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Abstract

We have studied the retrieve-and-propose prob-
lem solving method, a specialization of the gen-
eral case-based reasoning method, in terms of its
tasks in the context of fault-recovery domains.
We have analyzed the case retrieval and learn-
ing tasks that are primarily used in the retrieve-
and-propose method, decomposed them into ap-
propriate subtasks, associated decisions for select-
ing each subtask, and implemented methods for
accomplishing each task. We have implemented
a system, called REPRO for REtrieve and PRO-
pose. that incorporates the results of this analy-
sis and facilitates the selection of the appropriate
algorithms for implementing a case-based expert
system. We have used REPRO to develop the
CABER case-based fault-recovery system.

Introduction
The development of a case-based reasoning (CBR) sys-
tem is based on four complex operations: (1) selec-
tion of a case-retrieval algorithm, (2) selection of 
case-adaptation algorithm, (3) selection of a learning
algorithm, and (4) creation of aa initial case base.
The selection of the appropriate algorithms is difficult,
even for knowledge engineers, because it is driven by
the interrelation between the retrieval, adaptation and
learning functions, the characteristics of the applica-
tion domain (e.g. available knowledge, size of fea-
ture space, etc.), the tasks to be performed by the
CBR system (classification, design, monitoring, etc.),
and the contents of the case base. We have studied
these operations while developing three case-based ex-
pert systems for fault-recovery tasks. These systems.
as well as other systems that have been presented in
the literature (e.g., [Goodman 1989]), were developed
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as monolithic structures that included predefined re-
trieval, adaptation, and learning functions. As a re-
sult, such CBR systems often could not scale up since
the functions they included might not have been ap-
propriate for every aspect of the domain and task they
were expected to address. We have analyzed the learn-
ing and retrieval operations in fault-recovery domains.
Our analysis is based on the generic task methodol-
ogy [Chandrasekaran 1988]. Based on our analysis, we
have implemented a system, called REPRO (for RE-
trieve and PROpose). that makes explicit the selection
of case-retrieval and learning algorithms, as well as the
creation of aa initial case base. We have used REPRO
to develop the CABER case-based fault-recovery sys-
tem. REPRO is layered on top of an existing CBR
shell, Remind I capitalizing on its capabilities.

The fault-recovery process begins with a set of symp-
toms describing a fault, as well as other features es-
tablishing the fault’s context. The goals of fault re-
covery are to: (1) identify the fault’s type, and (2)
execute a plan whose actions can eliminate the fault.
Therefore, fault recovery consists of two generic tasks:
classification and plan instantiation. Fault classifica-
tion was mapped to the retrieve-and-propose method
[Kolodner 1991], a specialization of the general case-
based reasoning method. In particular, given a set of
cases containing preclassified faults, the retrieve-and-
propose method tries to retrieve the best case and use
its contents to propose a classification for the new fault.
Plan instantiation was also mapped to the retrieve-
and-propose method. In this instance, the method
tries to retrieve the best plan for an established fault
which the user must instantiate and follow verbatim.
The central operations (generic tasks) that are per-
formed by the retrieve-and-propose method are re-
trieval and learning.

In the next section, we analyze the retrieval and
learning tasks. We then describe REPRO and how
we used REPRO to build the CABER case-based ex-

Remind is a registered trademark of Cognitive Systems,
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pert system. Finally, we describe the future direction
of our work and Lhe conclusions drawn from our work.

Analysis of Retrieval and Learning
In its simplest form, the learning task performed by a
CBR system consists of storing new cases in the sys-
tem’s case base. In the particular instance of fault re-
covery a case needs to be incorporated in the case base
for one of three reasons: (1) a new fault type has been
identified. (2) a new set of features that are indicative
of a known fault type has been identified, and (3) 
new repair plan for a known fault type and a known
set of features has been identified.

Similarly, the simplest method for retrieving the cor-
rect case from the CBR system’s case base consists
of a comparison between the description (features) 
a new problem and the corresponding characteristics
of each case in the case base. The goal of this com-
parison, called nearest neighbor comparison [Duda &
Hart 1973] is to identify the case(s) whose features
best match those of the problem. The nearest neigh-
bor comparison is computationally expensive for two
reasons. First, all cases in the case base need to be
examined before the best case is identified. Second, all
provided features describing a new problem must be
compared to the corresponding features of the stored
cases. The cost of this comparison grows with the size
of the case base and the size of each case.

The computational and end-use cost associated
with the nearest neighbor method can be reduced in
two ways. First, through reasoning with appropri-
ate domain knowledge during retrieval [Koton 1988a;
Simoudis 1990]. For example, the system CASCADE
[Simoudis 1991] uses knowledge about the cost of es-
tablishing each feature of a new problem when deter-
mining which case to retrieve. Second, by organizing
the case base using indices and using a retrieval algo-
rithm that utilizes these indices.

The task of case retrieval is decomposed into the
following subtasks: index utilization, similarity assess-
ment (or case comparison), and case ordering. The
retrieval algorithm uses the indices to access a set of
cases. While the indices might only include a subset
of the features that are included in a case, the simi-
larity assessment uses a larger subset (possibly all) 
a case’s features to compare to the current problems
feature space. If the indices contain all of the features
in the cases (or index utilization and similarity assess-
ment use the same subset of features), then index uti-
lization and similarity assessment collapse into a single
operation. Finally, the cases are ordered; this ordering
can merely be collapsed into the similarity assessment
(as in the nearest neighbor comparison, which actually
collapses all three subtasks into the single operation of
similarity assessment) or can be based on other knowl-
edge, for example, the cost of acquiring the values of
the feature or statistics about previous experience with
the case (see the description of REPRO in the next see-

tion).
The creation of indices is part of the overall learning

task. After an index is created, the case to which it
corresponds is incorporated into the case base. There-
fore, the overall learning task is decomposed into the
index-creation subtask for the identification of the ap-
propriate feature subset to be the case’s index, and the
case-incorporation subtask for entering the case into
the database system. Associated with index-creation
are two other subtasks: index organization and index
maintenance. Index organization refers to the way that
indices are organized in the case base once they are
created (e.g., hierarchically or in flat structures). In-
dex maintenance refers to the modifications that can
be performed on indices (e.g., specialization or gen-
eralization) in order to increase their effectiveness in
organizing a particular case base.

The decision as to whether or not to generate in-
dices is based on both domain-specific and domain-
independent characteristics. For example, if the case
base is smaU (e.g., less than 20 cases) and grows very
slowly over time (e.g., less than one case per month),
the number of features making up each case is small
(e.g., less than six features), and acquisition of feature
values is not expensive, then indexing is unnecessary
(e.g., the CLAVIER case-based reasoning system [Hen-
nessy & Hinkle 1992] does not use indices for these rea-
sons). However, there are cases where the case base is
very large and you would still choose not to index the
cases (e.g., PACE [Creecy et al. 1992] and MBRtalk
[Stanfill & Waltz 1986] where this is due to the na-
ture of the task that the system is to perform and the
use of massively parallel hardware). It is the interre-
lation between the application characteristics as well
as any other choices of algorithms, rather than any di-
rect mapping from application characteristic to choice
of algorithms, that drives the selection of algorithms.

If indices are to be generated, the following ques-
tions must be answered: (1) what type of indices 
generate (i.e., necessary conditions vs. necessary and
sufficient conditions), (2) how to generate these 
dices (e.g., inductively [Lebowitz 1987; Fisher 1984], or
using knowledge-based methods such as Explanation-
Based Indexing [Barletta & Mark 1988]), (3) how 
organize the created indices, and (4) how to maintain
the created indices. For example, automatic index cre-
ation is appropriate when the application domain’s fea-
ture space is large, knowledge-based index creation is
appropriate when knowledge about the feature space
is available, and Explanation-Based Indexing (EBI) 
appropriate only when a causal model is available.

Selection of the retrieval algorithm is similarly based
on domain-specific and domain-independent character-
istics as well as any decisions made about the other
subtasks, like index creation. For example, while
CASEY [Koton 1988b] uses all the features of a case
to index the case, it uses domain knowledge (previous
experience with the feature and evidence principles as-
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sociated with its causal model) to retrieve cases.
In the next section, we describe REPRO and how it

helps the knowledge engineer choose the appropriate
algorithms to for the retrieval and learning tasks.

REPRO
We have represented the knowledge we obtained from
our analyses of the retrieval and learning tasks, and a
set of methods to perform these tasks in a tool called
REPRO that is used by a knowledge engineer as a shell
for developing case-based retrieve-and-propose expert
systems. The knowledge engineer is expected to coop-
erate with domain experts during the expert system
development process. REPRO can be layered on top
of existing CBR shells to take advantage of their re-
trieval, indexing, and data storage capabilities, while
providing a greater set of capabilities to the knowledge
engineer.

REPRO provides the knowledge engineer with:

1. The capability to define the feature space of a do-
main and create a seed case base.

2. A structured way of selecting an initial set of index-
creation, index-organization, index-maintenance,
and case-retrieval methods.

3. A structured way of satisfying the requirements of
each selected method for explicit domain-specific
knowledge. This knowledge expresses the interre-
lations among features and methods for their acqui-
sition.

4. The ability to experiment with the chosen methods.

5. The ability to create a runtime system that can be
used as a stand-alone application by novice users.

REPRO supports cases consisting of a feature set de-
scribing a particular fault, a repair plan for addressing
this fault, the set of features expected after the repair
plan is applied, and a set of variables necessary to keep
statistics on the use of the case (currently, the number
of times a case is retrieved and the number of times
that the case successfully repaired the fault). REPRO
has a graphical user-interface that provides a set of
structured editors and viewers that allow the user to
easily build up the feature space and case base.

In REPRO a feature consists of: an attribute name,
a value, and an action for acquiring that value. Cur-
rently, REPRO supports nominal and numeric at-
tribute values. A feature space is defined in REPRO by
naming each attribute, specifying the valid values (enu-
merating the nominal values or in the case of numeric
~"alues, specifying whether the attribute takes integer
or real values and optionally specifying the range of
allowable values) for each attribute, and defining the
action that will be used to obtain the values. The ac-
tions are associated with the attributes and consist of a
set of instructions for the user to foUow in obtaining the
value and a cost associated with obtaining that value.

The cost is entered manually by the knowledge engi-
neer and is based on domain-dependent factors (e.g.,
can the value be obtained automatically or is human
intervention necessary; if human intervention is neces-
sary, what is the level of expertise necessary and what
is the availability of the individual(s) with the appro-
priate level of expertise).

REPRO organizes a feature space into three types of
features: (1) complaint features, i.e., a fault’s surface
features, (2) diagnostic features, i.e., derived features
that are causally linked to a fault, and (3) repair fea-
tures, i.e., the features that describe the outcome of
applying a repair plan.

In addition to the different feature types and the
actions associated with them, the knowledge engineer
can define preconditions of each action and interrela-
tions among the features. For example, in the CABER
system described below, a precondition of the action
for checking the condition of a milling machine’s axis
drive tachometer establishes that the machine’s axis
drive uses a direct current motor.

REPRO uses the cost associated with the actions
and the knowledge of the interrelations between the
attributes (and their associated actions) to order the
cases that are retrieved and place them on an agenda.
While the default case sorter uses cost to order the
cases, the changes to allot" the use of the case statistics
or some combination of cost and usage statistics are
trivial. The next implementation of REPRO will allow
the user to choose the algorithm for sorting the cases
on the agenda.

The ability to experiment with different methods of
index-creation, index-organization, and case-retrieval
(as well as the method of ordering the accessed cases)
allows the knowledge engineer to make changes in the
CBR system being developed; these changes can re-
flect aa evolving understanding of the application do-
main. In addition, the ability to simultaneously use
more than one method for index creation and for case
retrieval, while not yet fully implemented, will allot.
the system to deal with incomplete knowledge. For
example, assume that a causal model has been cap-
tured and represented for only a part of a domain.
Furthermore, assume that because of representing the
causal model the knowledge engineer selected the EBI
index-creation algorithm. Finally, assume that, since
the model is incomplete, the knowledge engineer also
selected an inductive index-creation algorithm. Due to
the incompleteness of the captured knowledge a new
case will be indexed using both selected index-creation
methods. During retrieval, if the features of the new
problem cannot match the features in the indices cre-
ated through EBI; then the case retriever that corre-
sponds to the inductive index-creation method is used
to access a case that is appropriate to the problem be-
ing solved.

The ability to create a separate runtime system for
each case-based expert system developed with REPRO
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has two major advantages. First, it saves resources
by shedding those parts of the REPRO system that
are just used in development (e.g., the unused algo-
rithms and the user interface for the knowledge en-
gineer). Second, by eliminating the knowledge engi-
neer’s tools, it prevents a novice user from making
changes to the functionality of the expert system. Each
runtime system allows its user to work on more than
one problem at a time (as does REPRO itself, the
knowledge-engineering environment allows simulation
of the runtlme environment); the user can switch back
and forth between problems (this is very useful for 
fault-recovery system such as the CABER system de-
scribed below, where a centrally located fault-recovery
system might be helping more than one engineer who
will be making repairs at a remote site).

REPRO could be easily extended to keep track of the
runtime systems created and their specifications (e.g.,
size of seed case-base, indexing method, index organi-
zation, retrieval method, etc.), so that experience with
these systems could help future designers choose the
appropriate algorithms.

REPRO is currently implemented on an Apple Mac-
intosh II in Macintosh Common LISP. We have used
REPRO to implement a case-based expert system,
called CABER, which helps the operator of a milling
machine recover from machine faults. In the following
section we examine the building of CABER.

CABER
Milling machines are complex pieces of equipment that
consist of mechanical, electric, and hydraulic compo-
nents. Furthermore. recent miUing machine nmdels
are equipped with advanced computer hardware that
is controlled by sophisticated software. Recovering
from faults that occur during the normal operation of
a milling machine is a knowledge-based task that is
difficult to perform even for experienced operators be-
cause of the equipment’s complexity. However.. rapid
fault recovery is essential in manufacturing operations.
For example, the growing use of just-in-time material-
handling in manufacturing requires that downtime for
any piece of equipment be minimized. Today, fault
recovery operations are performed by field-service en-
gineers who are dispatched to the customer’s site by
the milling machine manufacturer. After a problem
is solved the field-service engineer completes a report
that includes a description of the problem (provided by
the customer), additional problem-related information
obtained by the engineer, and the repair plan executed
by the engineer to recover from the fault.

Discussions with milling machine operators estab-
fished the need for a decision-support system to as-
sist them in recovering from faults and decrease their
reliance on the field service engineers. After being
exposed to the fault recovery process and examining
samples of problem reports provided by Cincinnati Mi-
lacron, a milling machine manufacturing company, we

(easel tachometer-dirty
(complaint-features
(machine-type t-30)
(control-type cnc)
(year-of-manafacture 1989)
(tool-changer-arm-acceleration sluggish))

(diagnostic-features
(tach-condition dirty))

(repair-plan
(replace-tachometer))

outconle
(tach-condition clean))

(statistics
(times-retrieved 3)
(times-successful 2)))

Figure 1" A sample case used by the CABER system

decided to use REPRO to develop the CABER case-
based decision-support system.

Creating the seed case base
Cincinnati Milacron initially provided us with a set
of 100 problem reports. We analyzed these reports
with aa expert field-service engineer and organized the
information they included into 20 prototypical cases
which we represented using REPRO’s case structure.
An example case from the CABER system is shown in
Figure 1.

In addition to the cases, the expert provided us with
knowledge about the parts of the milling machine that
were referenced in the cases (e.g., tachometer, tool
changer, etc.). In this way we developed a good under-
standing of the initial feature space. Since the initial
set of cases was small, as was the number of the fea-
tures included in these cases, we elected not to index
the cases in the case base. Therefore, case incorpo-
ration was performed by directly storing each case in
the case base. We selected the nearest neighbor re-
trieval algorithm that is included in the Remind shell
for searching the case base.

We proceeded to use REPRO’s feature acquisition
facilities to represent the set of features extracted from
the provided problem reports. The represented fea-
tures were used to encode each of the 20 cases, that
were subsequently stored in Remind’s database.

Refining CABER
After aa initial experimentation phase during which
CABER’s performance was evaluated by the expert,
Cincinnati Milacron provided us with an additional set
of 250 problem reports to enhance CABER’s case base.
With the expert’s assistance we created an additional
40 prototypical cases. Encoding these cases required
that we expand the represented feature space, which
grew from 30 to 100 features. Due to the increase
in the size of the augmented case base and the cor-
responding feature space, we decided to index cases.
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Since we had acquired, from the domain expert and
milling machine operation manuals, domain-specific
knowledge about the features and their interrelations,
we selected one of REPRO’s knowledge-based index-
creation methods. In particular, we selected to use the
EBI method since the acquired knowledge was causal.
EBI requires knowledge in the form of a structure and
behavior model of the system that is referred to in the
cases. Once such knowledge about milling machines
was encoded in REPRO, the entire case base was in-
dexed.

Due to the relatively small size of the case base,
we also selected a case organization algorithm that ar-
ranges the indices and the cases into a flat structure.
FinaUy, the selected retrieval algorithm could search
such a structure. The selected methods, as well as the
updated and organized case base were included in the
second prototype of CABER. This system is currently
under evaluation.

Future Work
We have identified several areas to further our work
in supporting the development of retrieve-and-propose
systems. First, we will complete the implementation
of the mechanisms to allow the simultaneous use of
multiple index-creation and case retrieval algorithms.
We will then test our hypothesis that multiple index-
creation and retrieval algorithms will allow a CBR sys-
tem to deal with incomplete knowledge.

Second, we will extend REPRO to keep track of the
domain characteristics and algorithms that were se-
lected for each generated CBR system. Our attempts
to organize the decisions into a simple reasoning struc-
ture such as a hierarchy, has convinced us that the de-
velopment process of CBR systems is a problem that
is well-suited to case-based reasoning. REPRO will
help the knowledge engineer add into a case base the
domain characteristics and algorithm selections asso-
dated with each created runtime system, which could
help future designers to fine tune their systems.

Finally, we will integrate REPRO with tools that
support the representation of causal models so that we
can expand REPRO’s repertoire of knowledge-based
index-creation and case-retrieval algorithms.

Conclusions
We have studied the retrieve-and-propose problem-
solving method, a specialization of the general case-
based reasoning method, in terms of its tasks and in
the context of fault recovery domains. We analyzed
the case retrieval and learning tasks and decomposed
theru into appropriate subtasks. We associated deci-
sions for selecting each subtask, established criteria for
reaching each decision, and implemented methods for
accomplishing each task. Finally, we have incorporated
all the established knowledge and developed methods
into REPRO. We have used REPRO to develop two
prototypes of the CABER system.

Our work has allowed us to reach the following con-
clusions:

1. The task decomposition and characterization of the
operations performed by case-based reasoning sys-
tems facilitates their development and maintenance
phases.

2. Task interrelations make method selection difficult
and partially explaining why most CBR systems
have been developed fronl scratch.

3. A shell llke REPRO, which makes the choice of
methods explicit, can help to alleviate the problems
associated with task interrelations.

Acknowledgements
We thank Albert Mendall for his considerable contri-
bution to the design and implementation of REPRO
and David Hinkle for his work on CABER.

References
Barletta, R., and Mark, W.S. 1988. Explanation-
Based Indexing of Cases. In Proceedings of AAAI-88,
541-546, Morgan Kaufinann Publishers, Inc., San Ma-
teo, CA.

Chandrasekaran, B. 1988. Generic Tasks as Building
Blocks for Knowledge-Based Systems: The Diagnosis
and Routine Design Examples. Knowledge Engineer-
ing Review, 3(3):183-219.

Creecy, R., et. al. 1992. Trading MIPS and Memory
for Knowledge Engineering. Communications o/the
ACM 35(8):48-64.

Duda, R., and Hart, P. 1973. Pattern Classification
and Scene Analysis. John Wiley and Sons.

Fisher, D. 1984. A Hierarchical Conceptual Cluster-
ing Algorithm, Technical report, Department of Com-
puter and Information Science. University of California
Irvine.

Goodman, M. 1989. CBR in Battle Planning. In Pro-
ceedings: Case-Based Reasoning Workshop, 264-269,
Morgan Kaufman Publishers, Inc., San Mateo, May.

Hennessy, D., and Hinkle, D. 1992. Applying Case-
Based Reasoning to Autoclave Loading. IEEE Expert,
7(5):21-26.
Kolodner, J. 1983. Reconstructive Memory: A Com-

puter Model. Cognitive Science Journal 7:281-328.

Kolodner, J. 1991. Improving Human Decision Mak-
ing through Case-Based Decision Aiding. AI Magazine
12:52-68.

Koton, P. 1988a. Using Experience in Learning and
Problem Solving, Ph.D. diss., Dept. of Electrical En-
gineering and Computer Science. Massachusetts Insti-
tute of Technology.

Koton, P. 1988b. Reasoning about Evidence in Causal
Explanations. In Proceedings of a Workshop on Case-
Based Reasoning, Janet Kolodner, ed., 260-270. Mor-

151



gan Kaufmann Publishers, Inc., San Mateo.

Lebowitz, M. 1987. Experiments with incremental con-
cept formation: Unimem. Machine Learning. 2:103-
138.

Simoudis. E., and Miller. J. 1990. Validated Retrieval
in Case-Based Reasoning. In Proceedings AAAI-90.
310-315, MIT Press, Cambridge, August.

Simoudis. E. 1991. Retrieving Justifiably Relevant
Cases from a Case Base Using Validation Models. PhD
dlss.; Dept. of Computer Science, Brandeis Univ.

152




