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Abstract

In areas aa diverse as remote sensing, astronomy, and medical imaging, image acquisit~ion
technology has undergone tremendous improvements in recent years in terms of imaging reso-
lution, hardware miniaturization, and computational speed. For example, current and future
near-earth and planetary observation systems will return vast amounts of scientific data, a po-
tential treasure-trove for scientific investigation and analysis. Unfortunately, advances in our
ability to deal with this volume of data in an effective manner have not paralleled the hardware
gains. While special-purpose tools for particular applications exist, there is a dearth of useful
general-purpose software tools and algorithms which can assist a scientist in exploring large sci-
entific image databases. At JPL we are currently developing interactive semi-automated image
database exploration tools based on pattern recognition and machine learning technology. In
this paper we discuss the general problem of automated image databasc exploration, the par-
ticular aspects ,of image databases which distinguish them from other databases, and how this
impacts the application of off-the-shelf learning algorithms to problems of this nature. Current
progress will be illustrated using two large-scale image exploration projects at JPL. The paper
concludes with a discussion of current and future challenges.

1 Introduction

1.1 Background and Motivation

In a variety of scientific disciplines two-dimensional digital image data is now relied on as a basic

component of routine scientific investigation. The proliferation of image acquisition hardware such

as multi-spectral remote-sensing platforms, medical imaging sensors, and high-resolution cameras
have led to the widespread use of image data in fields such as atmospheric studies, planetary geology,

ecology, agriculture, glacielogy, forestry, astronomy, diagnostic medicine, to name but a few.
Across all of these disciplines is a common factor: the image data for each application, whether it

be a Landsat image or an ultrasound scan, is but a means to an end in the sense that the investigator
is only interested in using the image data to infer some conclusion about the physical properties

of the target being imaged. In this sense, the image data serves as an intermediate representation
to facilitate the scientific process of inferring a conclusion from the available evidence. This might

seem like an obvious observation. Yet it could be argued that in many practical cases the process

of acquiring and storing the images is seen as an end in itself and the subsequent image analysis is
relegated to a minor role. Certainly this accusation could be made in the past of NASA’s planetary
science endeavours, where most of the resources were expended in the process of acquiring the

data and relatively little consideration was given to how the data would actually be used after the
mission was complete (e.g. see the 1992 Congress report on the Earth Observing System in this

context [1]).

However, the climate of image acquisition and analysis is changing rapi~y. In the past, in
planetary science for example, image databases were analysed in a careful manualmanner and
much investigative work was carried out using hard copy photographs. However, clue to the sheer
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enormity of the image databases currently being acquired, simple manual cataloging is no longer
a practical consideration if all of the available data is to be utilised. As an example, consider
the Magellan mission to Venus. The Magellan spacecraft transmitted back to earth a data set
consisting of over 30,000 high resolution radar images of the Venusian surface. This data set is
greater than that gathered by all previous planetary missions combined -- planetary scientists
are literally swamped by data. Venus is an extremely volcanic planet (volcanoes are by far the
single most visible geologic feature in the Magellan data set), hence, the study of basic volcanic
process is essential to a basic understanding of the geologic evolution of the planet [13]. Central
to volcanic studies is the cataloging of each volcano location and its size and characteristics --
there are estimated to be on the order of 106 visible volcanoes scattered throughout the 30,000
images [3]. It has been estimated that manually locating all of these volcanoes would require on
the order of 10 man years of a planetary geologist’s time to carry out -- even then, a further search
would be required to fully characterise the shape and appearance of each volcano. Given a catalog of
volcanoes and their characteristics, a scientist can use the datato support various scientific theories
and analyses. For example, the volcanic spatial clustering patterns may be correlated with other
known and mapped geologic features such as mean planetary radius, which may provide evidence
either pro or con particular theories of planetary history.

1.2 Scope and Outline

The Magellan-Venus data set is an example of a currently familiar pattern in the remote-sensing
and astronomy communities -- a new image data set becomes available but the size of the data
set precludes the use of simple manual methods for exploration. Hence, scientists are beginning to
express a need for automated tools which can assist them in navigating through large sets of images.
A commonly expressed wish is the following: "is there a tool where I could just point at an object
on the screen (or even draw a caricature of it) and then have the algorithm find similar items 
the database?~ Some scientists even have pre-conceived notions that neural networks or some other
currently fashionable technology already provide a pre-packaged solution to theirvproblem--we will
argue that no such domain independent tools exist.

Note that in this paper the type of problem being addressed differs from the types of problems
typically addressed by classical work in machine vision. Machine vision work has focused primarily
on image understanding, parsing, and segmentation, with a particular emphasis on detecting and
analysing man-made objects in the scene of interest. The focus of this paper is on the detection of
natural, as opposed to man-made, objects. The distinction is important because, in the context of
image analysis, natural objects tend to possess much greater variability in appearance than man-
made objects. Hence, we shall focus primarily on the use of algorithms that "learn by example"
as the basis for image exploration. The primary alternative, the model-based approach will not
be dealt with except in passing. The "learn by example" approach is potentially more generally
applicable since domain scientists find it relatively easier to provide examples of what they are
searching for compared to describing a model. However, the distinction between prior models
and "learning by example" should be viewed as two ends of a continuous spectrum rather than
dichotomous points of view.

Using ongoing JPL projects as examples, the paper will examine the application of pattern
recognition and machine learning technology to the general problem of image database exploration.
In particular, it will be argued that image databases possess unique characteristics which impact the
direct application of standard learning methods. Feature extraction from pixels, spatial context
modeling, limited ground truth, the availability of prior knowledge, and the use of supervised
feedback during learning are all common aspects of the problem which can either help or hinder
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the development of learning tools. Each of these issues will be discussed in the context of currently
available learning theories and algorithms, and recent progress and opportunities for significant
improvements will be outlined.

2 Two Illustrative Case Studies

To ground the discussion in this paper, we provide two illustrative examples of current projects
at JPL involving the development of image exploration algorithms and tools. The first is an
already successful application of decision tree learning to classification in the context of a well
understood image analysis problem. The second project represents ongoing work which targets
a more ambitious problem of dealing with domains where the basic image processing itself is not
straightforward.

2.1 SKICAT: Automated Astronomy Sky Survey Cataloging

The first example consists of an application of machine learning techniques to the automation
of the task of cataloging sky objects in digitized sky images. The Sky Image Classification and
Archiving Tool (SKICAT) has been developed for use on the images resulting from the 2nd Palomar
Observatory Sky Survey (POSS-II) conducted by the California Institute of Technology (Caltech).
The photographic plates collected from the survey are being digitized at the Space Telescope Science
Institute (STScI). This process will result in about 3,000 digital images of roughly 23,000×23,000
pixels1 each. The survey consists of over 3 terabytes of data containing on the order of l0T galaxies,
l0s stars, and l0s quasars.

The first step in analyzing the results of a sky survey is to identify, measure, and catalog the
detected objects in the image into their respective classes. Once the objects have been classified,
further scientific analysis can proceed. For example, the resulting catalog may be used to test
models of the formation of large-scale structure in the universe, probe galactic structure from star
counts, perform automatic identification of radio or infrared sources, and so f~rth. The task of
reducing the images to catalog entries is a laborious time-consuming process. A manual approach
to constructing the catalog implies that many scientists need to expend large amounts of time on
a visually intensive task that may involve significant subjective judgment. The goal of our project
is to automate the process, thus alleviating the burden of cataloging objects from the scientist and
providing a more objective methodology for reducing the data sets. Another goal of this work is
to classify objects whose intensity (isophotal magnitude) is too faint for recognition by inspection,
hence requiring an automated classification procedure. Faint objects constitute the majority of
objects on any given plate. We target the classification of objects that are at least one magnitude
fainter than objects classified in previous surveys using comparable photographic material.

The learning algorithms used in SKICAT are the GID3* [9] and O-Btree [10] decision tree
generation algorithms. In order to overcome limitations inherent in a decision tree approach,
we use the RULER [11] system for deriving statistically cross-validated classification rules from
multiple (typically > 10) decision trees. The details of the learning algorithms are beyond the
scope of this paper and are therefore not covered here. For details of how rules are generated from
multiple decision trees, and for comparisons with neural net performance, the reader is referred to
[11]. Details of this problem are also covered in a companion paper in this proceedings [12].

teach plxel consists of 16 bits and represents the intensity in one of three colors.
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2.1.1 Attribute Measurement

A manual approach to classifying sky Objects in the images is infeasible. Existing computational
methods for processing the images will preclude the identification of the majority of objects in
each image since they are at levels too faint (the resolution is too low) for traditional recognition
algorithms or even methods based on manual inspection or analysis. Low-level image processing and
object separation is performed by the public domain FOCAS image processing software developed
at Bell Labs [18, 31]. In addition to detecting the objects in each image, FOCAS also produces
basic attributes describing each object. These attributes are standard in the field of astronomy
and represent commonly measured quantities such as area, magnitude, several statistical moments
of core intensity, ellipticity, and so forth. Additional normalized attributes were measured later
to achieve accuracy requirements and provide stable performance over different plates (see the
discussion in Section 3.1). In total, 40 attributes are measured by SKICAT for each detected
object.

2.1.2 Classifying Faint Objects and the Use of CCD Images

In addition to the scanned photographic plates, we have access to CCD images that span several
tiny regions in some of the plates. The main advantage of a CCD image is higher resolution and
signal-to-noise ratio at fainter levels. Hence, many of the objects that are too faint to be classified
by inspection of a photographic plate, are easily classifiable in the corresponding CCD image (if
available). We mal~e use of the CCD images in two very important ways:

1. CCD images enable us to obtain class labels for faint objects in the photographic plates.
2. CCD images provide us with the means to reliably evaluate the accuracy of the classifiers

obtained from the decision tree learning algorithms.

In order to produce a classifier that classifies faint objects correctly, the learning algorithm needs
training data consisting of faint objects labeled with the appropriate class. The class label is
therefore obtained by examining the CCD frames. Once trained on properly labeled objects, the
learning algorithm produces a classifier that is capable of properly classifying objects based on
the values of the attributes provided by FOCAS. Hence, in principle, the classifier will be able to
classify objects in the photographic image that are simply too faint for an astronomer to classify by
inspection of the survey images. Using the class labels, the learning algorithms are basically being
used to solve the more di~cult problem of separating the classes in the multi-dimensional space
defined by the set of attributes derived via image processing. This method allows us to classify
objects at least one magnitude fainter than objects classified in photographic sky surveys to date.

2.1.3 Results

It is important to point out that without the additional attributes described in Section 3.1, none of
the learning methods achieved better than ?5% accuracy. As expected, defining the new "normal-
ized" attributes raised our performance on both intra- and inter-plate classification to acceptable
levels varying between 92% and 98% accuracy with an average of 94~. Our encoding of these
attributes represents an implicit imparting of more domain knowledge to the learning algorithm.

The SKICAT system is expected to speed up catalog generation by one to two orders of magni-
tude over traditional manual approaches to cataloging. This should significantly reduce the cost of
cataloging survey images by the equivalent of tens of astronomer man-years. In addition, SKICAT
classifies objects that are at least one magnitude faluter than objects cataloged in previous surveys.
We have exceeded our initial accuracy target of 90%. This level of accuracy is required for the data
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to be useful in testing or refuting theories on the formation of large structure in the universe and
on other phenomena of interest to astronomers.

The catalog generated by SKICAT will eventually contain about a billion entries representing
hundreds of roll|ions of sky objects. For the first survey (POSS-I) conducted over 4 decades ago
which was without the availability of an automated tool like SKICAT, only a small percentage of
the data was used and only specific areas of interest were studied. In contrast, we are targeting
a comprehensive sky catalog that will be available on-line for the use of the scientific community.
Because we can classify objects that are one magnitude fainter, the resulting catalog will be signif-
icantly richer in content, containing three times as many sky objects as would have been possible
without using SKICAT.

As part of our plans for the future we plan to begin investigation of the applicability of unsu-
pervised learning (clustering) techniques such as AUTOCLASS [5] to the problem of discovering
clusters or groupings of interesting objects. The initial goals will be to answer the following two
questions:

1. Are the classes of sky objects used currently by astronomers justified by the data: do they
naturally arise in the data?

2. Are there other classes of objects that astronomers were not aware of because of the difficulty
of dealing with high dimensional spaces defined by the various attributes? Essentially this is
a discovery problem.

l

2.2 Volcano Detection in Magellan-Venus Data

The Magellan-Venus data set constitutes an example of the large volumes of data that today’s
instruments can collect, providing more detail of Venus than was previously available from Pio-
neer Venus, Venera 15/16, or ground-based radar Observations put together [26]. We are initially
targeting the automated detection of the "small-shield" volcanoes (less than 15km in diameter)
that constitute the most abundant visible geologic feature [17] in the more tha~ 30,000 synthetic
aperture radar (SAR) images of the surface of Venus. It is estimated, based on extrapolating from
previous studies and knowledge of the underlying geologic processes, that there should be on the
order of 10e of these volcanoes visible in the Magellan data [3, 16].

Identifying and studying these volcanoes is fundamental to a proper understanding of the ge-
ologic evolution of Venus. However, locating and parameterizing them in a manual manner is
forbiddingly time-consuming. Hence, we have undertaken the development of techniques to par-
tially automate this task. The primary constraints for this particular problem are that the method
must be reasonably robust and fast. Unlike most geological features, the small volcanoes can be
ascribed to a basic process that produces features with a short list of readily defined characteristics
differing significantly from other surface features on Venus [17]. For pattern recognition purposes
the relevant criteria include (1) a circular planimetric outline, (2) known diameter frequency distri-
bution from preliminary studies, (3) a limited number of basic morphological shapes, and (4) 
common occurrence of a single, circular summit pit at the center of the edifice.

2.2.1 The Approach

There has been little prior work on detecting naturally occurring objects in remotely-sensed images.
Most pattern recognition algorithms are geared towards detecting straight edges or large changes
in texture or reflectivity. While this works well for detecting man-made objects, approaches such aS
edge detection and Hough transforms deal poorly with the variability and noise present in typical
remotely sensed data [7, 22].
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Figure 1: Block Diagram of the Proposed System

We are developing a system that consists of three distinct components: focus of attention,
feature extraction, and classification learning. Figure 1 gives a block diagram of the approach.

Our initial work in this problem has relied on the concept of using a focus of attention (FOA)
method to detect regions of interest followed by local classification of regions of interest into volcano
and non-volcano categories. The focus of attention component is designed primarily for compu-
tational efficiency. Its function is to quickly scan an input image and roughly determine regions
of interest (regions potentially containing objects similar to those specified by the scientist). For
this purpose we h~ve used a constant false alarm rate detector which compares the intensity of a
center pixel with a locally adaptive estimate of the background intensity: if the central intensity is
larger than some number of standard deviations from the background mean intensity, the region
is considered detected. By running this detector at multiple resolutions of the image, it can detect
both volcanoes at different scales and different features of the volcanoes [28]. For example, at high
resolution it picks up the summit pit, while at lower resolutions the bright slopes can be detected.
False alarms are caused by craters, grabens, and other bright features in the data.

Given a set of detected regions of interest, the remaining task is to discrin~nate between the
volcanoes and false alarms. A current focus of the research is to find a useful feature-representation
space -- although nearest neighbour dassifiers can provide reasonably accurate results (see section
2.2.2 below), a representation based purely on pixels will tend to generalize poorly. For the purposes
of incorporating prior knowledge the ideal feature set would be expressed in the form of expected
sizes, shapes, and relative geometry of slopes and pits, namely, the same features as used by the
scientists to describe the volcanoes. However, due to the low signal-to-noise ratio of the image, it
is quite difficult to gain accurate measurements of these features, effectively precluding their use at
present. The current focus of our work is on a method which automatically derives robust feature
representations I this will be described in Section 3.1.

2.2.2 Current Status and Preliminary Results

We have constructed several training sets using 75m/pixel resolution images labeled by the collab-
orating geologists at Brown University to get an initial estimate of the performance of the system.
The FOA component, typically detects more than 80% of all the volcanoes, while generating 5-6
times as many false alarms. Using the nearest neighbour classifier, we can classify the regions of in-
terest into volcanoes and false alarms with an estimated independent test accuracy of 82% m more
recent results using features derived from both segmentation and principal component m~thods
(see Section 3.1) has resulted in accuracies of the order of 85%. Similar accuracy results have been
reported in [33] for this problem. It is important toclarify that these are initial results and with
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further effort we hope to be able to significantly improve the accuracy. Demonstrating the general
applicability of this approach to the detection of other Venusian features as well as images from
otller missions will be the next step. So far the emphasis has been placed mainly on developing
the computer tools to allow scientists to browse through images and produce training data sets (as
well as partial catalogs) within a single integrated workstation environment.

3 The Role of Prior Information

In general, prior information can be specified in two ways. The first is in terms of relatively high-level
knowledge specifying expectations and constraints regarding certain characteristics of the objects of
interest. For example, in the Magellan-Venus problem the incidence angle of the synthetic aperture
radar instrument to the planet’s surface is known, which in turn strongly influences the relative
positions of bright and dark slope and summit regions for a given volcano [21].

The second type of prior information which we consider here is normally not thought of as such.
This is the information which is implicitly specified by the labeled data, i.e., the data which has
been examined by the domain expert and annotated in some manner. While one normally thinks
of the labeled data and the prior knowledge as two separate entities, it is convenient in practice to
consider both the knowledge and data forms of prior information within the same context.

One must determine the degree of utility of each type of information in designing an exploration
algbrithm. For exapaple, in the SKICAT project, the prior knowledge wasquite precise and helped
a great deal in terms of determining the optimal features to use for the problem. In contrast, for the
Magellan-Venus problem, the prior knowledge is quite general in nature and is not easily translatable
into algorithmic constraints. Hence, thus far, the most effective source of prior information has
been the labeled training examples provided by the scientists.

Below we consider two important aspects of prior information. The first addresses the issue of
deriving suitable higher-level representations from the raw pixels. The second issue concerns the
nature of the labeled data provided by the domain expert.

3.1 Pixel Data versus Feature Data

Raw pixel data is rarely useful or of interest to users. Humans typically perform some sort of
pixel-to-feature mapping immediately. In scientific data analysis domains, where the user typically
knows the data weil and has a list of defined features, using this knowledge makes the learning task
significantly easier. SKICAT provides an excellent example of this. Not only was the segmentation

problem (locating objects) easy to perform, but we had access to a host of defined attributes that
we made use of effectively. Having the proper representation made the difference between success
and failure in that case.

In order for SKICAT to achieve stable classification accuracy results on classifying data from
different plates, we had to spend some effort defining normalized attributes that are less sensitive
to plate-to-plate variation. These attributes are computed automatically from the data, and are
defined such that their values would be normalized across images and plates. Many of these quanti-
ties (although not all) have physical interpretations. Other quantities we measured involved fitting
a template to a set of "sure-stars" selected by the astronomer for each image, and then measuring
the rest of the objects with respect to this template. In order to automate the measurement of such
attributes, we automated the "sure-star" selection problem by treating it as a learning sub-problem
and building decision trees for selecting "sure-stars" in an arbitrary image2. It is beyond the scope

~This turns out to be a relatively easy learning task, our accuracy on this subproblem exceeds 98%.
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Figure 2: An Example Magellan Subimage of Venus Illustrating Small Volcanoes.

of this paper to give the detailed definitions of the attributes. The point is that in this case a
wealth of knowledge was av~able to us in terms of attributes (measurements), while astronomers
had little knowledge of how to use these attributes to classify objects.

On the other hand, in the case of Magellan SAIL images, the image segmentation problem
(object detection) is significantly more difficult to address. In general, one needs to address the
problem of automatic feature (attribute) construction. One approach we have been experimenting
with for this purpose is the use of principal component analysis. Each training example (subimage
containing positive example) can be turned into a ~ector of pixel values. The entire training set
will thus form a k2 x ~z matrixs which can subsequently be decomposed into a ~t of orthonormal
eigenvectors using singular value decomposition (SVD). An eigenvalue is associated with each 
the vectors indicating its relative importance. When the eigenvectors (eigenvolcanoes) are viewed
as images again, we note that each represents a "basic" feature of a volcano. Figure 2 shows an
example Magellan Venus image with a few small volcanoes showing. Figure 3 shows 15 associated
eigenvolcano features (those corresponding to the largest eigenvectors) ordered left to right 
decreasing elgenvalues. Note that the eigenvectors become less coherent starting with the sixth or
seventh feature. Each block in the figure corresponds to a 225-component eigenvector that was
re-translated into a 15x15 image and redisplayed as a block in the image.

The eigenvolcanoes can be viewed as general features that can be used to encode each detected
candidate,volcano for classification purposes. This is an example of an automatic template (matched
filter) generation procedure which can easily be augmented by other features provided by the expert
user.

3.2 Supervised Feedback and the Lack of Ground Truth

It is commonly assumed in learning and pattern recognition algorithms that the categorical class
labels attached to the training data represent ground truth. In fact, it is often the case that this is
not so and that the class labels are subjective estimates of ground truth as provided by an expert.
The distinction is an important one. In particular, the question arises as to whether or not the

aAssume that there are n examples, each of which consists of a/¢ x/¢ pixel subimage.
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Figure 3: Eigenvolcanoes Derived from Training Data.

expert should provide his or her best guess at the class label of each exemplar, or instead should
provide some quantitative estimate of the likelihood that the exemplar is a member of some class.
Smyth [29] has shown that virtually all well-known learning algorithms can be easily modified to
handle such probabilistic labels if one assumes that the expert is providing true unbiased estimates
of the likelihoods. In practice, however such subjective estimates are likely to be biased and
inconsistent. It is quite difficult to accurately elicit subjective probabilities from even the most
cooperative human subject m this has been well documented in various studies which have shown
that even domain experts are typically quite inconsistent in their estimates of their own subjective
probabilities [6].

The volcanoes in the Magellan-Venus data can be quite ambiguous in appearance. Initially
domain experts provided "hard" decisions on each example. This proved unsatisfactory since it
ignored the obvious uncertainty in the more ambiguous cases. The current me~hod of choice is to
use quantised probability bins, three in all, each corresponding to a clearly defined and commonly
agreed upon interpretation. Both for model development and for accurate model calibration, even
the simple quantised probabilistic estimates have been a significant improvement over the hard
decision labels. For example, the quantised labels are the basis for a more accurate loss function
which is quite useful in terms of evaluating algorithm performance; algorithm errors on the more
ambiguous volcanoes incur a lower loss function penalty than errors on the "certain" ones.

A further complication which can arise in practice is that of multiple experts. This can mean
that each training example is subject to a different interpretation by different experts. There is a
considerable literature on various methods which combine the beliefs of different individuals [15]
-- however most of these methods are of theoretical interest only since they assume that one has
an excellent model of the correlation between the experts, something which is difficult to estimate
in practice. Simple linear combination techniques should give reasonable results in most cases.
In practice, for the Magellan-Venus data, having the experts cooperate to produce a consensus
estimate for each example seems to work well.

4 Detection Classification: Learning from Positive Examples

A significant challenge in dealing with image databases is the management of computation over a
very large number of pixels. For building an analysis tool that is to be used in real-time one cannot
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afford to apply expensive measurement routines indiscriminantly. From a practical point of view
this means that a focus of attention (FOA) method needs to be applied. Since the FOA needs 
be efficient, it may generate many false alarms. The task of distinguishing truth from false alarms
falls on the learning algorithm. This automatically brings in the issue of whether one is learning
from only positive or from both positive and negative examples.

The user is interested in providing only positive examples. One can choose to learn only from
these examples. However, extra information can be exploited for free by allowing the learning
algorithm to learn and exploit the biases of the FOA. By applying the FOA on the images from
which training data was obtained, a training set of positive and negative examples can easily be
constructed. This approach, however, requires that the expert did not miss any positive examples
in the labeled image, since any objects missed by the expert are likely to be picked up by the focus of
attention detector and will be incorrectly interpreted as false alarms (this has occurred in practice
in the volcano problem where some images may contain on the order of 100 volcanoes). The other
disadvantage is that "negative" examples are not really meaningful to the user. Hence, the learned
classifier will not necessarily be interpretable by the user since it is discriminating between true
examples and by-products of the FOA. The point is that negative examples arise naturally as a
consequence of computational efficiency considerations and their use may significantly facilitate the
discrimination learning task.

Another choice is to perform detection and classification in one step. In problems where a com-
prehensive careful analysis is the target (as in SKICAT), one can perform sophisticated expensive
detection and measurement on all pixels in the data. This means that the system can no longer
respond in a.short amount of time and also implies that methods for performing segmentation in
a reliable manner have been developed. In the case of the Magellan SAR images of Venus, no
general off-the-shelf algorithms are available. However, this does not rule out the use of matched
filters (templates) to perform both detection and classification in one step (assuming the required
computation is practical). Decomposing the problem into an FOA stage followed by a classification
stage generally makes each sub-problem easier to tackle and solve.

5 Modelling Spatial Context

The two-dimensional nature of spatial data means that pixel elements in an image database are
likely to be highly correlated. Most discrimination and classification algorithms implicitly assume
that the tralu~ng data they are dealing with consists of independent randomly chosen samples from
the population of interest, e.g., a set of medical records for a hospital. Hence, in theory, they are not
directly applicable to the problem of learning pixel classification maps (for example). Nonetheless,
much of the work in remote sensing until recently has focused on local pixel classification methods,
whereby the estimated categorical label of a pixel is purely a function of the intensity of that pixel
and independent of the properties of neighbouring pixels [23]. This purely local estimation is non-
intuitive and does not accurately reflect the human visual process whereby prior expectations and
constraints are imposed so that global spatial coherence is obtained in the final labelling. To solve
this, one can impose spatial smoothness constraints on both the labels and the pixel intensities. The
most advanced such models were developed for practical applications in the mid to late 1980’s under
the general framework of Markov l~andom Fields (MRF’s) [14, 25]. While the theoretical basis 
MttF’s is quite solid it is important to remember that they are primarily used as a computational
convenience rather than a realistic model of spatial interaction. Other, more global, models of
spatial context have also been proposed [2, 19], again with a sound mathematical basis.

However, it is fair to say that much work remains in terms of improving image spatial models.
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There is a lack of theory on how to specify spatial models (such as MI~F’s) from prior knowledge¯
In particular, the parameters of the various 1VIRF approaches must be set by the user. and can be
quite non-intuitive -- in fact, these parameters often appear to be chosen in an ad hoc manner.
Yet setting the parameters a priori is currently the only viable approach, since it is not possible
to learn MI~F’s from data because of their non-causal nature except in special circumstances [8].
Hence, from an algor!thm designer’s viewpoint the situation is less than ideal when it comes to
modelling spatial interaction -- it appears that considerable experimentation and tuning is often
necessary to find the right model for a given application.

6 Online Learning and Adaptation

Another aspect of the image exploration problem is that one would ideally like to have an algorithm
which could gradually improve its performance as it explores more and more of the database¯ In
fact this type of incremental adaptation is a desirable feature in many practical applications but
has largely been ignored by researchers in learning and pattern recognition in favour of the simpler
problem of "one-shot" batch learning. The model representation being used critically influences
whether the model is easily adaptable or not. Discriminative models which focus on the differences
between categories typically have trouble adjusting to new data in an elegant manner -- it may
be possible to easily adapt the parameters of the model but not the structure (consider decision
trees as an example)¯ Memory and prototype-based models (including parametric densities, non-

¯ | ¯
parametric density estimators, mixture models, nearest-neighbour models, etc.) are naturally more
suited to online adaptation -- however, they typically suffer from poor approximation properties
in high dimensions [27]. Hybrid models which combine the better features of discriminative and
memory models would appear to have promise, however, there has been little work in this area.

In practice, an online image exploration algorithm would work by iterative interaction with
the human user. The human visual system of the domain expert offers an excellent opportunity
for supervised feedback to improve adaptation. This is in contrast to typical learning applications
from "flat" data where there is no obvious intuitive way for a human labeller to visualize high-
dimensional vectors. Hence, a reasonable strategy is to have the algorithm periodically query the
domain expert for feedback on particular examples. In a probabilistic context it can be shown
that the most information can be gained by queries about examples which are in the areas of
greatest posterior uncertainty -- an algorithm can learn the most by getting feedback on the
examples it is most unsure of. This has the effect of making the most efficient use of the queries
m a "blind" algorithm which produced random examples for supervised feedback would quickly

exhaust the patience of any human observer. Given unlabelled examples, the algorithm can perform
unsupervised adaptation such as decision-directed learning where the algorithm uses its current
model to label a new example and then updates its model as if that were the correct decision (such
methods have been well-studied in the adaptive signal processing literature with applications to
problems such as channel equalization). This can be effective in speeding convergence once an
initially good model is obtained but can obviously diverge from the ideal solution if the model is
inaccurate to begin with.

Yet another useful application of the online adaptation idea is the notion of selective model
refinement, i.e., allowing the user to tune the detection model from a general to a more specific
model. For example, in the Magellan-Venus database, there are many subclasses of volcanoes within
the general class. Ideally, the planetary scientists would like to be able to modify the volcano
detection model in order to restrict the search to specific types of volcano, based on appearance or
size. The preference can be stated explicitly in the form of high-level constraints ("only consider
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volcanoes of diameter less than 3km") or can be implicitly provided in the form of examples of
the specialised concept. Once again the type of model being used critically influences the manner
by which it can be refined. For example, models which use an explicit knowledge representation
such as decision rules can easily incorporate explicitly-specified constraints provided the language
of representation is well-matched. Implicit discrimination models, such as neural networks, are
better suited to dealing with implicit constraints in the form of data than explicit constraints, and
can use the new data to project the existing model into subspaces of the existing decision regions. ....

7 Multi-Sensor and Derived Map Data

It is relatively common in remote-sensing applications to illuminate the target at multiple wave-
lengths, thus obtaining a vector of intensities at each pixel site rather than just a single intensity. In
the Magellan-Venus data for example, many parts of the planet were imaged from different angles
and at different resolutions, resulting in several different data sets being available for the same
surface regions. Low-resolution altimeter data was also measured providing a low-resolution map
of the mean planetary radius.

Similarly, after data has been acquired and archived, different research groups will typically
analyse the data and produce thematic maps and catalogs (either by manual or automated means)
for different quantities of interest [4, 20]. For example, in the Magellan-Venus database, catalogs
have already been produced for large volcanic structures and for the location of many of the large
volcanic fields (bu~ not the volcanoes within the fields).

Hence, in the general sense, each pixel can have a vector of associated attributes, whether these
are data from another sensor, or derived qualitative categories (such as a map). In principle, such
additional data should be particularly useful for computer-aided detection since it is often difficult
for a human user to visualize such multi-dimensional representations~ However, certain technical
difficulties must be overcome for the additional data to be useful. For multi-sensor data, the
different data sets must usually be registered so that the pixel measurements are somehow aligned
to reference the same surface point m inevitably this is an imprecise process and spatial errors
result. For qualitative map da~a one would like to ascertain the reliability of the map categories. It
would be extremely useful if the map data contained not only the category label but also the degree
of confi¢lence ("spatial error bars") in that labelling. This is not done in subjective manual mapping
for the obvious reason that the elicitation of such error bars would be a tedious and inaccurate
process. However, automated map-making tools in general should provide some self-calibrated
estimate of the reliability of the decision at each pixel or region of interest -- algorithms based on
probabilistic models (such as Bayesian methods) automatically provide such information.

8 Conclusion

Natural object detection and characterization in large image databases is a genetic task which
poses many challenges to current pattern recognition and machine learning methods. This paper
has briefly touched on a number of relevant issues in problems of this nature: prior information,
deriving features from pixel data, subjective labelling,, learning from positive examples, models
for spatial context, online learning, and multi-sensor and thematic data. There are other issues
which were not discussed here due to space constraints: the use of physical noise models for the
radar imaging processes and other non-visible wavelengths, the integration of multiple images of the
same surface area taken at different times,’ and the use of multi-resolution and parallel algorithms
to speed computation.
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The SKICAT and Magell.an SAR projects are typical examples of the types of large-scale image
database applications which will become increasingly common -- for example, the NASA Earth

Observing System Synthetic Aperture Radar (EOS SAI~) satellite will generate on the order of 
GBytes of remote sensing data per hour when operational [32]. In order for scientists to be able
to effectively utilise these extremely large amounts of data, basic image database navigation tools

will be essential.

Our existing JPL projects have so far demonstrated that efficient and accurate tools for natural
object detection are a realistic goal provided there is strong prior knowledge about how pixels can

be turned into features and from there to class categories. With the astronomy problem there was
sufficient strong knowledge for this to be the case: with the volcano data, the knowledge is much

less precise and consequently the design of effective object detection tools is considerably more
difficult.

The common thread across the various issues would appear to be the problem of how to combine

both prior knowledge and data. Much of the prior knowledge of a domain scientist is vague and
imprecise and cannot be translated easily into pixel-level constraints. However, scientists find it

significantly easier to provide attributes to measure on a given region than to specify the method
they use to classify the region.

Dealing with image data is uniquely appropriate for interactive tools since results can immedi-

ately be visualized and judged by inspection. This makes obtaining feedback and training data from
users much easier. Since humans find it particularly difficult to express how they perform visual

detection and classification, using a "learning from examples" approach becomes particularly appro-
priate. The fact that the image databases are becoming increasingly common and unmanageably

large makes the need for the type of approaches advocated in this paper particularly pressing,
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