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Abstract

This paper describes the use of automated discov-
ery from databases for diagnosing the causes of rots-
processing during semiconductor manufacturing. The
database eonlains the historl/ of the semieonduc4or
wafers as theTI undergo various processing steps. A
gener~ste-and-test approach is to3cen for using such a
database for automated diagnosis. Based on prior
maaual use of such databases, classes of queries to the
database useful for fault isolation are identified. Pat-
terns in the responses to these queries that are use-
ful for fault isolation are also identified. Automated
diagnosis is accomplished bll automating query gener-
ation and the detection of potentially useful paflergs.
A prototllpe ~stem was implemented and tested on a
database from a wafer grinding and polishin9 facility.
In addition to identifying pre~iousll/ lmoum faults, the
system also identified pre~iousil/ unknoum faults.

Topic: Data Discovery & Database Mining, Diagnosis.
Domain: Semiconductor Manufacturing.
Language/Tooh Smalltalk, Unix, Sun workstation.
Status: Prototype developed and tested. Larger ira-
plementation in progress.
Effort: Prototype developed in 2 man-months.
Impact: Has the potential for assisting in problem di-
agnosis during semiconductor manufacturing.

1 Introduction

One goal of automated discovery from databases
is to automatically sift through a large database and
bring "interesting" and/or "useful" facts to the atten-
tion of a person. Since interestingness and utility are
domain-dependent and subjective concepts, a genera]
treatment of the issues related to automated discovery
from databases is difficult. The task is simplified by re-
stricting attention to a specific domain and identifying
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a set of queries, and the patterns among correspond-
ing responses, that would be considered interesting in
the domain. An automated system can then be con-
structed for sifting through the database to identify
the presence of these patterns among the responses to
the chosen queries. In addition, experience in identi-
lying interesting patterns in a number of specific do-
mains may provide clues about a general theory of
interestingness. Such a theory can then be applied to
develop more powerful methods for automated discov-
cry in databases. Motivated by these issues we have
developed a prototype system that applies the above
approach to the task of fault diagnosis during semi-
conductor manufacturing. This paper describes the
design and implementation of this prototype system.

Semiconductor manufacturing is a long, expensive,
and complicated process. State of the art integrated
circuits may require between 200-300 proceming steps.
Slight deviation from the desire~i performance of any
one of these steps can produce unacceptable product.
Since process deviations and equipment malfunctions
are inevitable, rapid diagnosis of the causes of mis-
processing becomes critical to the profitable manufac-
turing of semiconductors. However, the complex in-
terrelationships between the various processing steps
makes fault isolation difficult. Measurements made on
a wafer at the end of a long sequence of steps are often
insufficient for diagnosis.

The effects of different processing steps on the fi-
nal product can be partially separated if one records
in a database the history of the wafer as it undergoes
different processing steps. This database associates
the following information with each wafer: identifying
numbers for different machines that process the wafer,
the time at which the different processing steps are
performed, the name of operators for each machine,
exact processing conditions, and any other informa-
tion that one thinks might be useful for problem iden-
tification. Such a database is called a wafer-tracking
database.

Later, when say the product yiekts become unac-
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ceptable, one can obtain the following information
from a wafer tracking database:

¯ What is common to all wafers having a low yield?

¯ What is common to all wafers having a certain
measurement?

¯ With respect to a certain measurement, do all the
wafers processed by certain machines have values
much different from the wafers processed by other
machines?

¯ Is there a trend in a certain measurement as more
wafers are processed by a particular machine?

Answers to the above questions, and other similar
questions, can help in rapid identification and correc-
tion of the causes of misprocessing.

Unfortunately, to use a wafer tracking database for
fault isolation a large number of queries of the kind
illustrated above that must be generated and evalu-
ated for their fault-isolation potential. Consequently,
when performed by a person, the use of wafer track-
ink databases for diagnosis can become quite tedious,
time-consnmlng, and error-prone. Section 2 of this
paper describes our approach for automatically iden-
tifying diagnostic information from a wafer tracking
database. Section 3 describes the design of a prototype
system that implements our approach. The prototype
was tested on a database containing three months’ his-
tory of wafers in a grinding and polishing area of a
crystal growth facility at Texas Instruments. In ad-
dition to identifying the previously known faults cor-
rectly, the automated system also pointed out defects
that were previously ~mknown. Sections 4 presents
these results. Section 5 concludes with a summary
and some directions for extending this work.

2 Automated Discovery from Wafer

Tracking Databases

The use of wafer tr~-Ic;ng databases for diagnosing
causes of mlsprocessing during semiconductor manu-
facturing was .pioneered in the Wafer Sleuth system
by Scher et al. [I, 2]. The Wafer Sleuth system em-
ployed optical character recognition to read an identi-
fying number for each piece of processing equipment,
and the location of the wafer within the equipment, as
the wafer was processed by a particular piece of equip-
ment. Later, this information was used to suggest
causes of mis-processing. Scher et al. give numerous
eYAmples where wafer tracking information has been
helpful in rapidly identifying problems in a wafer fab-
rication facility.

One limitation of the Wafer Sleuth system is that
the task of making queries to the wafer tracking
database is manual, as is the task of determining
whether a query contains information helpful for fault
isolation. Because of the large number of processing
steps required to manufacture a modern integrated cir-
cuit, and the large number of parameters tested before
accepting the product, the manual process of using
wafer tracking databases can be quite tedious, time
consuming, and error prone.

We take a generate-and-test approach to automate
the task of identifying useful queries from a wafer
tracking database. The task is broken into two main
components; query generaJion~ which generates the set
of possible queries; and ~ery e~uaJio~ which eval-
uates the interestingness of each query. A query is
considered interesting for diagnosis if the response to
that query has fault isolation potential.

A query generator can be constructed by identi-
fying the classes of queries that win be useful for
fault isolation. Depending on the available computa-
tional resources (especially time), the query generator
can exhaustively generate all queries in the previously
identified classes, or may incorporate heuristics about
queries more likely to to be interesting. The query
generator can also base the query generation on the
feedback obtained from previous queries considered
interesting. The query generator can also have do-
main filters to prevent generation of queries that are
]~nown a-priori to be uninteresting. For e~mple, for
each query regarding a particule[r fault one can count
the total loss of product yield d~e to that fault. Any
query for which the total yield loss is below a certain
threshold can be removed from the process of query
evaluation.

The query evaluator determines whether a particu-
lar query is interesting. Recall that a query is consid-
ered interesting if its response has the fault-isolation
potential. Based on the prior manual use of Wafer
Sleuth, one can identify two broad classes of query re-
spouses that have been useful for fault isolation in the
past. The first class of interesting responses are those
in which a fraction of the machines, and/or wafers,
from a set behave differently from the rest. For in-
stance, say a fabrication facility has five ion implanters
A, B, C, D, and E. Suppose that the average thresh-
old voltage of the transistors formed using these im-
planters is as shown in Figure 1. From this figure
one concludes that implanter B is producing transis-
tors with much lower threshold voltage than the other
implanters, suggesting that implanter B needs repair.
Stated differently, Figure 1 is interesting because one
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Implantor

Figure I: Fault isolation due to outliers

data point is different from the others. Generalizing
this obserwtion, one concludes that query responses
o0nta~aing a small number of ouliiera, or multiple
elmdera, have the potential for fault-isolation. Such
queries are therefore considered interesting.

The second class of interesting responses are those
where there is a Ire~d in the value a certain param-
eters. This class of queries is useful when the suc-
cessive measurements can be ordered. For the classes
of queries considered in the prototype an ordering of
query responses was not meaningful. However, the
need for a trend detector can be anticipated for classes
of queries more genera] than those considered in the
prototype. Section 3 gives an example of how a query
of this type helps in fault isolation.

The above two interestingness detectors are not ex-
haustive. These two are the ones that have been imple-
mented in the prototype. New classes of interesting-
ness detectors can be easily added to the library imple-
mented in the prototype. However, we have found that
in most of the cases known to us where wafer tracking
has been successful, the response to a fault isolating
query belongs to one of the above two cases. The ap-
proach of implementing detectors for known patterns
is similar to the approach of having specific knowl-
edge generation operators, as suggested by Kaufmann
et ai. [3]; and the approach of looking for specific sta-
tistical properties of data contained in a database, as
proposed by P.aitetsky-Shapiro and Matheus [4].

Based on some domain characteristics often one
might want to prune the set of queries considered
interesting by the purely data-driven interestingness
detectors. For example, if the interestingness detec-
tors can rank the various queries, one might like to
see only those queries that score grcater than a spec-
ified threshold on the interestingnem score. Domai~
spec0ie j~erJ are provided for additional pruning of
queries considered interesting by the interestingnees
detectors. Figure 2 illustrates the architecture incor-

porating the different components of the generate-and-
test strategy used for diagnosis from wafer tracking
databases. The next section describes a prototype
that implements parts of this architecture.

3 Implementation of a Prototype

A prototype was built and tested using a database
containing wafer tracking information gathered for
three months in a wafer grinding and polishing facility
at Texas Instruments. Except for the query generator,
the rest of the prototype is general and does not de-
pend upon the particular database.

Figure 3 shows the steps performed to produce
wafers from semiconductor grade single crystal sili-
con. Typically, the grinding and polishing operations
are done on a number of machines and each machine
may have a number of heads. At the Texas Instru-
ments facility the following information is recorded for
each wafer as it goes through the grinding and polish-
ing process: serial number, polisher number, head in
the polisher, time of day, chemicai properties of the
slurry, etc. In addition, a wafer is inspected at a num-
ber of inspect stations. The defect code, if any, for
each wafer is recorded at each station. All this infor-
mation together constitutes the database for this very
small part of the overall process of wafer fabrication.
The next few subsections give the detail of the vari-
ous sub-components of the architecture as they were
implemented in the prototype.

3.1 Query Generator rT

In the previous manual use of wafer tracking
databases at Texas Instruments, tabulation of differ-
ent faults for each machine and sub-assembly within
the machine had facilitated fault isolation. In the pro-
totype the query generator exhanstively generated all
possible queries of this type. For each inspect station
and fault code a query was generated asking for the
number of wafers processed by different heads of the
different polishers having that fault. For instance, a
typical query would be: "Give the number of wafers
polished by the head number 3 on polisher A that
had defect code 8 during the final inspect." Assuming
that all polishers are uniformly loaded during normal
operations, a subset of heads producing a large num-
ber of defective wafers suggests that these heads need
maintenance.

3.2 Domain Filters

For each query corresponding to a particular de-
fect, the total number of wafers having that defect
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Figure 3: Process involved in making wafers from a crystal

was calculated. Ali queries for which the total num-
ber of wafers having the given defect less than a cer-
tain threshold were removed. For instance, since the
total number of wafers having defect code 15 during
the final inspect was less than a threshold, this query
was not tested for interestingness. This is an example
of a yield loss filter. Another domain filter considers
only those queries containing outliers to be interest-
ing that point towards pieces of equipment producing
more faults that the rest. Query responses that show
that some pieces of equipment are producing fewer
faults than the rest are not considered interesting.

3.3 Interestingness Detectors

If a query is not filtered by the domain filters, it is
tested for interestingness. Recall that a query is con-
sidered interesting if its response has fault.isolation
potential. The result of the query generation process
is a list of numbers. Each number represents the num-
ber of defective wafers of a particular type produced by
the corresponding head and polisher. Two interesting-
ness detectors were implemented; outlier and cluster
detectors, and trend detectors.

3.3.1 Outlier and Cluster Detector

The goal of outlier and cluster detection is to deter-
mine whether the response to a query can be parti-
tioned into multiple clusters, or whether the response
contains any outliers. There is a fairly extensive liter-
ature on clustering and outlier detection [5, 6]. Any
of these algorithms that meet the the special require-
ments of our domain could be used. The special re-

quirements of our domain are that one cannot assume
any particular probability distribution for doing the
cluster analysis, and one does not know the number
of clusters a-priori.

Our approach to the ciustering/outlier detection
task is based on an application of the minimum de-
scPiptioa length principle. Recent investigations in ar-
tificial intelligence, theoretical computer science, and
mathematical statistics have shown that under fairly
general conditions, for a given language, among all
models that can be described in the language, the
model that enables the observ~ions to be described
most compactly makes the most accurate predictions
[7, 8, 9, 10].

In our domain, we consider a query interesting if the

¯ response contains some values different from the ma-
jority of the values in the response. To determine the
majority value, one first converts the measurements
expressed as real numbers into integers by multiply-
ing by a fixed precision. For instance, if at most two
decimal digits of precision are considered significant
then the numbers are multiplied by 100. Next, each
possible integer between the maximum and minimum
is considered as a potential osadidate for the major-
ity value. A language for describing integers is chosen
such that the description length of z when 6 is the
candidate is a non-decreasing function of z - 6. Intu-
itively, this language expresses the property that one
expects the likelihood of observing z to decrease the
further one gets from the candidate for majority 6.
Elias’s [11] variable length code for integers is one such
language. The candidate that minimizes the number
of bits required to describe all the observations with
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Table I: E/iasCodelength for the positive integer j
length .- I

(Llog jJ 0) 
length .- length +(1 + Llogj]);
j,- Llog j )
return(length)

this language is taken to be the estimate of the ma-
jority value.

We have found that the above procedure gives ro-
bust estimates of mode even in the presence of outliers.
Table 1 gives the algorithm for determining the length
of the Elias code for a positive integer. Given this pro-
cedure, the estimate of the mode of the observations
(X1, X2,...,-1/,) can be expressed mathematically as:

n

"-arg m~m ~ EiiasCodelength [ (X, - p)[.
i=1

where arK min~, of an expression denotes the argument
/~ that m~nlmises the expression.

Once the robust estimate of the mode has been ob-
tained, one estimates the deviation of the majority of

the values in a similar manner. The deviation d~ of
the observation X~ from/i is measured as:

d/- EUasCodelength([ Xi -/1 D.

This results in the a set of deviations, dl, d2,..., d~.
The mode of these deviations is the deviation of the
majority of the values. The mode is estimated using
the procedure outlined in the previous paragraph. Let
~r denotes this estimate of the mode. Observations Xi
that have deviation d~ gre~ter than ~ are considered
to be outllers.

In addition to identifying queries containing fault-
isolation information, one would also like to rank the
queries so that queries more likely to help in fault iso-
lation are ranked higher than the queries considered
less likely to help in fault isolation. Queries whose re-
spouses are considered to contain outllers are ranked
based on the amount of Uoutlierness". If Yx, ̄  ¯ ¯, Y~ are
the points considered as being outliers, and/i is the
estimate of the mode, then the measure of outlierness
is computed as:

Interestinguess Score _x;-~h zir~l
--d.=d~11

The weight assigned by this function to an outlier in-
creases as the absolute value of the ratio outlier from
the mode increases. Queries whose responses score
higher values on the above measure for outlierness
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Figure 4: Example illustrating the need for consider-
Lug subsequences in trend detection

are considered more interesting than queries whose re-
sponses score a lower value.

The procedures described above for identifying
queries containing outliers and ranking them based
on the outlierness were selected because they satisfied
the requirements of our domain, and produced an ac-
ceptable ranking of the fault isolation potential of the
different queries. It may be the case that other pro-
cedures for detecting outliers and outlierness ranking
may perform equally well in this domain.

3.3.2 Trend Detector

Trend detection was not meani~ul for the classes of
queries considered in the prototype. It was included
in the prototype because we think it will be useful
for other classes of queries. Figure 4 shows an exam-
ple taken from Scher [1] showing how trel~ds in wafer
tracking data can enable fault diagnosis. This figure
shows the difference between threshold voltage at the
top of the wafer and at the bottom of the wafer, plot-
ted versus wafer position in the furnace at a key step
in formlng a transistor; namely gate oxidation. The
threshold voltage at the bottom of the wafer was con-
sistently lower than the top, and low threshold voltage
results in an unacceptable device. Noticing that the
trend peaked at the center enabled the engineers to
locate the root cause of the problem.

Two complications arise in detecting whether there
is a trend in a point cloud representing a query. First,

the trend may not be linear. As a result, a linear corre-
lation coefficient cannot be used for detecting a trend.
This can be handled if one uses a non-parametric test
for a trend. Kendall’s r-coef~cient is one such test
[12, 13]. The value of the ~’-coe/~cient can be used as
a numeric measure of the amount of trend. Queries
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p3 ~plp2p3) pl ~p2p3~ plp2 ~p3)
p2 (plp2)p3 pl (p2)p3
pl (pl)p2p3

pl p2 p3

Table 2: Systematic consideration of subsequences to
detect trends

with higher values of this coefficient are considered
more interesting than the queries with a lower value.

The second problem is that a trend may exist only
in a small segment of a point cloud. Collectively, the
point cloud may not appear to have a trend based on
Kendail’s test. For instance, if one evaluates the com-
plete point cloud shown in Figure 4 using KendaU’s
test the conclusion is that there is no trend at the 99%
si~qlificaace level. This is becanse the increasing and
the decreasing trends are confounded in one statistic.
This problem is handled by systematically consider-
ing various subsequences, and evaluating each subse-
quence for a trend. Table 2 summarizes this procedure
with an example involving three points pl, p2, and p3.
Only the points withln () are checked for a trend. For
¯ ~eample, in the entry in the column labeled pl and
row labeled p2, only the points pl and p2 are checked
for a trend. The interestingness score for the query is
taken to be the score for the subsequence that has the
highest value of the ~--coemclent. With this algorithm
the point cloud shown in Figure 4 is found to have a
trend significant at the 99% level and it gets the score
of 0.928 out of a maximum possible of I. No effort
is made to compare the interestingness scores of pro-
duced by different detectors. The goal is to produce a
list of queries considered interesting by different types
of detectors.

4 Results

The prototype produced a list of interesting queries
sorted in the decreasing order of interestingness score
from the database for each of the three months. This
section reports the result obtained for one of these

three months, similar results were obtained from the
databases for the other two months. In the database
for the month reported here, out of a set of 60 possible
queries the system identified 14 queries to be interest-
ing due to the presence of outliers. Trend detection
was not attempted on this database because an order-
ing of the polishers and the heads within the polishers
is not meaningful. Table 3 lists top 10 of these 14
queries along with their interestingness score.

Figure 5 graphically displays the query considered

Unpolished Sur faces

o.l|||....
i i i J i i i .........

A1 A2 A3 A4 B1 B2B3 B4 C1 C2 C3 C4 D1 D2 D3 D4

Figure 5: Query considered to be most interesting:
Number of wafers with unpolished surface vs. head in
a polisher. (Exact numerical values are not shown on
the Y-axis to protect proprietary information.)

to be the most interesting due to the presence of out-
liers. For each head in a polisher, the plot shows the
number of wafers processed by that head that were
found at the final inspection to be unpolished. This
figure shows that most of the unpolished wafers come
from the third head in polisher D; suggesting that the
head D3 needs repair. Furthermore, this figure aiso
shows that, excluding the head D3, polisher B is pro-
ducing more unpolished wafers than other 15olishers.
This suggests that polisher B may need attention soon.
A slrnHar fault had also been discovered manually by
the engineers at Texas Instruments. Figure 6 shows
the plot that resulted in the manual discovery of the
problem in head D3. Notice that this query is also on
the list of automatically generated interesting queries
shown in Table 3 (query number 8).

In addition to the above two queries, the prototype
identified 12 other queries as being potentially helpful
in fault isolation. Figure 7 shows one such query. This
figure shows that among the wafers found to be th~n at
the sorting station a substantially large fraction come
from head 4 of polisher A; suggesting that the head A4
needs repair. We had not been previously told about
this problem, so, in a sense, this is a discovery by the
system.

We have found the queries with low values of the in-
terestingness score to be di~cult to interpret for fault-
isolation. This suggests that one could only consider
those queries that have interestingness score above a
certain number to be interesting. Alternatively, one
could prune the list of interesting queries to show only
the top few queries.
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Number Inspect Station Defect Interestingness Score

1 Final Unpolished Surface 2083.31

2 Final Haze 120.00

3 Sort Low Resistivity 116.00

4 Flat Flatness 93.88

5 Flat Warp 59.96

6 Sort Other 37.74
7 Sort Thin 37.32
8 Final Dings 31.71

9 Sort Back Contamination 22.07

10 Final Polish Scratched 15.29

Table 3: Top ten queries considered interesting due to outliers

Figure 6: Manually discovered fault: Number of
wafers with dings vs. head in a polisher. (Exact nu-
mericai values are not shown on the Y-axis to protect
proprietary information.)

Thin Wafers

AI A2 A3 A4 BI B2B3 B4 CI C2 C3 C4 DI D2 D3 D4

Figure 7: Number of thin wafers vs. head in a polisher.
(Exact numerical values are not shown on the Y-axis
to protect proprietary information.)

5 Conclusions
This paper described a prototype system that uses

wafer tr~klng databases for diagnosing failures dur-
ing semiconductor manufacturing. The prototype im-
plements a generate-and-test approach for discovering
interesting patterns from databases. In this approach
one first determines a set of patterns that would be
considered interesting in the domain, and then im-
plements automatic procedures for detecting the pres-
ence of these patterns in the database. The prototype
was tested on a database from a wafer grinding and
polishing operation. In addition to identifying known
faults, the prototype also identified faults that were
previously --]tnown to us.

There are a number of directions in which this ini-
tial prototype can be extended.’ Developing more in-
terestingness evaiuators is an obvious direction. For
numeric data coming from physical sources domain
independent interestingness measures are also possi-
ble. Projection pursuit attempts this task by consid-
ering any non-Ganssian set of points to be interesting
[14]. Other extensions would involve domain filters for
pruning the queries before testing them for interesting-
hess, and domain filters for pr, n~ng queries considered
interesting by purely dais.driven interestingness de-
tectors. A major area that has not been addressed in
the prototype is the issue of query generation. An ex-
haustive approach will be inadequate in complicated
domains with a large number of parameters and ms-
chines.

In the domain of semiconductor manufacturing the
benefits of automating the search for known patterns
in a database are apparent. The task of fault isolation
using wafer tracking databases is repetitive and some
of the operations performed in this task can be spec-
ified precisely. By automating these repetitive and
precisely specified tasks, the busy work required for
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the effective use of wafer tracking database is reduced.
This allows the process engineers to concentrate on
more subtle faults. As a history of patterns in the
responses to queries used to isolate these faults is ac-
cumulated, these new classes of queries and new in-
terestlngness evaluators can be added to the system,
enabling one to improve the performance of such a
system over time. Furthermore, a library of such pat-
terns may provide us w|th a better understanding of
the patterns considered interesting in this domain.

The widespread use of computers in today’s work-
place makes it easy to store and manipulate large
quantities of data. However, due to the sheer volume
of data, and the lack of appropriate tools for using
data available in such large quantities, much of the
recorded data is never utilized. We believe that a part
of this problem can be alleviated by providing tools
for automatically converting large quantities of data
into useful information. We hope to have illustrated
in this paper how one may go about doing this in the
context of wafer tracking databases.
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