive Science 12:393-421.

Balzer, Robert 1985. A 15 year perspective on auto-
matic programming. IEEE Transactions on Software
Engineering 11(11):1257-1268.
Chapman, David 1987. Planning for conjunctive
goals. Artificial Intelligence 32(3):333-377.

Davis, Ernest 1990. Representations of Commonsense
Knowledge. Morgan-Kauffmann Publishers, Inc., San
Mateo, CA.

Fikes, Richard E.; Hart, Peter E.; and Nilsson, Ntis J.
1972. Learning and executing generalized robot plans.

Artificial Intelligence 3:251-288.

Foulser, David E.; Li, Ming; and Yang, Qiang 1992.
Theory and algorithms for plan merging. Artificial
Intelligence 57(2-3): 143-181.

Hammond, Kristian J. 1989. Case-based planning:
viewing planning as a memory task. Academic Press.

Hanks, Steven and Weld, Daniel S. 1992. Systematic
adaptation for case-based planning. In Proceedings
of the first international conference on AI planning
systems, College Park, MD. 96-105.

Hendler, James A. and Kamphampati, Subbarao
1988. Refitting plans for case-based reasoning. In
Kolodner, Janet, editor 1988, Proceedings of a work-
shop on case-based reasoning. 179-181.

Hinrichs, Thomas R. 1991. Problem solving in open
worlds: a case study in design. Technical Report GIT-
CC-91/36, College of Computing, Georgia Institute of
Technology. (PhD Thesis).

McCartney, Robert and Wurst, Karl R. 1991. DE-
FARCE: a real-time execution monitor for a case-based
planner. In Proceedings of the 1991 DARPA Case-
based Reasoning Workshop, Washington, DC.

McCartney, Robert 1990. Reasoning directly from
cases in a case-based planner. In Proceedings of the
12th annual conference of the Cognitive Science Soci-
ety, Cambridge, MA. 101-108.

99

McCsrtney, Robert 1992. Case-based planning meets
the frame problem: case-based planning from the
classical perspective. In Proceedings of the first inter-
national conference on AI planning systems, College
Park, MD. 172-178.

Redmond, Michael 1990. Distributed cases for case-
based reasoning: facilitating use of multiple cases. In
Proceedings of the eighth national conference on arti-
ficial intelligence, Boston, MA. 304-309.

Veloso, Manuela M.; Peter, M. Alicia; and Carbonell,
Jaime G. 1990. Nonlinear planning with parallel re-
source allocation. In Proceedings of the 1990 DARPA
Innovative Approaches to Planning, Scheduling and
Control Workshop, San Diego, CA.

Zito-Wolf, Roland J. and Alterman, Richard 1992.
Multicases: a case-based representation for procedu-
ral knowledge. In Proceedings of the IJth annual con-
ference of the Cognitive Science Society, Blooming-
ton, IN.

Appendix: The formal model

We can formalize the model for case-based plan gen-
eration given earlier; see [McCartney, 1992] for more
details.

We assume that cases are represented as explicit
sets of propositions in a situation-based temporal logic
that corresponds closely to the temporal representa-
tion in [Davis, 1990] (Chapter 5). Fluents, states, and
event types are used to reify time-varying terms, time-
varying relations, and events. The function value-in
relates fluents to situations (situations correspond to
instants in time), the relation true-in relates states to
situations, and the relation occurs relates event-types
to intervals of situations. We can associate clock times
with situations by defining a "clock time" fluent and
specifying its value in particular situations.

We base our representation on two distinguished sit-
uations: an initial situation which precedes all others
in the plan, and a final situation which follows all oth-
ers. Given these, we can represent a case by a tuple,
(27, 2‘, 7), A4), where 27 and 2‘ are subsets of the facts
the initial and final situations, 7) is the set of events (of
the form occurs([S~, Sj], E), where [Si, Sj] is the inter-
val from situation Si to situation Sj and E is an event
type) and their ordering constraints (such as value-
in(sk, clock.ti. e)= T, or precedes(Sk, Sj)), and M
a set of facts that are true in situations other than the
initial and final situation, of the form true-in(S, B),
where B is a propositional fluent and S is a situation
corresponding to the beginning or end of an event. We
can represent goals in the same way, that is, a 4-tuple
corresponding to the partial specification of a plan.

Plan generation is the following process; for goal
(279, 2‘g, ?)g, Adg), find a case C and a composition
applicable adaptations T such that

propositions-of((27s, 2‘g, 7)s, A4~)) C propositions-of(T(C))

Applicable adaptations are those that preserve behav-
ior: if a case is well-behaved (defined below), then
its transform is also well-defined. The "propositions
of" a tuplc are all of the facts without the initial-
final situation groupings, i.e., the the union of 7), A4,
true-in(z, Sx) for all x in/7, and true-in(z, SF) for
x in 2‘, where Sx and SF are the initial and final sit-
uation respectively. Alternatively, we could use subset
relations between the individual tuple elements, which
would be equivalent if we required correspondence be-
tween the initial and final situations of the case and
goal. The transformed case is a plan: for T(C)
/27c,2‘c,7)c, A4c), 7)¢ is the set of actions to be taken
with partial-order constraints, 27¢ is the set of facts that
should be true in the initial situation of the execution,
2‘¢ is the set of facts that should be true in the final
situation of the execution, and A4c is the set of facts
that should be true at various points in the execution
corresponding to the beginnings and ends of actions.

The bases for optimism here are assumptions that
the adapted case T(C) approximates a well-behaved
case, and that its behavior is approximately the same
as the case it approximates. A well-behaved case is one
for which replay always works:

well-behaved((Z, 2‘, 7), Ad))

(Vs,s, true-in(S, 2-) A occurs(IS, , 7)) ::~

true-in(Sl, 2‘) AV¢¢ E .h4 ==~

That is (extending true-in to sets of propositions and
occurs to sets of actions in the obvious way), for any
situation in which the facts in 27 hold, if we execute
the steps in 7) subject to all of the timing constraints
in 7), then all of the facts in 2‘ will hold in the final
situation of the execution, and each intermediate fact
in A4 will hold in the appropriate situation (beginning
or end of an action).

By assumption, each case (27, 2‘,7),A4) has associ-
ated with it a well-behaved case (27w, 2‘w, 7)w, A4w).
case is a description of an actual plan execution; the
corresponding well-behaved case is the ideal descrip-
tion of that same execution:

3s,s, occurs([S, SI],7)’) A true-in(S,Z~)

true-in(S, 27) A 7) C_ 7)’ 7)w C 7)’ A

true-in(St, 9%) ̂ true-in(S/, 2")

V¢¢ E ~ ~ ¢ AVoO E .Mw =~ 0

That is, our represented cases are approximations of
well-behaved cases; the facts in the initial and final sit-
uations (as well as in A4) of our cases may be missing
some salient facts and include superfluous facts, and
similarly may be missing salient events and/or include
superfluous events (defining salient and superfluous as
present in and absent from the well-behaved case). The
plans generated from these cases, therefore, will some-
times fail.

i00

