
Improving Schedule Quality
through Case-Based Reasoning

Kazuo Miyashita

Matsushita Electric Industrial Co. Ltd.,

2-7 Matsuba-cho, Kadoma, Osaka 571, JAPAN
miyasita@mcec.ped.mei.co.jp

Katia Sycara

The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.

katia@cs.cmu.edu

Abstract

We describe a framework, implemented in CAB-
INS, for iterative schedule revision based on acqui-
sition and reuse of user optimization preferences
to improve schedule quality. Practical scheduling
problems generally require allocation of resources
in the presence of a large, diverse and typically
conflicting set of constraints and optimization cri-
teria. The ill-structuredness of both the solution
space and the desired objectives make scheduling
problems difficult to formalize. CABINS records
situation-dependent tradeoffs about repair actions
and schedule quality to guide schedule improve-
ment. During iterative repair, cases are exploited
for: (1) repair action selection, (2) evaluation
intermediate repair results and (3) recovery from
revision failures. The contributions of the work
lie in experimentally demonstrating in a domain
where neither the user nor the program possess
causal knowledge of the domain that (a) taking
into consideration failure information in the form
of failed cases or a repair history of a case im-
proves schedule quality, (b) schedule quality im-
proves with increasing case size and (c) preserv-
ing the case base rather than inducing rules gives
better results.

Introduction

Recently there has been increased interest in ap-
proaches that incrementally modify an artifact (e.g.,
program, plan, design) by reusing previous experi-
ences in order to accommodate changed artifact spec-
ifications or recover from failures. Most current ap-
proaches have the following common characteristics:
(1) they are motivated by considerations of compu-
tational efficiency (Kambhampati and Headier, 1992;
Veloso, 1992; Simmons, 1992), (2) they are concerned
with preserving artifact correctness not addressing op-
timization issues (Kambhampati and Hendler, 1992;
Veloso, 1992; Simmons, 1992; Hammond, 1989), and
(3) they assume the existence of a strong domain model
that is utilized to guide artifact modification and re-

pair (Kambhampati and Hendler, 1992; Veloso, 1992;
Simmons, 1992; Hammond, 1989). For example,
CHEF (Hammond, 1989) uses rules rather than CBR
for repair tactic selection, uses a model-based simula-
tor for detecting failures in a generated plan, and ad-
dresses plan correctness issues (recovery from a failed
plan) but ignores issues of plan optimization. Such
characteristics limit current approaches in their ability
to handle interesting real world tasks since the exis-
tence of a strong domain model can almost never be
assumed and improving artifact quality (as opposed to
only correctness) in terms of a set of evaluation criteria
is often a crucial consideration.

We present an approach, implemented in CABINS,
that demonstrates that reuse of previous relevant ex-
periences is effective not only to ensure artifact cor-
rectness but also to improve quality. Through case-
based reasoning (CBR), CABINS learns two categories
of concepts: (1) what heuristic repair actions to choose
in a particular repair context, and (2) what combina-
tions of effects of application of a particular repair ac-
tion constitutes an acceptable or unacceptable repair
outcome in terms of optimization criteria. In contrast
to the knowledge acquisition task (Bareiss, 1989) where
the program interacts with an expert teacher to ac-
quire domain knowledge, in our approach neither the
user nor the program possess causal domain knowl-
edge. The user cannot predict the effects of modifi-
cation actions on artifact correctness or quality. In
the domain of scheduling, for example, a modification
could result in worsening schedule quality or introduc-
ing constraint violations (see next section). The user’s
expertise lies in his/her ability to perform consistent
evaluation of the results of problem solving and impart
to the program cases of problem solving experiences
and histories of evaluation tradeoffs.

CABINS has been evaluated in the domain of itera-
tive improvement of job shop schedules. Experimental
results reported in (Miyashita and Sycara, 1993) have
shown that CABINS substantially increased schedule
quality along a variety of optimization criteria (im-
provements ranged from 30-70 percent) without un-
due degradation in efficiency as compared with (1)

i01

From: AAAI Technical Report WS-93-01. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

state of the art constraint-based scheduler, and (2)
variety of well regarded dispatch heuristics that are
used in production management. In contrast to ap-
proaches that utilize a single repair heuristic (Minton
el aL, 1990) or use a statically predetermined model
for selection of repair actions (Ow etal., 1988), our
approach utilizes a repair model that is incrementally
learned and encoded in the case base. Learning allows
dynamic selection and application of repair actions de-
pending on the repair context. In (Zweben etal., 1992)
plausible explanation based learning has been success-
fully used to learn schedule repair control rules for
speed up. Our experimental results show that in the
context of CABINS, keeping the case base rather than
inducing rules gives better results in terms of schedule
quality.

In this paper we experimentally demonstrate that
(a) taking into consideration failure information im-
proves performance results, (b) result quality improves
with increasing case size and (c) preserving the case
base rather than inducing rules gives better results.

Task Domain

Scheduling assigns a set of jobs to a set of resources
with finite capacity over time. One of the most difficult
scheduling problem classes is job shop scheduling. Job
shop scheduling is a well-known NP-complete problem
(French, 1982). In job shop scheduling, each job con-
sists of a set of activities to be scheduled according to
a partial activity ordering. Each job is assigned a re-
lease date, the date that it will be ready for starting
processing, and a due date, a date on which the job
should finish. Each activity within a job is assigned
a set of substitutable resources on which the activity
can be performed, and an activity duration. For ex-
ample a drilling activity could be performed utilizing
either a drilling machine or a milling machine. The
dominant constraints in job shop scheduling are: tem-
poral precedence constraints that specify the relative
sequencing of activities within a job and resource ca-
pacity constraints that restrict the number of activities
that can be assigned to a resource during overlapping
time intervals.

The activity precedence constraints along with a
job’s release date and due date restrict the set of ac-
ceptable start times for each activity. The capacity
constraints restrict the number of activities that can
use a resource at any particular point in time and cre-
ate conflicts among activities that are competing for
the use of the same resource at overlapping time in-
tervals. The goal of a scheduling system is to produce
schedules that respect temporal relations and resource
capacity constraints, and optimize a set of objectives,
such as minimization of job tardiness (i.e., how late
job will finish), minimization of weighted tardiness (the
sum of tardiness of all jobs, each weighted by its im-
portance), minimization of work in process inventory
(WIP) (i.e., the time a job spends in a factory waiting

to be processed), maximization of resource utilization,
etc.

CABINS incrementally revises a complete schedule
to improve its quality. Revision consists in identify-
ing and moving activities in the schedule. Because
of the tight constraint interactions, a revision in one
part of the schedule may cause constraint violations
in other parts. It is generally impossible to (a) pre-
dict in advance either the extent of the constraint vi-
olations resulting from a repair action, or the nature
of the conflicts, or (b) judge a priori the effects of
repair action on the optimization objectives. There-
fore, a repair action must be applied and its repair
outcome must be evaluated in terms of the resulting
effects on scheduling objectives. The evaluation crite-
ria are often context dependent and reflect user pref-
erences with respect to tradeoffs. For example, WIP
and weighted tardiness are not always compatible with
each other. There are situations where WIP is reduced,
but weighted tardiness increases. Tradeoffs are context
dependent and therefore difficult to fully describe a pri-
ori even for a human expert. In CABINS, evaluation
feedback is used to incrementally acquire context de-
pendent schedule evaluation tradeoffs and their justifi-
cations. These are recorded in the case base and can be
re-used to evaluate future schedule revision outcomes.
Hence, preferences are reflected in the case base in two
ways: as preferences for selecting a repair action, and
as evaluation preferences for the repair outcome that
resulted from selection and application of a specific re-
pair action.

CASE

Global Feature

Weighted Tardineml
Sallarlce

Resour(~ Utlllzlltlon Avecsge
Value 8allenco

IResour~ Utilization Deviation
Value 8aller~

Looal Feature

Walling Time
Value ~II~

Predl©tlve Shift Gain
Salierce

Predlatlvo All Shill (3lain
Valuo 8all~

Predlotlve Swap Gain
Value ~zllor~o

Predl0tlve Air Swap Gain
Value ~II~

Repair History

Taotlo Valu~ 8alk~nce
Outoomo Value ~lm~

IEffetOtType Value Salienc~

IL
I’~

Figure 1: CABINS Case Representation

102

Overview of CABINS

Case representation

Within a job, repair is performed one activity at a
time. At each iteration, the current job whose activity
is being repaired is called the focal_job and the current
activity being repaired is called the focal_activity. A
case describes the application of a particular modifi-
cation to an activity. Case indices are of three types
(figure 1). First, there are features that reflect poten-
tial repair flexibility for the schedule as a whole, (global
features). High resource utilization, for example, often
indicates a tight schedule without much repair flexibil-
ity. High standard deviation of resource utilization in-
dicates the presence of highly contended-for resources
which in turn indicates low repair flexibility. Second,
there are features that reflect flexibility for schedule re-
vision within limited temporal bounds (local features).
In particular, the temporal bound that CABINS uses
is a time interval called repair time horizon. The re-
pair time horizon of a focal_activity is the time inter-
val between the end of the activity preceding the fo-
cal_activity in the same focal_job and the end of the
focal_activity (see figure 2).

Ii w.,t,oot, .j AcT .]
repair time horizon

Figure 2: Repair time horizon of focal_activity(ACT~)

Associated with the repair time horizon are local fea-
tures that we have identified and which potentially are
predictive of the effectiveness of applying a particu-
lar repair tactic. These features are in the same spirit
as those utilized in (Ow et al., 1988). For example,
predictive-shift-gain predicts how much overall gain
will be achieved by moving the current focal_activity
earlier in its time horizon. In particular, it predicts
the likely reduction of the focal-activity’s waiting time
when moved to the left within the repair time horizon.
Because of the ill-structuredness of job shop schedul-
ing, local and global features are heuristic approxima-
tions that reflect problem space characteristics.

The third category of case indices is a set of fea-
tures that reflect the sequence of revisions to an activ-
ity (repair history). The repair history records the se-
quence of applications of successive repair actions, the
repair effects and the repair outcome. Repair effects
describe the impact of the application of a repair ac-
tion on schedule optimization objectives (e.g., weighted
tardiness, WIP). Typically these effects reflect trade-
otis among different objectives. A repair outcome is
the evaluation assigned to the set of effects of a repair

action and takes values in the set [’acceptable’, ’un-
acceptable’]. This judgement is made in the training
phase and gets recorded in the case base. An outcome
is ’acceptable’ if the tradeoffs involved in the set of ef-
fects for the current application of a repair action is
judged acceptable. If, during case acquisition, the out-
come is judged as "unacceptable", the application of
the repair tactic is considered a failure and an explana-
tion that expresses tradeoffs with respect to balancing
favorable and unfavorable outcomes on optimization
objectives is provided. If during CBR repair the re-
pair outcome is deemed unacceptable, another tactic
is selected from success cases to repair the same activ-
ity, using as indices global and local case features, the
failed tactic, and the indication of the failed outcome.
This CBR invocation retrieves similar past failures of
the tactic that were successfully repaired and the tac-
tic that was eventually successful in fixing the past
failure. The intuition here is that a similar outcome
for the same tactic implies similarity of causal struc-
ture between the past and current case. Therefore,
the eventually successful tactic of a similar failure can
potentially be successful in the current problem.

Case acquisition

To gather enough cases, sample scheduling problems
are solved by a constraint-based scheduler (Sadeh and
Fox, 1990). CABINS identifies jobs in a schedule that
must be repaired. Those jobs are sorted according to
the significance of defect, and repaired according to
this sorting. For example, if the optimization criterion
is to minimize job tardiness, the most tardy job is re-
paired first. A repair tactic is selected to be applied.
Tactic application consists of two parts: (a) identify
the activities, resources and time intervals that will
be involved in the repair, and (b) execute the repair
by applying constraint-based scheduling to reschedule
the activities identified in (a). Repairing an activity,
i.e., unscheduling it from its current position and re-
scheduling at another time interval may cause conflicts
with other activities. In each tactic application, the
focal_activity and the conflicting activities are all re-
scheduled. For details of the approach, see (Miyashita
and Sycara, 1993).

The tactics currently available in CABINS are:

left-shift : try to move the focal_activity on the same
resource as much to the left on the timeline as possi-
ble within the repair time horizon, so as to minimize
the amount of resource capacity contention created
by the move.

left_shift_into_alt : try to move the focal_activity on
a substitutable resource as much to the left on the
timeline as possible within the repair time horizon,
so as to minimize the amount of resource capacity
contention created by the move.

swap : swap the focal_activity with the activity on the
same resource within the repair time horizon which

103

causes the least amount of precedence constraint vi-
olations.

swap_into_alt : swap the focal_activity with the activ-
ity on a subsfilulable resource within the repair time
horizon which causes the least amount of precedence
constraint violations.

After tactic selection and application, the repair ef-
fects are calculated and evaluated. For example, repair
of the current focal_activity may decrease WIP by 200
units and decrease weighted tardiness of the focal_job
by 180 units while at the same time increasing weighted
tardiness of another job by 130 units and increasing
WIP by 300 units. If the repair outcome is evaluated
as ’acceptable’, CABINS proceeds to repair another
activity and the process is repeated. If the evaluation
of the repair outcome is "unacceptable", an explana-
tion is supplied, the repair is undone and another re-
pair tactic is selected for the same focal_activity. The
process continues until an acceptable outcome for the
current focal_activity is reached, or failure is declared.
Failure is declared when there are no more tactics to
be applied to the current focal_activity. The sequence
of applications of successive repair actions, the effects,
the repair outcome, and the explanation for failed ap-
plication of a repair tactic are recorded in the repair
history of the case. In this way, a number of cases are
accumulated in the case base.

In the experiments reported here, we used a simple
metric, minimizing weighted tardiness, 1 as an objec-
tive function to evaluate the performance of CABINS.
Although there is no straightforward way to modify
a schedule to optimize a realistic multi-criteria objec-
tive function, by using a single-criterion objective we
built a rule-based reasoner (RBR) that goes through
a trial-and-error repair process to optimize a schedule
and forms an experimental baseline against which to
compare CABINS. Since the RBR is constructed not
to select the same tactic after tactic failure, it could
go through all the tactics before giving up repairing an
activity. For each repair, the repair effects are calcu-
lated and the repair outcome is correctly determined by
comparing the change in the objective function. Since
a clearly-defined objective function (which is available
only in a user’s mind) was used for evaluation, RBR
can work as an emulator of a human scheduler, whose
expertise lies in the ability of consistent evaluation.
Therefore, we used RBR not only to make a compar-
ison baseline for the CABINS experiment results but
also to generate the case base for CABINS. So far,
CABINS has been trained with 1,000 cases.

Once a case base is created, CABINS can repair a
suboptimal schedule through CBR. CABINS repairs
a schedule by (1) recognizing schedule suboptimalities,
(2) focusing on an activity to be repaired in each repair
cycle, (3) invoking CBR with global and local features

1 Of course, CABINS does not know this metric but had
to induce it from the contents of the case base.

as indices to decide the most appropriate repair tactic
to be used for each activity, (4) invoking CBR using
the repair effect features (type, value and salience)
indices to evaluate the repair result, and (5) in case
of failure, deciding whether to give up or which repair
tactic to use next by using global and local features
and the repair history as indices. In the experimental
study section, we report results about the effectiveness
of indexing schemes that in situations of failure utilize
different types of failure information.

Case retrieval

In CABINS concepts are defined extensionally by a col-
lection of cases. As a case retrieval mechanism, CAB-
INS uses a variation of k-Nearest Neighbor method (k-
NN). (Dasarathy, 1990) where not the frequency
the sum of similarity of k-nearest neighbors is used as
a selection criterion. The similarity between i-th case
and the current problem is calculated as follows :

e v(- (SL})2)
~i-----1

where SL~ is the salience ofj-th feature of i-th case
J

in the case-base. Sahence and values of features are nu-
meric and have been heuristically defined by the user.
CF~ is the value ofj-th feature of i-th case, PFj is the

J
value of j-th feature in the current problem, E_Dj is
a standard deviation of j-th feature value of all cases
in the case-base. Feature values are normalized by di-
vision by a standard deviation of the feature value so
that features of equal salience have equal weight in the
similarity function.

Experimental Studies

To evaluate CABINS, we performed a set of controlled
experiments where job shop schedule parameters, such
as number of bottlenecks, range of due date, and ac-
tivity durations were varied to cover a broad range
of job shop scheduling problems. To ensure that we
had not unintentionally hardwired knowledge of the
problem into the solution strategies, we generated 60
job shop scheduling problems at random from problem
generator functions where the above problem parame-
ters were varied in controlled ways. Each problem has
5 resources and 10 jobs of 5 activities each. Each job
has a process routing specifying a sequence where each
job must visit bottleneck resources after a fixed num-
ber of activities, so as to increase resource contention
and make the problem more difficult. We also varied
job due dates and release dates, as well as the num-
ber of bottleneck resources (1 and 2). Six groups
10 problems each were randomly generated by consid-
ering three different values of the due date range pa-
rameter (static, moderate, dynamic), and two values
the bottleneck configuration (1 and 2 bottleneck prob-
lems). The slack was adjusted as a function of the due

104

date range and bottleneck parameters to keep demand
for bottleneck resources close to 100 percent over the
major part of each problem. Durations for activities in
each job were also randomly generated. These prob-
lems are variations of the problems originally reported
in (Sadeh, 1991). Our problem sets are different in two
respects: (a) we allow substitutable resources for non-
bottleneck resources, and (b) the due dates of jobs
our problems are more constrained by 20 percent.

To make an accurate determination of CABINS’
capabilities, we applied a two-fold cross-validation
method. Each problem set in each class was divided
in half. One half was repaired by the RB13. emulator
to gather cases. These cases were used to iteratively
repair the other half of the problem set. We repeated
the above process interchanging the sample set and the
test set. Our results are the average of the two sets of
results using case-based repair.

Evaluation of three repair strategies

Our hypothesis is that CBR enables CABINS to im-
prove its competence both in repair quality and effi-
ciency compared with RBR by utilizing different types
of failure information recorded in the cases.

We experimentally compared three repair strategies:
(1) one-shot repair, where CABINS selects a repair

tactic, applies it to a focal_activity and proceeds to
repair the next focal.activity regardless of repair out-
come.

(2) exhaustive repair, where CABINS selects a repair
tactic and applies it to repair an activity. If the re-
pair outcome is deemed unacceptable, another tactic
is selected from success cases to repair the same activ-
ity, using as indices global and local case features, the
failed tactic, and the indication of the failed outcome.
This CBR invocation retrieves similar past failures of
the tactic that were successfully repaired and the tactic
that was eventually successful in fixing the past failure.
The intuition here is that similar outcome for the same
tactic imply similarity of causal structure between the
past and current case. Therefore, the eventually suc-
cessful tactic of a similar failure can potentially be suc-
cessful in the current problem.

(3) limited exhaustive repair, where CABINS gives
up further repair when it determines that it would be
a waste of time. To decide whether to give up further
repair, previous repair failed cases are utilized in con-
junction with repair successes to determine case sim-
ilarity. If the most similar case is a failure, CABINS
gives up repair of the current activity and switches its
attention to another activity. Since, in difficult prob-
lems, such as schedule repair, failures usually outnum-
ber successes, if both case types are weighted equally,
overly pessimistic results could be produced (i.e., CBR
suggests giving up too often.) To avoid this, we bias
(negatively) usage of failures by placing a threshold
the similarity value. Failure experiences whose similar-
ity to the current problem is below this threshold are

ignored in similarity calculations. Since the similarity
metric selects the tactic which maximizes the sum of
the most similar k cases, this biases tactic selection in
favor of success cases which are moderately similar to
the current problem.

The graphs in figure 3 show comparative results with
respect to schedule quality improvement (weighted tar-
diness) and repair efficiency (in CPU sees) among lim-
ited exhaustive repair, exhaustive repair, one-shot re-
pair and rule-based repair. The results show that one-
shot repair is the worst in quality (even compared to
rule-based repair) but best in efficiency. Exhaustive
repair outperformed one-shot repair and rule-based re-
pair in quality. But, the efficiency of exhaustive repair
was worse than that of one-shot repair or rule-based
repair. We believe that this result stems from the fol-
lowing two reasons: (1) greediness - exhaustive repair
applies the tactic from the most similar cases no matter
how small their similarity is, and (2) stubbornness - ex-
haustive repair continues to repair an activity without
giving up when the problem seems difficult. The qual-
ity of repair by limited exhaustive repair is only slightly
worse than that by exhaustive repair, but is still com-
parable with that of rule-based repair. The efficiency
of limited exhaustive repair is much higher than both
rule-based repair and exhaustive repair. Although the
efficiency of limited exhaustive repair is comparable
with that of one-shot repair, the quality of repairs by
limited exhaustive repair is much better than that of
one-shot repair. With respect to repair quality, we
can observe the following: (1) one shot repair does not
have enough information to induce an adequate repair
model, and (2) prediction accuracy can be improved
using information about failed application of a repair
tactic as an additional index feature.

Comparison with different sized case-bases

The graphs in figure 4 show the comparison of CAB-
INS’ performance with different sized case-bases. In
the experiments, we randomly chose half of the cases in
the original case-base (used in the comparative repair
strategy experiments) and created a new case-base.
Then, we solved the same sixty problems by limited
exhaustive repair with each of the case-bases. The
graphs depict that CABINS with full case-base out-
performs CABINS with half case-base both in quality
and efficiency. This means that, as the case base of
CABINS is enriched, its competence increases.

Comparison of CBR and rule induction

We tested the hypothesis that keeping the cases rather
than inducing rules for repair tactic selection would
result in better quality repairs. The graphs in fig-
ure 5 show the comparison of CABINS’ performance
with case-based reasoning and CABINS’ performance
with rules induced from the case base by C4, a de-
cision tree induction algorithm (descendant of ID3)
(Quinlan, 1993). The results show that CABINS’

105

~1700

1500
~ o~._15 0

1400

1100

1000
goo

8oo

7oo

6oo

50o

40c

30C

2O0

100

0

~1100

~1000

QO0

80C

700

oOO

500

4O0

300

2OO

100

0

~1600

~ 1500

~1400

~1300

~ 1200

1100

1000

900

800

700

600

500

4O0

300

2O0

100

0

;=
~c~_70°

pL
/ ¯ 60C

¯ ¯
¯¯ =

sS

¯ i a,
¯ ¯ ¯ ~ 500

400

e"
300

-- Rule-based Repair I
200

One-shot repair I
Exhaustive repair I 100
Limited Exhaustive repairI

I
-- Rule-based Repair I

One-shot repair
Exhaustive repair
Limited Exhaustive repsir

2 3 4 5 6 0 1 2 3
Problem Set

Figure 3: Effect of repair strategies in quality and efficiency

4 5
Problem SetB

I~--~ Full Case-Base J
Half Csse-BaseJ

200

10C

~k

¯
t ¯
i ¯

&

I~ Full Case-Basel
Half Case-BaseI

1 2 3 4 5 6 0
Problem Set

1 2 3 4 5 6
Problem Set

Figure 4: Effects of case-base size in quality and efficiency

~ CABINS J
Rules induced by C4

10C

1 2 3 4 5 6 0 1 2 :3 4 5 5

Problem Set Problem Set

Figure 5: Comparison of CABINS and C4 in quality and efficiency

106

performance with C4-induced rules is better with re-
spect to efficiency but much poorer in terms of qual-
ity than CABINS’ performance with case-base. This
drawback of C4 stems from the fact that geomet-
rically, C4 (and most of other decision-tree induc-
tion programs) can’t produce nonrectangular deci-
sion regions in the decision space. In the rules used
for repairing schedules and creating cases, there are
malay conditions specifying the relationships of at-
tributes, such as If attribute-h is greater than
attribute-B, then C. To approximate the decision
behavior of the nonrectangular regions produced by
those rules, C4 has to fit many small rectangle sec-
tions in the form of a staircase function, which re-
quires more training data.(Weiss and Kulikowski, 1990;
Quinlan, 1993)

Conclusions
We described a framework for acquisition and reuse of
past problem solving experiences for plan revision in
domains, such as job shop scheduling, without a strong
domain model. Our experimental results show that our
methodology can outperform rule based methods, and
improve its own performance by: (1) using failures and
their repairs as additional indices, and (2) trading off
the use of success and failure cases depending on the
context in which a repair tactic is applied. In addition,
our experimental results showed that increasing case
base size improves both quality and efficiency. Finally,
CBl~ techniques used in CABINS, though lower in ef-
ficiency, result in superior solution quality compared
with rule induction.

Acknowledgments
This work was done when the first author was a visiting
scientist at the Robotics Institute of Carnegie Mellon
University under the support of Matsushita Electric
Industrial Co.,. C4 program used in this paper was
implemented by Dr. Wray Buntine at NASA Ames Re-
search Center as a module of his IND software package.

References
Bareiss, Ray 1989. Exemplar-based knowledge acqui-
sition : a unified approach to concept regression, clas-
sification, and learning. Academic Press, New York,
NY.
Dasarathy, Belur V., editor 1990. Nearest Neighbor
(NN) Norms: NN Pattern Classification Techniques.
IEEE Computer Society Press, Los Alamitos, CA.
French, Simon 1982. Sequencing and Scheduling: An
Introduction to the Mathematics of the Job-Shop. Ellis
IIorwood, New York, NY.
Hammond, Kristian J. 1989. Case-Based Planning
: Viewing Planning as a Memory Task. Academic
Press, New York, NY.
I(ambhampati, Subbarao and Hendler, James A.
1992. A validation-structure-based theory of plan

modification and reuse. Artificial Intelligence 55:193-
258.
Minton, S.; Johnston, M. D.; Philips, A. B.; and
Laird, P. 1990. Solving large-scale constraint satisfac-
tion and scheduling problems using a heuristic repair
method. In Proceedings, Eighth National Conference
on Artificial Intelligence, Boston, MA. AAAI. 17-24.

Miyashita, Kazuo and Sycara, Katia 1993. Adap-
tive case-based control of schedule revision. In Fox,
M. and Zweben, M., editors 1993, Knowledge-Based
Scheduling. Morgan Kaufmann, San Mateo, CA.

Ow, P. S.; Smith, S. F.; and Thiriez, A. 1988. Reac-
tive plan revision. In Proceedings of the Seventh Na-
tional Conference on Artificial Intelligence, St-Paul,
Minnesota. AAAI. 77-82.
Quinlan, J. Ross 1993. C~.5: programs for machine
learning. Morgan Kaufmann Publisher, Inc., San Ma-
teo, CA.

Sadeh, Norman and Fox, Mark S. 1990. Variable and
value ordering heuristics for activity-based job-shop.
In Proceedings of the Fourth International Confer-
ence on Expert Systems in Production and Operations
Management, Hilton Head Island, SC. 134-144.

Sadeh, Norman 1991. Look-Ahead Techniques for
Micro-Opportunistic Job Shop Scheduling. Ph.D. Dis-
sertation, School of Computer Science, Carnegie Mel-
lon University.

Simmons, Reid G. 1992. The roles of associational
and causal reasoning in problem solving. Artificial
Intelligence 53:159-207.

Veloso, Manuela M. 1992. Learning by Analogical
Reasoning in General Problem Solving. Ph.D. Disser-
tation ~, School of Computer Science, Carnegie Mellon
University.

Weiss, Sholom M. and Kulikowski, Casimir A. 1990.
Computer Systems That Learn : Classification and
Prediction Methods from Statistics, Neural Nets, Ma-
chine Learnig and Expert Systems. Morgan Kauf-
mann Publisher, Inc., San Mateo, CA.
Zweben, M.; Davis, E.; Brian, D.; Drascher, E.;
Deale, M.; and Eskey, M. 1992. Learning to im-
prove constraint-based scheduling. Artificial Intelli-
gence 58(1-3):271-296.

107

