
A Cross-Domain Experiment in
Case-Based Design Support: ArchieTutor

Ashok Goel* All Malkawi
College of Computing College of Architecture

Georgia Institute of Technology Georgia Institute of Technology

Michael Pearce

Ga.laxy Scientific (i!orporation
Atlanta, Georgia

Kim Liu
College of Computing

Georgia Institute of Technology

Abstract

ArchieTutor is an experiment ill combining
case-based and multimedia technologies to
support tile teaching of architectural design.
It provides all architectural student with ac-
cess to a library of past design cases, and
enables the student to retrieve and browse
through cases that are similar to a given de-
sign problem. Tile cases are annotated with
design lessons learned from thenl. In addi-
tion, the cases are explicitly related to rel-
evant domain models, and design principles
and guidelines. The system uses these princi-
ples, guidelines and models to explain, justify
or critique a design choice, and to elaborate
on a design lesson. In addition, it uses cases
to illustrate a given principle, guideline or
model.

Introduction

Over the last few years, our research group
has developed a series of case-based design
support systems. Each system in this se-
ries represents an experiment in combin-
ing case-based and nmltimedia technolo-
gies for supporting conceptual design in
complex domains. In the Archie project
[Pearce et al. 1992], we explored the use of
design cases for aiding architects in designing
new office buildings. In the AskJef project
[Barber el al. 1992], we investigated the use
of multiple types of knowledge, including de-
sign cases, for advising software engineers on
the design of human-machine interfaces. The
more recent ArchieTutor system represents
a cross-domain experiment in using AskJef’s
framework for supporting design teaching in
Archie’s domain.

*Acknowledgements: This paper has benefited
from many discussions with Janet Kolodner. It has
been supported in part by the Office of Naval Re-
search [contract N00014-92-J-1234). Contact: Ashok
Goel, College of Computing, Georgia Institute of
Technology, 801 Atlantic Drive, Atlanta, Georgia
30332; email: goel@cc.gatech.edu; phone: (404) 853-
9371.

The goal of this paper is to briefly sketch our
evolving model for case-based design sup-
port, and to outline its current form as in-
stantiated in ArchieTutor. We begin with
descriptions of Archie and AskJef, focusing
on tile lessons we learned from them. We
continue with a description of ArchieTutor.

Archie

We designed Archie with the idea of using
computer-based case libraries to support hu-
man decision making [Kolodner 1991]. The
system aids architects in conceptual design
of new office buildings [Goel et al. 1991].
It provides architects with a library of past
design cases to help them in two subtasks
of conceptual design: design generation and
design critiquing. In the generation phase,
after an architect specifies the goals of a
new design problem, Archie uses the goals
to probe its case library and retrieves de-
sign plans corresponding to similar goals. In
the critique phase, when an architect pro-
poses a specific design to achieve the design
goals, the system first uses domain models to
determine the potential outcomes of the de-
sign, and then uses these outcomes to probe
its case library and retrieve designs that re-
suited in similar outcomes. By looking at the
outcomes of the retrieved cases, the architect
can predict the outcome of the proposed de-
sign.
The memory organization of Archie is pri-
marily case-based, with models providing in-
dexes to design goals and outcomes. A de-
sign case in Archie packages specifications
of the goals, plans and outcomes of a spe-
cific design. Case features are organized hi-
erarchically, and include features relating to
the organization that uses the building, the
core (permanent structure) of the building,
the partitions that separate the space in the
building, and the furniture. The domain
models in Archie specify the system’s knowl-
edge of qualitative relations between features
characterizing office buildings, and are used
to critique a proposed design. For example,

iii

From: AAAI Technical Report WS-93-01. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

if an architect wanted to critique a design
from tile viewl)oint of lighting quality, Archie
would use the lighting quality model to pre-
dict that the proposed design will result in
high glare intensity (and thus low lighting
quality), and use this result to retrieve pazt
designs that resulted in similar outcomes,
Archie contains twenty cases and six models.
’Fhe system was built using Cognitive Sys-
tems’ Remind tool on a Ma.clntosh l[. It was
evaluated only informally, mainly by showing
it to some domain experts.

Lessons Learned
The Archie project was a mixed success
and we learned much from its limitations
[Pearce el al. 1992]:

Design cases are useful for both design
generation and critiquing. Cases can be
a source of new design concepts and ideas.
They can also provide parts of the desired
design solution. However, Archie does not
force (or even assist) the architect to use the
retrieved case in any way. Instead, it pro-
vides concrete examples that prompt the ar-
chitect, to think about relevant design issues.
In addition, cases can provide useful design
lessons learned from past. designs in the form
of problems encountered in them and reme-
dies to fix the problems. This knowledge is
potentially useful for critiquing proposed de-
signs and correcting problems in them.

Domain models are usefid for design
critiquing. The domain models in Archie
enable the system to critique proposed de-
signs, and to find possible conflicts in or
problems with proposed design plans. Each
model in the system acts ms an architecturM
specialist, that can evaluate a design from its
own point of view and point out problems in
the design.

Design cases and domain models
are useful for design cooperation. A
computer-ba,sed case library acts as a shared
external memory. By including enough
knowledge about the design goals, plans, out-
comes and lessons in its cases, Archie pro-
vides the designer access to the work of previ-
ous architects. Similarly, by providing access
to the perspectives of various domain experts
via the domain models, the system enables
the designer to anticipate and accommodate
their views on the evolving design.

Design cases are large and incomplete.
The amount of knowledge necessary for de-
sign in a non-trivial domain is very large.
This raises the issue of decomposing de-
sign cases into smaller, more useful subcases.

In addition, knowledge of real-world design
c~ses often is incomplete. This in turn raises
the issue of how to use incomplete and uncer-
tain case knowledge to support human deci-
sion making.

Multiple types of knowledge are re-
quired for design support. Although
Archie contains domain models in addition
to design cases, the user does not have ac-
cess to these models. Design problem solv-
ing however appears to involve several types
of knowledge in addition to that of design
cases. For example, design principles and
guidelines are needed to generate new de-
signs, and domain models are useful in cri-
tiquing proposed designs.

Usability issues are very important.
The emphasis of our work on Archie was on
collecting, analyzing, indexing and entering
knowledge of architectural design cases into
the system. We did not pay equal attention
to Archie’s interface, and ignored the usabil-
ity and learnability issues that are important
to end users. As a result, its interface is us-
able by knowledge engineers but not by ar-
chitects.

AskJef

The AskJef project picked up where Archie
left off. AskJef supports software engi-
neers in designing human-machine interfaces
[Barber el al. 1992]. It provides software en-
gineers with access to a computer-based li-
brary that contains several types of knowl-
edge: (i) design cases from the domain
human-nmchine interface design, (ii) design
stories from other domains, (iii) design prin-
ciples and guidelines, (iv) design objects, and

tev) prototypical designer errors. The dif-
rent types of knowledge in the system are

cross-indexed through the annotations on de-
sign cases. The case annotations point out
the good and bad features of the interface,
and are linked to relevant guidelines and
principles. The design guidelines and prin-
ciples help to further explain the case anno-
tations, and the design cases and stories help
to illustrate the guidelines.
AskJef employs text, graphics, animation
and voice to help software engineers un-
derstand both the general domain of inter-
face design and specific problems in the do-
main. It contains about ten design cases
and forty stories, half dozen design princi-
ples and forty guidelines, dozen prototypicM
errors and twenty interface objects.
AskJef’s memory was constructed using In-
ference Corporation’s ART-IM knowledge
representation toolkit and its interface was
designed using Asymetrix ToolBook on an

112

IBM compatible PC. Various versions of the
system were demonstrated to domain experts
through out its development, and their feed-
back was incorporated in the succeeding ver-
sions. Software engineers were invited to use
the final version of the system for a variety
of design and redesign tasks, and extensive
data on their use of the system was collected
and analyzed.

Lessons Learned

Multiple types of knowledge are
needed for design advising. From our
experience with Archie, we knew that cases
were not the only type of knowledge useful
for the design of complex systems. Experi-
ments with AskJef confirme,I this hypothe-
sis: designers need access t.o different types
of knowledge at, different stages in the design
process. This knowledge is necessary for the
user to organize case knowledge in a useful
way. For example, design principles provide
abstract knowledge that allows the user to
generalize across design cases.

Different types of knowledge need to
be cross-lndexed. The user should have
access to the different types of design knowl-
edge stored in the system’s memory. Hence,
the different types of knowledge in the sys-
tem’s memory need to be cross-indexed so
that the user can easily navigate the mem-
ory and move from one type of knowledge to
another. This navigation approach gives the
user access to all of the knowledge in the sys-
tem but constrains its presentation so that
the user is not shown an incomprehensible
collection of information at any time.

The history of a design provides both
design rationale and case decomposi-
tion. In AskJef, a design case is decom-
posed into several versions that together
form a chronological history of the interface
design. The system presents only one ver-
sion at a time, making it easier for the user
to "digest" the information stored in a case.
In addition, the temporal decomposition of a
design provides a rationale for the interface
design: the user can look at the evolution
of the design, the problems with each ver-
sion, and the subsequent solutions to inter-
face problems.

The interface organization should re-
flect the memory organization. One of
the important lessons we learned from ex-
periments with AskJef is that the organiza-
tion of the display presentation should reflect
the organization of knowledge in memory.
This helps users in building a mental model

of the system in the terms of the relation-
ships between different types of knowledge
and the functional roles they play. This men-
tal model in turn makes it easier for them to
use the system.

Case libraries are useful for design
tutoring. Another important lesson we
learned from AskJef is t!mt the system is
useful not just for aiding design but also for
teaching design. Experiments with AskJef
indicate that the system is useful for de-
sign teaching in several ways. First, the
annotated design cases help the inexperi-
enced software engineer understand a com-
mon method for generating design solutions,
and, similarly, the design principles and
guidelines help the software engineer under-
stand a common method for critiquing pro-
posed solutions. Second, the annotated de-
sign cases and stories, the design princi-
ples and guidelines, the domain objects, and
the relations among them, help the inexpe-
rienced software engineer in understanding
the nature of the domain of interface design
as well as the structure of design problems
and solutions in the domain. Third, the de-
sign rationales and the prototypical errors
help the inexperienced software engineer in
understanding typical problems with inter-
face designs and ways of fxing some of these
problems.

ArchieTutor
In a new cross-domain experiment, we are
presently applying AskJef’s knowledge and
interface organization ideas to Archie. The
new system, called ArchieTutor, operates in
the domain of architecture, as does Archie.
However, instead of supporting professional
architects in solving complex design prob-
lems, our goal for ArchieTutor is to sup-
port design teaching in beginning architec-
tural classes. More specifically, the system
is intended to support design teaching in
two ways. First, building on the results
of AskJef, it is intended to support design
teaching by helping beginning architectural
students in understanding the nature of the
design domain of office buildings and the
structure of design problems and solutions
in the domain. Second, following the results
of AskJef and using Archie as a base, it is
intended to support design teaching by ex-
posing students to some of the knowledge
sources and skills useful in design generation
and design critiquing.

Knowledge, Memory, and Interface

Like AskJef, ArchieTutor uses multiple types
of knowledge: (a) design cases, (b)
main models, and (c) design principles and
guidelines. The organization of knowledge

113

in ArchieTutor’s memory also is similar to
that in AskJef, but ArchieTutor makes the
relationship between the different types of
knowledge more explicit than AskJef. Fig-
ure 1 illustrates these relations. Tile student
has access to all knowledge in tile system’s
memory. Tile design cases, design principles
and guidelines, and (Iotnain models are cross-
indexed in such a way that the student can
navigate from any one type of knowledge to
another.
Following the results of the AskJef experi-
ment, the organization of ArchieTutor’s in-
terface strot~gly reflects the organization of
knowledge in its memory. Its interface con-
sists of four major screens. The first screen
is for specifying the design problem at hand.
The other three screens are for presenting the
different types of knowledge in the system, as
described below.

Design Cases: The content, representa-
tion and internal organization of a design
case in ArchieTutor is similar to that in
Archie. As in Archie, a case in ArchieTu-
tor contains knowledge of the design goals,
plans and outcomes of the case. This knowl-
edge is organized at several levels of abstrac-
tion including the type of organization using
the office building, and the core and parti-
tions of the building. Again, as in Archie, a
c~se in ArchieTutor is annotated by different
kinds of annotations, inchtding the good and
design features of the case and the lessons
learned from it.
Figure 2 illustrates the presentation of a case
in ArchieTutor. The graphical representa-
tion of the case allows the student to focus
on a given chunk of the design by zooming
in, or look at the design as a whole by zoom-
ing out. The organization of the screen al-
lows the student to review the case annota-
tions. A graphical pointer on the case display
relates the text annotations to a graphical
representation of the cane. In addition, the
pointer relates the case annotations to rel-
evant domain models, and design principles
and guidelines. The student can at any time
choose to browse any one of these and re-
view their structure in more detail. The case
presentation screen also lists other cases rele-
vant to the given design problem, and allows
the student to view them.
As indicated in Figure 2, eases in ArchieTu-
tot differ from those in Archie in two ways.
First, cases in ArchieTutor are cross-indexed
with its domain models and design guide-
lines. This cross-indexing is done through
the annotations on the cases: an annotation
on a case may appeal to a domain model or a
design guideline for elaboration. Second, this
cross-indexing requires an enhanced indexing
vocabulary. Archie’s cases are indexed by

the design goals they satisfy and by tile out-
comes of the design plans they contain, and
its indexing vocabulary consists of about one
hundred and fifty features. Since, in addi-
tion to the use of design goals and outcomes
as indices, ArchieTutor’s cases are also cros~
indexed by domain models and design guide-
lines, its indexing vocabulary contains about
hundred additional features.

Domain Models: The content, represen-
tation and organization of domain models
in ArchieTutor is similar to that in Archie.
As in Archie, domain models in ArchieTutor
specify its knowledge of qualitative relations
between variables characterizing office build-
ings. Figure 3 illustrates the presentation
of a domain model in ArchieTutor. Archie’s
models are not accessible to the designer, but
ArchieTutor provides the student with access
to graphical displays of its models. In ad-
dition, the models in ArchieTutor are cross-
indexed with the design cases, guidelines and
principles in the systems" memory. This en-
ables the student to easily switch from view-
ing one type of knowledge to another.

Design Principles and Guidelines: The
content, representation and organization of
design principles and guidelines in ArehieTu-
tor is similar to that in AskJef. Design
principles in ArchieTutor are "rational prin-
ciples" that relate user requirements with
the functional characteristics of a building.
The six principles in ArchieTutor cover plan
and lighting layouts in office buildings. As
in AskJef, design guidelines in ArchieTutor
operationalize the design principles: they
specify the ways in which principles can be
achieved. Since a design principle can be
achieved in several ways, the system contains
twenty-four guidelines that illustrate how to
achieve its six principles. These guidelines
are organized around the principles they help
to achieve, and are cross-indexed with the
design cases and domain models in the sys-
tem’s memory. Both the design principles
and guidelines are represented in the form
of associative rules. Figure 4 illustrates the
presentation of a guideline in ArchieTutor.

i14

Knowledge O~anization in ArchieTutor

Figure 1: Knowledge organization in ArchieTutor

Figure 2: Display of a design case in ArchieTutor

115

Figure 3: Display of a domain model in ArchieTutor

Figure 4: Display of a design principle/guideline in ArchieTutor

116

Summary
ArchieTutor provides all architectural stu-
dent with access to a library of past design
cases, and enables the student to retrieve
and browse through cases that are similar
to a given design problem. The cases are
annotated with design lessons learned from
them. Further, the cases are explicitly re-
lated to releva, t design principles and guide-
lines, and domain mo(h’ls. The system uses
these principles, guidelines and nlodels to ex-
plain, justify or critique a design choice, and
to elaborate on a design lesson. It also pro-
vides the student access t.o other cases that
may illustrate a given principle, guideline or
model. In this way, it. helps the student to
discover (i) lhe structure of the design do-
main, and of design problems an(l their so-
lutions in the domain, and (ii) some of the
knowledge sources and skills useful in gener-
ating design concepts and critiquing design
solutions. This form of "suhversive tutor-
ing" does not force the student to learn about
the domain but invites tim student to ex-
plore the domain in the context of solving a
design problem, and presents knowledge in
such a way that it. is likely to be remem-
bered. We are presently designing a set of
experiments for evaluating ArchieTutor in a
classroom setting.

References
[Barber el al. 1.992] J. Barber, S. Bhatta,
A. Goel, M. Jacobson, M. Pearee, L. Pen-
berthy, M. Shankar, R. Simpson, and E.
Stroulia. AskJef: Integration of Case-Based
and Multimedia Technologies for Interface
Design Support. In Proc. Second Interna-
tional Conference on A[in Design, Pitts-
burgh, June 1992, pp. 457-476, Kluwer Aca-
demic.

[Goel et al. 1991] A. Goel, J. Kolod-
ner, M. Pearce, R. Billington, and C.
Zimring. A Ca,se-Based Tool for Concep-
tual Design Problem Solving. Proe. Third
DARPA Workshop on Case-Based t~eason-
ing, Washington D.C., May 1991, pp. 109-
120, Morgan Kaufmann.

[Kolodner 1991] J. Kolodner. Improving
Human Decision Making through Case-
Based Decision Aiding. AI Magazine,
12(2):52-68, Summer 1991.

[Pearce et al. 1992] M. Pearce, A. Goel, J.
Kolodner, C. Zimring, L. Sentosa, and R.
Billington. Case-Based Design Support: A
Case Study in Architectural Design. IEEE
Expert, 7(5): 14-20, October 1992.

117

