
Attribute Focusing: Machine-assisted knowledge discovery
applied to software production process control

INDERPAL BHANDARI

IBM Research
T. J. Watson Research Center
Yorktown Heights, NY 10598

Abstract.
How can people who are not trained in data analysis discover knowledge from a database of attribute-valued data ?

This paper attempts to shed light on this poorly understood question by:
¯ presenting a machine-assisted method called Attribute Focusing for such discovery.

¯ describing preliminary results from the application of Attribute Focusing to improve the process of software pro-
duction.

On the basis of the experience with Attribute Focusing, the paper concludes that machine-assisted discovery of know-
ledge by the layman should be emphasized much more than has been in the past.

1. Introduction

One may use the dichotomy below to characterize approaches to data exploration, data mining
and knowledge discovery:

1. The automatic Adiscovery of knowledge by a computer program.

2. The semi-automated discovery of knowledge in which a person guides a computer program
to discover knowledge.

Approach 1 has received the most attention in the past. Approach 2 is beginning to attract
growing attention in the face of evidence that people must be involved in the discovery loop if
practical benefits are to be realized in the near term (See 114]). In keeping with the drift towards
practicality, let us consider a tlfird approach, namely; machine-assisted knowledge discovery in
which a computer program guides a person to discover knowledge from data.

Such machine-assisted discovery does not feature prominently in the literature on knowledge dis-
covery. On surface, there is a good reason for that. Data analysts routinely use computers to
analyze data and learn from such analyses. Clearly, work on knowledge discovery must go beyond
such routine use. Hence, what is the use of dwelling on machine-assisted discovery of knowledge
by a person ?

That use becomes evident if one considers not the lot of the data analyst but that of the layman
in this day and age. Such a person is likely to know a lot about their chosen profession but know
little about data analysis. It is also increasingly likely that data pertaining to their professional
activity is available in a database. Clearly, a machine-assisted method which allows them to learn
more about their domain from such data should be a powerful knowledge discovery technique
since it could help a lot of people improve at their jobs rapidly.

Attribute 15oeusing is such a method. It focuses a domain specialist, whom I shall call the analyst,
on a small, potentially interesting part of a large amount of data in a manner that leads him to
discover knowledge. The rest of this paper describes the steps that make up Attribute Focusing
and early results from its application to software production process control. On the basis of that
experience, I conclude that Attribute Focusing helps domain specialists to do their jobs better,
and hence, make the case that machine-assisted knowledge discovery should receive more
emphasis than it has in the past.

2. Data Model and lnterestingness Functions

The data to be analyzed are assumed to be in the form of a relational table called a data set. The
rows of the table are the records of the data and the columns are the attributes of the data. An
entry (ij) of the table specifies the value of the jth attribute for the ith record. The attribute-values

AAAI-93 Knowledge Discovery in Databases Workshop 1993 Page 61

From: AAAI Technical Report WS-93-02. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

can be discrete, i.e., be drawn from a discrete set of values, or they can be numeric, qtae corre-
sponding types of attributes will be referred to as discrete or numeric attributes, respectively.
There are several well-known techniques to convert numeric attributes to discrete attributes by
dividing the range of the numeric attribute into suitable intervals (e.g. see [17]). ltence, to sim-
plify presentation all attributes are assumed to be discrete after noting that Attribute Focusing can
apply to numeric attributes as well.

Formalizing the notion of attribute-valued data, let SS be the set of subsets of the data set that
are defined by specifying a set of attributes and their values. A set of attributes may be repres-
ented by AI,A2,...,A~ and a set of values be represented by al,a2,..., a,, respectively, where 1 <_ n _< N,
N is the total number of attributes of the data set. Then, a subset of the data set that consists of
records wherein the Ai’s have the values ai’s may be denoted by the list (Ai = ai), < i < n.SSnis
defined to be the set of all such lists of length n. SS is tile union of SSn for all such n. To illus-
trate the Attribute Focusing approach, it is sufficient that we only make use of the subsets
SSI,SS2, and hence, let us assume that SS comprises these subsets alone.

We are ready to describe the steps that constitute Attribute Focusing. First, automated proce-
dures called interestingness functions are used to order members of SS to reflect their relative
interestingness to the analyst. Let us begin by formalizing the notion of such ordering. We define
the class I of interestingness functions that map some ScSS to R~, the set of non-negative reals.
Since the relations <, >, = are all defined on R+, i ~ I can be used to order the elements of SS.
Formally, slop s2, iff i(sO op i(s2), where sl,s2 ~ S, op ~ (<, >, = }.

An application of Attribute Focusing may use one or more interestingness functions to order ele-
ments of SS. Two useful interestingness functions which are based on a degree of magnitude and
a degree of association of attribute-values are described below.

I
It is a magnitude-based interestingness function. Det’me:

¯ The probability of an attribute q having a value v, P(q = 1, t o be t he number of r ecords in
the data set in which q is equal to v, N(q = v), divided by the total number of records in the
data set for which q has a value, N(q).

¯ Choice(q) to be the number of possible values for q.
¯ h(q - v) = [[P(q = v) - l/Choice(q)ll, where [[aJ[denotes the absolute value of a.

Thus, Ii maps SSI to R÷ by measuring the difference between the proportion of records that have
a particular value for an attribute and the proportion of records that would have had that value
had the attribute been uniformly distributed. The greater that difference the more interesting the
element of SS 1.

Next, let us define/2, an association-based interestingness function.

¯ Recall, that we defined the probability of an attribute ~/having a value v, P(q = v), to be the
number of records in the data set in which q is equal to v, N(q = v), divided by the total
number of records in the data set for which q has a value, N(q).

¯ Similarly, defme P(qt = v,q2 = u), to be N(ql = v, q2 = u), tim number of records in the data
set in which qi = v and q2 = v. divided by N(qj, q2), the total number of records in the data
set for which both qi and q2 have a value.

¯ 12(ql "-- v, q2 = u) = IIP(qt v,q2 = u)- P(q~ = v) x P(q= u)J[, where Ilall denotes the absolute
value of a.

Thus, the probability of any attribute having a value v, is assumed to be statistically independent
of the probability of any other attribute having a value u and the expected probability oI their
combination is computed by simply multiplying their individual probabilities. 12 orders the ele-
ments of SS2 by measuring the difference between the proportion of records that have a specified
pair of attribute-values and the proportion of records assuming the statistical independence of
those attribute-values. The larger the difference of the observed probability of the combination
with respect to its expected probability, the more interesting the combination is deemed.

In summary, the first step of Attribute Focusing involves the ordering of attribute-values based on
a degree of magnitude and a degree of association of attribute-values. Such heuristics have been
used before in knowledge discovery [13]. Hence, the contribution of this paper lies not in recom-

Page 62 Knowledge Discovery in Databases Workshop 1998 AAAI-98

mending their use but instead in specifying where and how such heuristics be used in machine-
assisted discovery.

3. Filtering Functions

In the second step, automated procedures called filtering functions prune the ordering output by
an interestingness function and present the pruned ordering in a form which leads the analyst to
discovery. Thus, the use of tile filtering function makes viable the human analysis of a data set
which contains a large number of attribute-values, bet us formalize the notion of a pruned
ordering. "

The class, F, of faltering functions is defined by the following model, f~ F decides which of the
elements of SS must be drawn to the attention of the analyst. It uses the ordering on members of
SS as defined by a member of I, the interestingness functions, and basic knowledge of the limits
of human processing. Essentially, f presents the top elements in the ordering in the form of no
more than Y tables, each of which contains no more than X related elements, where X, Y are small
integers that are decided by considering the limits of human processing. A binary function R
defined on SS X SS, is used to determine whether elements of SS are parr-wise related.

X, Y and R are parameters of the model of a filtering function. We will return to how those
parameters are determined in a moment. First, let us understand how an automated procedure
may be set up to output tables to the analyst for a given set of parameter values.

Once X, Y and R are determined, the tables are formed by using the following procedure. Let L be
the list of elements in SS arranged in decreasing order as defined by i ~ I. Thus, the element at
the top of the list has the maximum interestingness. The tables are formed by using the following
procedure recursivelF. A table T is formed at every level of the recursion.
1. Remove top element of L and place in T.
2. Scan the list from top to bottom removing elements that are related to the top element.

Place the first X relatedelements that are encountered in T.
3. if the Yth table has not yet been formed and L is not null, recurse, else quit.

The above procedure assumes that a single interestingness function is used to order the data. In
the event that multiple interestingness functions are used, there are two possibilities. The orderings
of the interestingness functions may be combined to produce one ordering, or the orderings may
be distinguished and a set of tables produced for each ordering. In the latter case, Y refers to the
total number of tables generated and must be partitioned between the tables generated for each
ordering.

While I believe that different applications may benefit by using different values for X, Y and dif-
ferent instances of R, there is a guideline for defining R, and deciding the values of X and Y.
Valid ranges for X and Y are computed by considen’ng the limits of human information proc-
essing. Every table must be explained by the human analyst. Hence, X is usually restricted to
around 7 entries in order to comply with the well-known fact that people are not good at
retaining many items in short-term memory [12"1. The limit is commonly accepted as 7
plus/minus 2.

We still need to determine Y. Since we know that a table is X entries long, we can calibrate the
time an analyst will spend studying a table for a particular domain. Let that time be Z minutes.
Based on the experience of working with analysts in software production, a reasonable range for
Z, the time spent analyzing a single table with about 7 entries, was observed to be 5-10 minutes. I
will use that range to compute Y below.

The task of the analyst is akin to that of a person taking a test in which every table represents a
question that has to be answered. As reflected by the duration of college examinations, it is com-
monly accepted that the natural attention span for a person engaged in such a task is around
30-180 minutes. Since 5 < Z < 10, it follows that Y should lie between 3 and 36 tables.

Now, let us turn to the binary function, R. A table being akin to a single question in a test, the
items in a table should be related, i.e., they should collectively lead the analyst to discover know-
ledge. Since the entries of a table are elements in SS, a typical entry may be represented by a set
of equalities {‘4t = a~}, where ,4 is an attribute, a a value, and i a suitable integer. For a pair of

AAAI-9$ Knowledge Discovery in Databases WOrkshop 1993 Pnge 63

entries to be related, their sets should have at least one attribute in common, for then we can
expect that they will lead the analyst to discover knowledge pertaining to the common attribute.
llence, R should be based oil finding such commonality.

I do not wish to imply that the above method for determining X, Y,Z and R is an optimal one.
On the contrary, it should be clear that more sophisticated methods could easily be devised by a
human factors specialist. The only point to be made is that X, Y and Z are based on knowledge of
human information processing, and R is based on the notion of related entries.

A useful fdtering function, Ft is described below. Filtering function/;i processes two orderings. It
uses the ordering produced by I~, with X = 8, Y = 10. R is defined as follows. Recall that I)
orders the elements of SSI. An element of SSI may be denoted by specifying a single attribute-
value such as A = a since it represents the collection of records for which a attribute A has the
value a. R relates elements of SS 1 iff they share tim same attribute.

Filtering function F~ also uses the ordering produced by 12, with X = 8, Y = 10. R is defmed as
follows. Recall that I~ orders the elements of SS2. An dement of SS2 may be denoted by speci-
fying a pair of attribute-values such as A~ = at,A2 = a~ since it represents the collection of records
for which attributes A~ hav~ the value ad e { 1,2} R relates elements of SS2 iff they have the same
pair of attributes. Thus, F~ produces a total of 20 tables each with a maximum of 8 entries,
figures which are within the ranges for Y and X.

4. Model of lnterpretation

The next step of Attribute Focusing is done manually. A model of interpretation is used to
channel the thoughts of the analyst along lines which will lead to discovery. The analyst must use
the meanings of the attribute-values of a table entry to relate its interestingness to the physical sit-
uation that was used to produce the data set. For instance, if the attribute-value was deemed
interesting by It, then the analyst attempts to understand why tim attribute-value had a relatively
high or relatively low magnitude. If instead, the attribute-values were deemed interesting b~¢ /2,
then the analyst attempts to understand why the attribute-values had a relatively high or relatively
low association.

The model of how the analyst gains such an understanding is exemplified below for a table output
by Fi which shows that (a = v)is associated with (b = u) but is disassociated with (b

¯ Understand cat~e ofinterestingness: T

- (a = v) occurs frequently with (b = u) but infrequently with (b = w).

- What event could have lead to such occurrence ?
¯ Understand implication ofinterestingness:

- (a = v) occurs frequently with (b = u) but infrequently with (b = w). Is that desirable

- What will happen if no action is taken ?

Note that the questions above do not make reference to data analysis terms and concepts. Instead,
they encourage the analyst to think directly about events in his domain. The analyst attempts to
relate the entries in a table to the underlyin~ physical situation by understanding the cause and
implication of the interestingness of the entries as described above. That process ends in one of
the possible ways below, after which the analyst proceeds to the next table.

1. Understanding leads to new insight that translates to action.

2. Understanding leads to new insight but no actioo necessary.

3. Known explanation for interestingess. No action necessary.

4. Cannot understand interestingness of a table entry. Investigate further at a later time:

¯ Sample records that correspond to the table entry.

¯ Study the text field (beginning of 2., "Data Model and lnterestingness Functions"
described the text field) to fred a generalization that may explain the interestingness.

In the event that Option 4 is exercised, the analyst has more work to do, but it is focused work.
tle must study a sample of records from a specified subset of records.

Page 64 Knowledge Discovery in Databases Workshop 1993 AAAI-93

5. Software production process control

llaving described the steps that make up Attribute l:ocusing, we are ready to discuss its applica-
tion to improve the process of software production. A software production process [11, 16] can
be viewed as a set of activities that, if adequately defined and properly executed, lead to a high-
quality software product. Defects that are discovered in the product are a sign of inadequacies in
the definition or execution of the production process. If defects are to be avoided in the future,
the process definition of or execution of the activities in question must be corrected. Hence, most
software projects collect data on defects by describing them in writing, as well as by classifying
them. Classification schemes have been used in software engineering for quite some time (e.g., see

~1 7, 8]), and most major production laboratories maintain a data base of classified data which
s the relational table model described in 2., "Data Model and lnterestingness Functions." TheILl,

benefit of classifying defects is that one can look for trends in the defect population as opposed to
analyzing every defect individually, which can be very time consuming.

Attribute Focusing has been and is being applied to classified defect data from major software
production projects in IBM laboratories in the United States, Canada and Japan to improve the
process of producing software at those places. The project team plays the role of the analyst and
mu~ explain the magnitude and associations of the selected data items in a 1-2 hour meeting
called the feedback session, which it, tuna, leads to the identification and correction of process

~ blems. The experiences have been documented in detail [2-5]. I borrow from those results
ow to establish that Attribute l’ocusing allows software developers to improve at their jobs

over and beyond current practices for such improvement. To begin with, it is instructive to
examine examples of how Attribute Focusing leads to software process improvement.

ATTRIBUTE-VALUE

TABLE I

P (attribute=value I/Choice (attribute) Diff

Type = Function 33 ~ 13~ 20~
Type = Timing 1% 13~ -12~
Type = Condition 12 ~ 13~ -I~

A table similar t to Table 1 was output by F~ for data from the low-level design stage of the
project. Low-level design usually involves the logic specification of modules that make up a com-
ponent. It succeeds high-level design which involves the partitioning of the functionality of a soft-
ware product across its components [16]. Both, high-level and low-level design documents usually
undergo inspections. During inspections [9] these documents are reviewed by people other than
the author to fred defects in the document. Table 1 is based on data generated by classifying
defects found during low-level design inspections.

Let us understand the f’trst entry of the table. The defect data had an attribute called Type, w~ch
captured how the defect was fixed. Some of its possible values are shown in the table. For
instance, the value of the fu’st entry is function denoting that the defects with that attribute-value
were fixed by making a change to the functionality of the product. Similarly, the last entry
denotes defects that were fixed by changing conditional constructs in code, and so on. For com-
pleteness, Ft also outputs the information that lj used to rank the entries in the table. Thus, 330
of the defects in the data were of O~pe =function, while such defects should have been 13% of the
data had the distribution of Type been uniform. The difference is shown in the D/ffcolumn.

The following process problem surfaced when the team tried to explain the first entry in the table,
namely, the magnitude of defects for which type=function. As per 4., "Model of Interpretation,"
the cause and implication had to be determined. On account of a weak understanding of the cus-
tomer’s requirements, the functionality required of a part of the product only became clear to the

~roject team after high-level design was completed. Hence, the missing functionality had to beeveloped from scratch at low-level design In other words, functional aspects were being worked
on for a part of the product during low-level design (the cause). Since functional problems should
already have been addressed by the time a product enters low-level design (see definition above),
this meant their process was broken, i.e., the low-level design was not doing what it should have
been doing. If the requirements were poorly understood and no action was taken, the team ran
the risk of similar omissions of functions surfacing later in the process (the implication). The

t Exact data are proprietary information

AAALg$ Knowledge Discovery in Databases Workshop 1993 Page 65

cause could also be inferred by reading tile portion of the design documents wlfich corresponded
to the part of the product which had the functional defects, and by comparing the statement of
the original requirement with the functionality which was now being implemented (corroboration
of discovery by sources independent of data).

The process problem, namely, a weak requirements stage, was thus identified and its implications
considered. To correct the situation, the team decided to rework the requirements document for
the project before proceeding any further. That rework was a process correction, since it was not
part of the originalprocess. A single such correction can have a major impact on the quality of
tile software that reaches the customer. For instance, a weak understanding of customers’ require-
ments usually results in many major defects being found in tile field. One such defect can cost a
company several thousand dollars [6].

Lets consider another example. A multiple-choice questionnaire was filled out for every defect
found in the field to understand how such defects could be eliminated from the next release of a
major operating system. The complete experience is documented in [5]. The filtered output of 12
was used to produce such tables as shown in part by Table 2. Every entry in a table has a pair of
questions along with their associated answers. Four percentages are also specified to indicate how
the entries were ranked by 12. From left to right, they are the percentages of times the values were
chosen individually followed by the percentage of times the values were chosen together followed
by the percentage of times they were expected to be chosen together. For instance, the first entry
in Table 2 is comprised of

1. The question What is the best way to find similar prob&ms and one of its choices, namely,
Testcases. Testeases is shown to be chosen in 66% of the completed questionnaires.

2. The question Why did the problem remain hidden and one of its choices, namely, Low exploi-
tation of function. Low exploitation of function is chosen in 32% of the completed question-
naires.

3. Testcases and Low exploitation of function were chosen together in 27% of the cases. The
expected percentage was 0.66 X 0.32 = 21%.

TABLE 2

I °

2.

What is the best way to
find similar problem ?
* Testcases

Why did the problem
remain hidden ?
* I,ow exploitation of function

66~ 32~ 27~ 21~

Why did the problem
remain hidden ?
* Problem not recognized

36~

What is the best way to
find similar problem ?
* Testcases

66~

Let us show how a table similar 2 to "Fable 2 led to the identification of a process problem. The
cause and implication of the hlterestingness (See 4., "Model of Interpretation") are indicated
parentheses. Entry 1 indicates that there is an association between defects that can be found by
executing additional test cases, and the fact that such defects remain hidden because function is
not adequately exercised by the testing process. That association suggests that the test develop-
ment process is weak in its assessment of functional coverage (the cause), and hence, using the
existing test process to develop more test cases will not be successful at finding similar defects (the
implication). The discovery was corroborated by showing that the assessment of coverage by
project teams improved dramatically when they used a new coverage assessment tool. That tool
also represented a means to address the problem.

A summary of results from four different projects is given in Table 3. The total number of
records, attributes and attribute-values in the corresponding data sets is indicated. The column
Understand Better indicates whether the team felt they had a better understanding of their domain
after the feedback session. The column Actions indicates whether the team took specific actions
after the feedback session to rectify their process. All projects were using accepted current prac-

2 Exact data are proprietary

Page 66 Knowledge Discovery in Databases Workshop 1993 AAAI-98

tices for process correction based on analysis of defect data as well. l lowever, the last two
columns of Table 3 refer only to insights which were a result of the Attribute Focusing feedback
session and were not arrived at by using the other techniques.

TABLE 3

Project Records Attributes Values Understand
Better

A 500 12 71 YES YES

B 104 6 32 YES YES

C 2602 15 123 YES YES

D 536 6 67 YES YES

Actions

6. Discussion

It is clear from the above results and examples that knowledge is truly discovered. Actions are
taken to correct the process of software production based on the use of Attribute Focusing.
Those problems existed prior to such use and remained uncorrected. Therefore, not only do the
identified problems and corrective actions represent knowledge, they represent brand-new know-
ledge wlfich was hitherto not known. The experiences also show that the mechanical part of
Attribute Focusing is a crucial step in knowledge discovery. The problems existed prior to the
application of Attribute Focusing but were not known to the team. The same team found the
problems when presented with the output of the filtering functions. Hence, the use of the fdter
must be essential to the discovery. Clearly, both the mechanical and human aspects of the
approach are indispensable.

Table 3 shows that the Attribute Focusing analysis helped the teams improve their process of
software production over and above current practices. The cost of such improvement was of the
order of person hours, that cost being incurred when the team participated in the two hour feed-
back session. In contrast, the cost of using other methods to correct the process is of the order of
person months. The teams consisted of software developers and testers who had nt)t received

struction in data analysis beyond what is taught in a 4-year or a 2-year college program on com-

PoUter science, ltence, we see th&t Attribute Focusing helped domain specialists improve at theirbs rapidly, which supports my belief that such machine-assisted knowledge discovery will lead
to significant practical gains since a large number of laymen can benefit from it.

Attribute Focusing has been successfully deployed to discover hitherto unknown kuowledge in a
real-life, commercial setting. It actually helps people do their jobs better. That kind of practical
success has not been demonstrated even for advanced knowledge discovery techniques,s

Let us understand the difference wlfich allows Attribute Focusing to succeed practically. There are
three possible areas where Attribute Focusing may enjoy an advantage over other methods: supe-
rior mathematical algorithms, ability to process more data, the use of the analyst. Each possibility
is discussed, below.

An advanced knowledge discovery system such as Piatetsky-Shapiro & Matheus" Knowledge Dis-
covery Workbench (KDW) [15] is, mathematically speaking, far more sophisticated than the
interestingness functions described here. Itence, the difference camaot lie in the use of more
sophisticated mathematics or theory. The relational data sets which were analyzed to provide feed-
back to the software teams had the characteristics in Table 3. Other discovery systems are quite
capable of processing data sets of tiffs size. Hence, the difference cannot lie in the ability to
process more data. Therefore, it must lie in the use of the analyst.

Indeed, previous attempts to involve people in the discovery loop are usually presented as an inte-
~ation of human and machine in whtc" h the human guides the machine to discover the knowledge
m the data (see 1"14]). In my opinion, that does not go far enough. As evidenced by this paper,

s such as the collection of systems described in [14]

AAAL9$ Knowled#e Discovery in Databases Workshop 1998 Page 67

we must have the machine guide the human to make tile discovery. Perhaps I can best make the
above point by adding to text that is part of an excellent article by Frawley, Piatetsky-Shapiro and
Matheus [10]. They write:

"Interactive systems will provide, perhaps, the best opportunity for discovery in tile near term. In
such systems, a knowledge analyst is included in the discovery loop. This approach combines the
best features of human and machine: Use human judgement but rely on the machine to do search
and to crunch numbers. The interactive approach requires the discovered knowledge to be pre-
sented in a human-oriented form, whether as written reports 1-18] or visual and sound patterns
[193."

I would add the sentence: "Or, tile interactive approach requires that a model of interestingness be
used to output data in a human-oriented form to a domain specialist who uses a specified model
of interpretation to discover knowledge".

In summary, the Attribute Focusing approach uses an explicit model (via the use of filtering func-
tions and model of interpretation) of the process of machine-assisted human discovery, while the
other approaches, if they do use a human in the discovery loop, use a model of human-assisted
machine discovery. I believe it is that difference which allows Attribute Focusing to succeed prac-
tically.

Its practical success notwithstanding, I believe that the implementation of Attribute Focusing
described here is a modest beginning. Shnple functions were used to implement the models pre-
sented in this paper. For instance, note that It is a simple entropy-based heuristic and Is is a
simple association-based heuristic. As observed earlier, entropy-based and association-based
heuristics have been shown to be useful for automatic discovery (e.g., see [13]). Specialists
that area have mad~ use of heuristics that are, mathematicaUy speaking, much more sophisticated.
Similarly, simple heuristics were also used to implement the Filtering functions and a simple
model used for human interpretation. Clearly, specialists in the human factors and cognitive
science areas could do a much better job. The present work is an initial effort based primarily on
engineering intuition and common sense, and, m all likelihood, a poor reflection of what can be
done with the approach by the right specialists.

In other words, man-machine approaches such as Attribute Focusing represent a means of
deriving immediate and significant practical advantages by combining the results of existing
research on knowledge discovery with models based on human factors and cognitive science.
That potential leads me to suggest that machine-assisted human knowledge discoverCy should be
emphasized much more than has been in the past.

6.1 FUTURE WORK

There are many directions to pursue. Information-theoretic, entropy-based measures and statis-
tical measures of association/correlation may be used to evolve new instances of interestingness
functions. For instance, when considering the analysis of numeric data, statistical correlation
techniques may be used to compute coefficients of correlation, wlfich can then be used to order
attribute combinations. Similarly, new instances of fdtering functions may be evolved by consid-
ering human factors issues. For instance, one can improve the usability of the tabular output of a
filtering function by representing that output in a graphical form. A better understanding of the
human interpretation of the output of filtering functions must be sought.

7. Conclusion

Let us summarize what has been learnt from this research.
¯ Machine-assisted discovery of knowledge by domain specialists who are not trained in data

analysis should be emphasized much more than has been in the past.
¯ Attribute Focusing is an approach to machine-assisted knowledge discovery. It uses a model

of interestingness based on magnitude of data values, association of data values and basic
knowledge of the limits of human information processing capabilities, as well as a model of
interpretation to guide a domain specialist to discover knowledge from attribute-valued data.
It provides a useful, low-cost way for a project team to diagnose and correct their process of
software production.

Page 68 Knowledge Discovery in Databases Workshop 1993 AAAI-93

,4 CKN O WLEDG I’M EN TS :

Bolmie Ray for implementing the first version of tile lnterestingness functions; David Choi for
devising a space-efficient implementation of the Interestingness and Filtering functions; Mike
HaUiday for implementing the relational data model and interfacing it to the interestingness and
falter functions; .larir Chaar, Ram Chillarege, Allen Dooley, Eric Hansen and George Wang for
useful discussions; I). Alpert, I). 13uller, C. Coppola, R. Dyer, S. llorowitz, J. Kong, M. Koury,
II. Morgenstern, Y. Tan, C. Vignola, Scott CampbeU, Sai Chan, Waiman Chart, Dave Knott, Tfi
Iloang, Dennis Koren, Ed Lekanides, Barbara Rankin, Roberto Sanchez, Beth Thurau, Beth
Tobias, M. Yonezawa for participating in feedback sessions; Eric Tarver, l)avid Brown, .lanette
Atkinson, Pare Jasper, and Norman Roth, for participating in feedback sessions as well as for
many astute observations that have enhanced the technique; and last, but certainly not least, Anil
Nigam for suggesting that I write this paper, and Glenna Young, for improving its presentation.

7.1 REFERENCES
1. Basili, V. R. and Perricone, I3. T. Software Errors and Complexity: An Empirical Investi-

gation. Comm. of the ACM, 27(!), 1984.
2. Bhandari, I., tlaUiday, M., Chaar, J., Chillarege, R., Jones, K., Atkinson, J., Lepori-Costello,

C., Jasper, P., Tarver, E., Carranza-Lewis, C. and Yonezawa, M. ha-process improvement
through defect data interpretation. Submitted to The IBM Systems Journal, 1993.

3. Bhandari, I., Halliday, M., Tarver, E., Brown, D., Chaar, J. and Chillarege, R. A case study
of process evolution during development. IBM Research Report RC 18592, December 1992.
Submitted to IEEE Transactions on Software Engineering

4. Bhandari, I., Ray, B., Wong, M., Choi, D., Chillarege, R., Tarver, E., Brown, D., Chaar, J.
and Halliday, M. Using Attribute Focusing to diagnose and correct the software production
process. Proceedings of the Principles of Diagnosis Workshop, Vicinity of Seattle., Oct. 1992.
Abbreviated from IBM Research Report P,C 18097, May, 1992.

5. Bhandari, I. and Roth, N. Post-process feedback with and without Attribute Focusing: A
comparative evaluation. International Conference on Software Engineering, accepted for
publication, May 1993. Also available as IBM Research Report RC 18321, Sept. 1992

6. Boehm, B. Software Engineering Economics, pages 39-41. Prentice-llall, Inc., Englewood
Cfiffs, NJ, 1981.

7. Chillarege, R., Bhandari, I., Chaar, J., Ilalliday, M., Moebus, D., Ray, B. and Wong, M.
Orthogonal Defect Classification - A Concept for In-process Measurement. IEEE Trans-
actions on Software Engineering, 943-956, November 1992.

8. Endres, A. An Analysis of Errors and Their Causes in System Programs. IEEE Transactions
on Software Engineering, 1(2): 140-149, 1975.

9. Fagan, M. Design and code inspections to reduce errors in program development. IBM
Systems Journal, 15(3), !,9761

10. Frawley, W., Piatetsky-Shapiro, G. and Matheus, C. Knowledge Discovery in DatabcLres." An
Overview. in G. Piatetsky-Shapiro and W. Frawley, Knowledge Discovery in Databases.
AAAI Press/The MIT Press, Menlo Park, California, 1991.

11. Ilumphrey, W. Managing the software process. Addison-Wesley, Reading, MA, 1989.
12. Miller, G. The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity

for Processing Information. Psychological Review, 63, 1956.
13. Mingers, J. An Empirical Comparison of Selection Measures for Decision-Tree Induction.

Machine Learnbzg, 3, 1989.
14. Piatetsky-Shaph’o, G. and l’rawley, W. Knowledge Discovery in Datab~z~es. AAAI Press/The

MIT Press, Menlo I ark, (2alifornia, 1991. Editedby Shapiro and Frawley
15. Piatetsky-Shapiro, G. and Matheus, C. Knowledge Discovery Workbench. in G. Piatetsky-

Shapiro, Proc. of ‘4‘4‘41-91 Workshop on Knowledge Discovery in Databases. AAAI Press,
1991.

16. Radice, R., Roth, N., O’ltara,.Ir., A. and Ciarfella, W. A Programming Process Architecture.
IBM Systems Journal, 24(2), 1985.

17. SAS Institute, Cary, North Carolina, sAs/s’FAT: User’s Guide, 1990.
18. Schmitz, J., Armstrong, G. and I,ittle, J. CoverStory - Automated News Finding in

Marketing. in L. Volino, DSS Transactions. Institute of Management Sciences, Providence,
Rhode Island, 1990.

19. Smith, S., Bergeron, D. and Grinstein, G. Steroephonic and Surface Sound Generation for
Exploratory Data Analysis. Proc. Spec. Interest Group on Computer and Human Interaction,
1990.

AAAI-93 Knowledge Discover~ in Databases Workshop I993 Page 69

