
Diagnostic Case Retrieval Guided by Evaluation and Feedback *

Edwina L. Rissland, Jody J. Daniels, Zachary B. Rubinstein, and David B. Skalak

Department of Computer Science

University of Massachusetts

Amherst, MA 01003

rissland@cs.umass.edu

Abstract

In this project we study the effect of a user’s high-level
expository goals upon the details of how case-based
reasoning (CBR) is performed, and, vice versa the ef-
fect of feedback from CBR on them. Our thesis is
that case retrieval should reflect the user’s ultimate
goals in appealing to cases and that these goals can
be affected by the cases actually available in a case
base. To examine this thesis, we have designed and
built FRANK (Flexible Report and Analysis System),
which is a hybrid, blackboard system that integrates
case-based, rule-based, and planning components to
generate a diagnostic report that reflects a user’s view-
point and specifications. FRANK’s control module
relies on a set of generic hierarchies that provide tax-
onomies of standard report types and problem-solving
strategies in a mixed-paradigm environment. Our sec-
ond focus in FRANK is on its response to a failure
to retrieve an adequate set of supporting cases. We
describe FRANK’s planning mechanisms that dynam-
ically re-specify the memory probe or the parameters
for case retrieval when an inadequate set of cases is re-
trieved, and give examples of how the system responds
to retrieval failures.

Introduction
This project investigates how expository goals and justi-
fication strategies affect how case-based problem solving
is performed, and conversely, how the intermediate results
derived from using cases to solve a problem dynamically in-
fluence ultimate goals and the strategies applied to achieve
them. The system described in this paper adopts the role
of a domain expert charged with the task of analyzing a
situation and creating a report of a form that reflects certain
expository constraints. Such constraints could include the
perspective or bias that the report should reflect, the level of
the writer’s expertise, and the report’s intended audience.

For instance, to generate a balanced, "pro-con" analysis
of a situation, one would present in an even-handed manner
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the cases, simulations, and/or other analyses that support
the various points of view. On the other hand, to create
a "pro-position" report that advocates one course of action
over all others, one would present information deliberately
biased toward that point of view. Furthermore, if, in either
situation, the retrieved cases only partially or meagerly sup-
port the intended presentation form, the user may have to
temper his or her high-level goal by the information actually
found, perhaps to the extent of radically revising a presen-
tation stance or even abandoning it. Such revision may be
required, for instance, if the cases destined for a balanced
report are heavily skewed toward one side of an argument,
or compelling cases for an opposing viewpoint subvert a
proposed one-sided presentation.

To accommodate a variety of user task orientations,
strategies, and viewpoints, we designed a blackboard ar-
chitecture that incorporates case-based and other reason-
ing mechanisms, a hierarchy of "reports" appropriate to
different tasks, and a flexible control mechanism to allow
the user’s top-level considerations to filter flexibly through-
out the system’s processing. Our system, which is called
FRANK (Flexible Report and Analysis System), is imple-
mented using the Generic Blackboard toolkit (GBB) [Black-
board Technology Group, Inc., 1992] in the application do-
main of back injury diagnosis.

Specifically, our goals in pursuing this project focus on
two kinds of evaluation and feedback:

1. To investigate the effects of the context provided by the
user’s task and viewpoint on case retrieval and analysis;
and, vice versa, the effect of a failure to find useful cases
upon the current plan or the user’s task orientation.

2. To build a case-based reasoning (CBR) subsystem that
can dynamically change its case retrieval mechanisms in
order to satisfy a failed query to case memory.

We first give a broad sense of FRANK’s overall architec-
ture in the System Description and Implementation section,
where we describe its control and planning mechanisms,
particularly the two kinds of evaluation and feedback within
the system. That section also describes the task hierarchies
that are used by the control modules of the system: a re-
ports hierarchy, a problem-solving strategies hierarchy, and
a presentation strategies hierarchy. We follow this with an
extended example where we present a scenario of FRANK’s
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responses to case retrieval failure. A discussion of related
research and a summary close the paper.

System Description and Implementation

Overview of FRANK
FRANK is a mixed-paradigm, report planning and gener-
ation system with a CBR component. It has been imple-
mented in a blackboard architecture. While we have se-
lected the diagnosis of back injuries as the initial domain
to illustrate its capabilities, the architecture is not limited to
diagnostic tasks. In this domain, the user provides a descrip-
tion of a patient’s symptoms and selects from a hierarchy
of report types the type of report the system is to generate.
The output of the system is a pseudo-natural language report
with appropriate supporting analysis of the problem.

The system’s architecture is divided into the three basic
components of control, domain reasoning, and report gen-
eration (see Figure 1). Control is provided by a planner
that selects an appropriate plan from its library and then
performs the hierarchical planning needed to instantiate it.
Plan selection is based on the report type. Domain reasoning
capabilities currently implemented include a CBR module
with several processing options (e.g., similarity metrics) and
an OPS5 production system, as well as knowledge sources
that incorporate procedural reasoning. The domain rea-
soning capabilities are flexibly invoked by the planner to
execute the plan. In particular, different types of case re-
trieval probes are created as necessary to complete query
tasks set up by the plan. Finally, a report generator uses
rhetorical knowledge to generate a report for the user. To
support the various components, we have developed several
hierarchies, which we describe next.

control

Planner ~ ~ /

[ ~ [ ~fProblem-Solving

] ~ domain reasonin¢

"".1,

1
I CBR Module
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Report Generator
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Figure 1: General Description of-FRANK Architecture

Hierarchies
To support different expository goals, we have devised three
hierarchies. The first hierarchy - the Report hierarchy- dif-
ferentiates among reports based on expository goals. The
second - the Problem-Solving Strategy hierarchy - repre-
sents the different problem-solving strategies inherent in

finding, analyzing, and justifying the materials that go into
a report. A third hierarchy - the Presentation Strategies
hierarchy - contains the methodologies and policies for
presenting the material in its final form. The first two hi-
erarchies support the planner, while the third helps guide
report generation.

Report Hierarchy Our first consideration in classifying
reports is their overall goals. This is reflected in the first
level in our hierarchy. Reports are categorized based on
whether they are argumentative or summarizing in nature,
although in this paper we discuss the argumentative re-
ports only. Argumentative reports are further subdivided
into those that take a neutral stance and those that are pro-
position, that is, endorse particular positions (see Figure 2).
Further subdivisions within the argumentative reports that
take a neutral stance differentiate between reports that pro-
vide conclusions and those that do not.

Figure 2: Partial Hierarchies: Report (top) and Problem-
Solving (bottom)

Within the portion of the hierarchy that supports pro-
position argumentative reports, there is a subdivision be-
tween reports that justify a position based solely on similar
resulting conclusions (the on own merit category) and those
that justify by additionally examining and discounting pos-
sible alternatives (the elevate above alternatives category).
Examples of reports in these two subcategories are med-
ical reports written from a pro-position viewpoint where
there is a predisposition toward a particular conclusion: the
Diagnosis-Own-Merit and the Diagnosis-with-Alternatives
reports. A Diagnosis-Own-Merit report justifies a diagnosis
solely by drawing analogies between the current situation
and like cases. A Diagnosis-with-Alternatives report not
only draws analogies to like cases but also discounts or dis-
tinguishes alternative diagnoses. Besides these reports from
the medical domain, our report hierarchy contains similarly
categorized reports for law [Statsky and Wernet, 1984] and
policy analysis.

Problem-Solving and Presentation Strategies Hierarchy
Problem-solving strategies encode knowledge about how
to perform the analysis necessary to generate a report (see
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Figure 2) while Presentation strategies guide the system in
which aspects of a case to discuss and how to do so. Groups
of strategies drawn from these two hierarchies are associated
with each leaf node on the report hierarchy. These groups
serve as a retrieval pattern for accessing plans to carry out the
processing needed to create the report. Currently, the plan
that matches the greatest number of strategies is selected
first.

Control Flow
Top-Level Control Each processing step in FRANK cor-
responds to the manipulation by knowledge sources (KSs)
of data (units) in its short-term memory, which is imple-
mented as a global blackboard. The top-level control flow
in FRANK is straightforward. Basically, FRANK is pro-
vided with a problem ease, the domain, and user prefer-
ences, which are analyzed for quick, credible inferences. A
Report-Envelope unit is created that represents the context
for the current problem-solving session. Next, a KS selects
a report type, a group of strategies, and a plan. The selected
plan instantiates into a set of Goal units that are then acti-
vated. The first step in all plans is to create a Report unit that
specifies the presentation template to be used. Upon plan
completion, the overall cohesiveness of the report is eval-
uated. Various alternatives, such as switching the plan or
report type, are available should the report be unacceptable.
Finally, the report is generated.

Evaluation and Feedback
The analysis and report generation process has several
layers. From the highest-level processing abstraction
down to the actual executables, there are: reports, plans,
goals/subgoals, and tasks/queries (see Figure 3). Currently,
a user selects the report type, which indexes an initial plan
based on a group of problem-solving strategies. The plan
consists of a hierarchy of goals with leaf goals submitting
tasks or queries for execution. The tasks/queries are the
methodology-specific plan steps such as making inferences
using rule-based reasoning (RBR) or finding the best cases
using CBR. Replanning may be done at each level to achieve
the report’s expository goals.

There is a need to provide evaluation and feedback
throughout the entire process of gathering, analyzing, and
presenting information, rather than waiting until a report is
finished to review the final product. Lower-level tasks at-
tempt to rectify any problems they observe in order to lessen
the impact on higher-level ones. However, if a process at
a lower level has exhausted all its possible remedies, then
it returns that feedback to its superior, which can then try
a different approach. This type of feedback occurs at all
levels of the system.

The mechanism supporting this evaluation-feedback cy-
cle is modeled on vectored interrupts. In this case, the
interrupts are unmet expectations detected by goals and the
interrupt service routines (ISRs) are the remedies for the
various interrupts. Instead of having just a global table of
ISRs, FRANK supports multiple tables at the various lev-
els to permit specialization. When an interrupt occurs, the

Report l-ltetatchy

~
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Figure 3: Levels of FRANK
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most local ISR is found by looking first at the table associ-
ated with the current goal, then the table of next super goal
and so on. If no ISR is found, then a global table is used.
While the global table is created at system initialization, the
goal tables are specified as part of the goal definition and
are created at goal instantiation time.

Report and Plan Failure and Re-Selection A report fails
only after all the possible plans for it have failed. If the user
has not requested a specific report type, FRANK will auto-
matically switch to a potentially more suitable type based
on feedback from the failed plans. Otherwise, the user is
notified of report deficiencies and may request a new report
type.

There are two general ways to select a new plan when
the current plan fails. In the first, a priority-based (or local
search of plans) approach, if there are more plans available
under the current group of strategies, the system can use
one of these. Failing that, the system checks if there are
any other groupings of strategies available under the report
type to use as indices in selecting a new plan. Finally, if no
other plans are available, then failure occurs, the problem(s)
noted, and the system attempts to change the report type.

The second method of selecting a new plan is used when,
based on the information about the failure, no relevant plan
can be found under the existing report type. In this case,
a new report type is chosen and plan selection proceeds.
For example, if a plan fails because it cannot find any good
supporting cases, then no plan associated with a Diagnosis-
With-Alternatives report type will be successful. Based on
the information about the failure, the system switches the
report type to Diagnosis-Own-Merit, which does not require
supporting cases.

Leaf Goals and CBR Methodologies Not only does
FRANK support RBR and CBR at the leaf goal level, it
also supports a variety of CBR methodologies. Currently,
two basic methodologies have been implemented: nearest-
neighbor and HYPO-style CBR [Ashley, 1990]. Each CBR
methodology brings with it a different means of retrieving
cases, measuring similarity, and selecting best cases. Hav-
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ing multiple types of CBR allows the system to benefit by
the types mutually supporting each other and lending cred-
ibility to solutions. It also allows the system to draw upon
the best type of reasoning for a particular context. For ex-
ample, if there is no importance ranking for a set of features,
but a set of relevant factors can be identified, then a HYPO
claim lattice will yield a set of best cases, where trying to
use a nearest neighbor metric may not be reasonable.

FRANK tries to satisfy the current leaf goal’s CBR re-
quirement with the most suitable methodology. Should
feedback indicate that another methodology may be bet-
ter suited to the problem, FRANK automatically makes the
transition while retaining the feedback about each method.
Should no method be able to satisfy the requirement, or only
partially satisfy it, then the higher-level goals receive that
feedback and decide how to proceed.

CBR-Task Mechanism The CBR-task mechanism is one
of the KSs operating at the lowest level of the planning
hierarchy. It controls queries to the case base. Depending
on the plan being used to generate a report, a CBR query may
be more or less specific or complete. Queries to the CBR-
task mechanism are subdivided into types according to what
they are asking and what they need as input, such as those
seeking Best cases or a particular position. Associated with
each query type is specific information about processing a
partial query of this type. The mechanism completes any
partial query with viable defaults and then submits it.

If a query is unsuccessful, then the CBR-task mechanism
alters the values it has the latitude to manipulate and resub-
mits the query. This process continues until either favorable
~results are achieved, or the mechanism has no further reason-
able parameter values to try and failure occurs. An example
of an unreasonable parameter is one that further restricts a
search after a result of "no cases found" is returned by the
query. When either a result is found or all options have
been exhausted, the query returns to the leaf goal. At this
point, the goal evaluates the results and, if necessary, gener-
ates an interrupt. In the case of a query-prompted interrupt,
the query is passed along with the interrupt and provides
feedback to the ISR regarding what was already attempted.

Extended Example
We next show by example how evaluation and feedback
can guide the reparation of queries. We demonstrate how
results from a CBR query can influence the altering of top-
level goals. Further, we illustrate FRANK’s flexibility in
responding to top-level goals and how these goals influence
the type of CBR analysis done. A second example can be
found in [Rissland et al., 1993].

We derive this example from a patient’s experience when
he or she walks into a general practioner’s office with a set
of symptoms. The patient expects the doctor to objectively
analyze his or her symptoms and conclude the most probable
diagnosis. As initial input, FRANK receives the patient’s
symptoms and expectations. FRANK uses the expectations
to choose the appropriate report type. In this case, FRANK
chooses the Diagnosis report type, a report with a neutral

stance that draws a conclusion. FRANK uses the groups
of problem-solving strategies associated with the Diagnosis
report type to select a plan. If the patient has a preference
for one style of justification over another, FRANK receives
that preference as initial input and uses it to filter the groups
of strategies, selecting only the groups that are compatible
with the constraints. Of the resulting groups of strategies,
the first group is used as indices to select a plan from the
repository of plans. For this example, assume that some of
the preferences are for using CBR to find candidates then
RBR for selection, and the extent of information gathering
is broad. Additionally, contraindieative information will be
used when relevant, as will anomalies.

In this case, the selected plan has a goal to make the diag-
nosis, which is composed of two sequential subgoals. The
first subgoal is to find the Most On-Point cases (MOPCs).
The second is to choose a diagnosis from the MOPCs based
on their coverage of the patient’s symptoms. Currently,
FRANK has two definitions for MOPCs: (1) any case
that shares the maximal number of overlapping symptoms
("maximal overlap"), or (2) any case in the first tier 
a Claim Lattice as described in HYPO ("claim lattice".)
Cases that are in the first tier can share different subsets of
dimensions with the problem and these subsets may have
different cardinalities. The subgoal for finding the MOPCs
creates a Find-MOPCs query, without specifying a particu-
lar MOPCs definition. The CBR-task mechanism fills in the
definition by choosing the first of the available definitions.
In this case, the "maximal overlap" definition is used. The
query returns with a set of cases.

The next subgoal finds the potential diagnoses by taking
the union of the diagnoses found in the MOPCs. Associated
with each diagnosis is the union of all the symptoms of the
found cases with that particular diagnosis. Each diagnosis is
compared to the problem case by determining the overlap of
the diagnosis’ symptoms and the patient’s symptoms. The
diagnosis with the largest overlap is considered the most
probable. For this patient, there are multiple probable diag-
noses. This plan breaks ties by appealing to other reasoning
paradigms such as rule-based reasoning. For example, if
a diagnosis is very rare, then it is devalued as a probable
diagnosis. In this case, all the potential probable diagnoses
are equally likely and no definitive diagnosis can be made.

CBR-Task Mechanism Interrupt. At this point, an
interrupt is generated to handle the ambiguity of equally
likely diagnoses. The interrupt is caught by the ISR table
related to the goal of making a diagnosis and a remedy to find
a better set of MOPCs is attempted. The Find-MOPCs query
is modified to try another definition of MOPCs. The query
is submitted without a specified definition but removing
the "maximal overlap" from the possible definitions. The
CBR-task mechanism fills in the definition with the "claim
lattice" MOPC definition and the new set of MOPCs is
returned from the query.

New MOPC Definition. As with the previous set of
MOPCs, the current ones are analyzed and compared to
the problem case in terms of the possible diagnoses and
their coverage. Unfortunately, in this example, this set of
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MOPCs fares no better than the first set and is unable to yield
a definitive diagnosis. Again, an interrupt is generated and
the remedy to find a different set of MOPCs is tried. In
this case, the query is resubmitted, but there are no more
available definitions for MOPes and the query fails to find
any cases.

Global Interrupt. Another interrupt is generated, this
time signifying the inability to find suitable MOPCs. Since
the selected plan contains no remedies for this problem, the
interrupt is caught by the global ISR table. The correspond-
ing remedy for "diffused support" it to try another report
type that does not require a conclusion. FRANK chooses
the Referral report type because it remains neutral but does
not require a definitive conclusion. It proceeds by execut-
ing a new plan that is selected by using the problem-solving
strategies associated with the Referral report type. This new
plan is successful and FRANK generates a Referral.

Related Research
This work extends our previous work on case-based reason-
ing, mixed-paradigm reasoning, and argumentation, par-
ticularly our work on hybrid reasoning systems that use
a blackboard to incorporate a CBR component, including
ABISS [Rissland et aL, 1991] and STICKBOY [Rubin-
stein, 1992]. FRANK uses opportunistic control analogous
to HEARSAY II [Erman et al., 1980] to better incorporate
both top-down and bottom-up aspects of justification than in
our previous, agenda-based approach in CABARET [Riss-
land and Skalak, 1991]. FRANK also extends our task
orientation from mostly argumentative tasks, as in HYPO
and CABARET, to more general forms of explanation, jus-
tification, and analysis. Other mixed-paradigm systems
using blackboard-based architectures to incorporate cases
and heterogeneous domain knowledge representations are
the structural redesign program FIRST [Daube and Hayes-
Roth, 1988], and the Dutch landlord-tenant law knowledge-
based architectures PROLEXS [Walker et aL, 1991] and
EXPANDER [Walker, 1992].

ANON [Owens, 1989] uses an integrated top-down and
bottom-up process to retrieve similar cases. Abstract fea-
tures are extracted from a current problem and each feature
is used to progressively refine the set of similar cases. As
the set of similar cases changes, it is used to suggest the ab-
stract features that may be in the current problem and used
for further refinement.

TEXPLAN [Maybury, 1991], a planner for explanatory
text, provides a taxonomy of generic text types, distin-
guished by purpose and their particular effect on the reader.
This system also applies communicative plan strategies to
generate an appropriately formed response corresponding
to a selected type of text. TEXPLAN is designed as an ad-
dition to existing applications, rather than as an independent
domain problem solver.

While FRANK explains failures as part of the evaluation
and reparation it performs at various levels, the explanation
is not used to determine the appropriateness of a case as in
CASEY [Koton, 1988] and GREBE [Branting, 1988], nor
is it used to explain anomalies as in TWEAKER [Kass and

Leake, 1988] and ACCEPTER [Kass and Leake, 1988]. Al-
though FRANK’s use of explanation in plan failure is similar
to CHEF’s [Hammond, 1989] in that it uses the explanation
of a failure as an index into the possible remedies, it does
not try to repair plans. The possible remedies are strategies
for selecting a new plan, not modifying an existing plan.

Summary

Our general focus in this paper has been the interaction be-
tween a user’s high-level expository goal and the supporting
tasks, such as CBR, needed to support it. Having set our-
selves two research goals in the introduction, we have shown
first how the FRANK system, a hybrid blackboard architec-
ture, can create diagnostic reports by tailoring case-based
reasoning tasks to the user’s ultimate goals and viewpoint.
In particular, we have given an example of how FRANK
uses feedback from tasks such as CBR to re-select a plan.
Finally, in pursuit of our second research goal, we have
demonstrated how FRANK can re-specify the way case re-
trieval is performed to satisfy a plan’s failed request for case
support.
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