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Abstract

Discovery of regularities in data involves search in many spaces, for instance in the space of equations,
boolean expressions, statistical patterns, and the like. If data do not fit any hypothesis in a particular space,
much time could be saved if that space was not searched at all and the search effort was directed to other
spaces. A test which determines the non-existence of a solution in a particular space can prevent unneeded
search. We concentrate on construction of a test which detects the existence of a functional relationship
between two variables in a set of numerical data. The test is passed when the data satisfy the functionality
definition. The test is general and computationally simple. It works on data which include error, limited
number of outliers, and background noise. Our algorithm detects the functional dependence, but it does not
recognize a particular form of that dependence. That task is left to an equation finder, which is called when
the data pass the functionality test. We show, how our functionality test works in database exploration
within the 49er (read:, Forty-Niner) system, as a trigger for the computationally expensive search in the
space of equations. Results of tests show the time saved when the test has been applied. Then we discuss
how the functionality test, in conjunction with a continuity test can be used to recognize multifunctions,
and to split the data so that each part includes a single functional dependency and can be searched for a
single equation.

1 Introduction: the role of application conditions

Machine Discovery systems such as BACON (Langley, Simon, Bradshaw & Zytkow 1987), FAHRENHEIT
(Zytkow 1987), KDW (Piatetsky-Shapiro & Matheus 1991), EXPLORA (Hoschka & Klosgen 1991; Klosgen
1992), IDS (Nordhausen & Langley 1990), ABACUS (Falkenhainer & Michalski 1986), 49er (Zytkow &
Baker 1991; Zembowicz & Zytkow 1993), and many others, explore data in search for hidden knowledge.
They conduct search in usually large hypotheses spaces. Although more discoveries can be made when a
hypotheses space is larger, search in a large space takes plenty of resources: time and memory. Even if a
single search for an equation may take few seconds, when repeated thousands of times it can consume very
significant resources. Can unsuccessful search be avoided? What tests can be applied to determine whether
there is a chance for a solution in a particular space?

Let us discuss the importance of this problem on the following example, taken from a real-world situation.
One of the Navy databases we have analyzed using our database exploration system 49er (Zytkow & Baker
1991; Zembowicz & Zytkow 1992) contains 6032 records, each having values of 35 attributes. 49er, in its
first phase of exploration, searches for regularities in two attributes (Zytkow & Zembowicz, 1993). In an
exhaustive search and without selecting any subsets in data, 49er would consider 35 x 34/2 = 595 pairs of
attributes and would try to find a regularity for each pair. If the search for a regularity takes about 1 second
per each pair, the system needs about 10 minutes to conduct this search. If the search in subsets of data
is allowed, the number of hypotheses grows rapidly. In the simplest case, when subsets of data are created
by splitting values of a single attribute into two groups (we call it the first level of slicing), 49er would need
about 11 hours to try 39270 two-dimensional hypotheses (2 x 35 subsets x 34 x 33/2 attribute pairs in each
subset). On the second level of slicing there are 1256640 new hypotheses to try (about 14 days), 25970560
possible regularities on the third level (about 300 days), etc. However, it is quite probable that in most
subsets no equations would be found. Even if domain knowledge and search goals reduce the number of
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hypotheses, the problem remains important, because regularities that have several conditions in their if part
(each conjunct corresponding to one level of slicing) are typical rather than exceptional in practice.

On a similar task of data analysis, a human would try to use any available knowledge about the attributes
and the data to avoid even considering hopeless hypotheses. Therefore our goal is to capture, formalize and
implement simple and quick application tests, in hope that those tests will prevent unneeded search.

Another reason to avoid the search is when results would not have meaning. Different types of regularities
make sense for different types of variables. For instance, even if two variables have numerical values, if the
numbers are on the nominal scale rather than on interval or ratio scales, the discovered equations are
not meaningful. Considering contingency tables, another class of hypotheses, it does not make sense to
aggregate the values of a nominal attribute in two classes to summarize data in a simple contingency table,
because in almost all cases a single, a priori conducted grouping has little sense. Simple conditions, which
do not even consider the data, but only domain knowledge about the type of variables, can be sufficient.
49er uses each application test before the corresponding space is searched, so that the number of spurious
regularities decreases and/or the efficiency of search is improved. Zytkow and Zembowicz (1993) summarize
the dependence between variable type and regularity type for the use of 49er.

Now we will concentrate on the functionality test, which is meant to prevent an unsuccessful but costly
search in the space of functional expressions. In distinction to tests which consider only the types of variables,
functionality test analyzes the actual data.

2 Testing functionality

Empirical equations are efficient summaries of data, if the data distribution is close to a functional rela-
tionship. In different machine discovery systems, equations form large, potentially unbound search spaces
(Langley et al. 1987; Nordhausen & Langley 1990; Falkenhainer & Michalski 1986; Zembowicz & Zytkow
1992, 1993; Moulet 1992). The search in the space of equations is expensive, however, and it may be repeated
many times for different combinations of variables and different ranges of data. It would be a good idea
to avoid that search on the data which are not conducive to functional description. The problem occurs
typically in database discovery, where most of the data follow weak statistical patterns rather than strong
functional relationships, but some datasets can be described by equations. Still, when strong functional
relationships are possible, it would be a big fault not to notice them when they occur. We need a test which
applies to all datasets and is passed only when the data can be approximated by a function. Additionally,
the size of databases analyzed by 49er requires a fast test, linear in the size of data: O(N), where N is the
number of records.

We will present such a test, which determines a functional dependency between two given variables:
independent (called z) and dependent (y). If the dependent variable cannot be identified, the test should be
run twice, first for y as dependent and then for z as dependent.

The proposed test does not determine the form of functional relation between z and y, but rather tells
whether it is impossible to find one. If the test for functionality returns a positive answer, then one could
focus on looking for a functional form. There is still no guarantee that a function will be found. The goal of
the test is to avoid a search if that search is bound to fail.

2.1 The definition of functionality

We will use the following mathematical definition of functional relationship:

Definition: Given a set DB of pairs (z;,¥%;), i = 1,..., N of two variables z and y, and the range X of z, y
is a function of z iff for each zo in X, there is exactly one value of y, say yo, such that (zo,yo) is in DB.

If the functions considered in a search space are continuous or almost everywhere continuous, as it is
the case in all machine discovery systems, we could add a second requirement: y should be a continuous
function of £. However, discrete data make testing continuity difficult and missing data frequently results in
artificial discontinuities. After many experiments we decided not to test continuity. The issue of continuity
is re-visited in the section on multiple equation finder at the end of this article.
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2.2 Problems with functionality in real data

It is easy to check functionality in a given dataset by the strict application of the definition, that is, by
checking whether indeed a unique value of y corresponds to one value of z. However, in real world data,
because of phenomena collectively called error and noise, strict uniqueness does not occur, so the condition is
unrealistic. We want a more relaxed test that will admit data sets which can be reasonably approximated by
equations. In particular, we want to admit a deviation in values of y, so rather than require a single value of
y, permit a distribution of values in a relatively small interval. This fits a statistical model y = f(x) + é(z),
where f(z) describes the relationship between z and y, while §(2) summarizes the effects of error and noise.

Figure 1a illustrates how the error complicates the problem: for the same value of # there could be many
different values of y. A test strictly based on the definition would frequently fail even if the data could be
described by a function (linear function in the case of data shown in Figure 1a) within a small deviation of
y. If the error §, of y is known, the comparison of values of y should be related to the error. For example,
one can compare |y; — y2| against 8y, + 8y,, where §,; is the error of y;. It means that the definition of the
functionality should be modified for our purpose: for each value of z, differences between the corresponding
values of y must be in the range (-6, 8,). However, in many cases error is unknown. Typically, error is well
estimated only for experimental data.

Figure 1: (a) Effect of error: there is many points that have the same value of z but different y values.
These data could be described by a (linear) function plus a small error. (b) Effect of noise: in addition
to data that follow a functional dependency, additional distribution of points is not correlated with that
dependency, violating the definition of functionality, even if a small error tolerance is permitted. However,
a linear dependency in data can be still easily noticed.
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Another important factor is background noise, which comes from many sources and is common in
databases. Even if all combinations of values are present in the data due to the noise, the functional
relationship may still stand out by a higher concentration of data. Figure 1b shows background noise added
to a functional dependency: in addition to data that can be well described by a linear function, a large num-
ber of points are randomly distributed. The functionality test which permits error would fail here because
frequently the differences between values of y are large. .

Missing data is another factor that adds to the complexity of the problem. For some values of z, data on
the functional dependency may not be present, but the background noise may still be there. This is common
in databases because in many cases there is no control over data collection process.

Finally, we want to tolerate a small number of outliers, that is data which stand out from noise and
lie drastically outside the error distribution. Such data could be entered by error, or they represent a
phenomenon which is of potential interest. Still we wish to neglect those data if they are too few to make
sense of them.
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2.3 Determination of the uniqueness

In databases, typically a small discrete set of values is permitted for each attribute. Given a small set X of
z values, and a small set Y of y values, the product X x Y is computationally manageable, as well as the
corresponding frequency table F' which is a mapping

F:XxY—N,

where N is the set of natural numbers, and F(zg,yo) = n when n is the number of datapoints with z = z¢
and ¥y = yo.

If the number of distinct values of z and/or y becomes too large to compute the frequency table, the
values of z and y can be grouped into bins 5(X) and b(Y'), respectively. Aggregating the values of z into bins
b(X) of equal size Az means that the point (o, o) is replaced by a pair of integer numbers (kz,ky) such
that ¢ is in the range from zmin + kz AZ t0 Tmin + (kz + 1)Az, and yo is in the range from ymin + kyAy
t0 Ymin + (ky + 1)Ay, where Zmin and ymin are the smallest values of « and y, respectively. The frequency
table F(kz, ky) can be interpreted as a grid b(X) x b(Y') imposed on the data (z,y) and defined by Az and
Ay.

Binning the original variables z and y into bins b(X) and b(Y) helps to determine functionality in data
which include error and/or noise. If the grid size Ay is comparable to the error 6y, the requirement of
maximum difference between y values corresponding to the same value of x can be replaced by: all points
in the same z-bin k; must lie in the adjacent y-bins (for example, in bins k, — 1, ky, ky + 1). This works
only if the bin sizes Az and Ay are not smaller than corresponding errors; otherwise the functionality test
may fail because points in the same z-bin may not lie in adjacent y-bins, even if the original data follow a
functional dependency plus error. On the other hand, if the sizes Az and Ay are too large, the test could
assign functionality to data that intuitively should not be described by a function. In the extreme case,
when Ay is larger than Ymaz — Ymin, all points always lie in the same y-bin, because one bin includes all
values of y.

The problem of background noise can be alleviated if one tests the adjacency only for cells that contain
an above average number of points. This noise subtraction works effectively only if the background noise
is not stronger than the regularity itself. But if the noise is stronger, there is hardly any chance to find a
regularity.

If the errors §; and 6, are known, they can be used as the corresponding bin sizes Az and Ay. But if they
are unknown or uncertain, the proper grid sizes must be estimated. Before we present the algorithm which
estimates the grid sizes, let us consider an ideal functional dependency, say a straight line, as in Figure 2a.
The data are evenly distributed with constant distance A in = between points. Let us define the “density”
p as the average number of points in all cells which contain at least one point. As long as the grid size Az
is smaller than A, p is equal to one. The density p starts to grow when Az becomes greater than A. Note
that as opposed to the true density equal to the number of data points divided by the total number of cells,
p does not depend on the number of z-bins in the following sense. If we extend the range of z by adding
more points which are evenly distributed, and keeping Az constant, then in our ideal example, p will have
exactly the same values. This is important because it means that the “density” measure p does not depend
on the range of z or y as long as bin sizes are the same. Therefore p can be used to determine Az and Ay.
Figure 2 shows the difference between our parameter p and the true density equal to the number of points
divided by the total number of cells.

Determination of the grid size. Our algorithm for finding the grid size starts from some small initial
sizes Az and Ay and changes these sizes until a criterion for “density” p is satisfied.

Note that for the linear dependency y = azx -+ b and evenly distributed points the “density” p becomes
larger than 1 when Az > A = X/N or Ay > aA = Y/N, where N is the number of points, X is the range
of 2, and Y is the range of y. Based on these observations, we have developed the following algorithm to
determine of the grid size in the case of unknown error. po is the minimum required “density” of points in
non-empty cells.

Algorithm: Determine grid size
Az — X/2Npy, Ay —Y/2Npo
p — N / (# of non-empty cells)
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Figure 2: Comparison of “density” p for cells which contain data and true density: (a) sample points lying
along a straight line y = ax + b; (b) grid with Az = A/2, p = 1, density = 1/16; (c) grid with Az = A,
still p = 1 but density = 1/4; (d) grid with Az = 2A, p = 2 and density = 1. Note that parameter p stays
the same until Az becomes larger than A, or Ay larger than aA; A is the smallest difference between z
coordinates of points.

(a) (b)

(c) (d)

if p < po then
repeat
Az — 2Az, Ay — 2Ay
p — N [/ (# of non-empty cells)
until p > pg
else
repeat
Az — Azf2, Ay «— Ay/2
p — N [/ (# of non-empty cells)
until p < po
Az — 2Az, Ay~ 2Ay
end if
‘end algorithm

The initial values of Az and Ay are chosen to be X/2Npg and Y/2N py, respectively, because for mono-
tonic functions with more or less evenly distributed points the resulting density p would be close to pg. The
additional factor 1/2 was introduced to avoid decreasing the grid size in cases when initial p is only slightly
larger than py. Decreasing the grid size is more costly than increasing it, because the latter operation can
be performed on the existing grid from the previous step, while in the former case the density grid must be
build from data. From the definition of p one can see that its value is never smaller than 1. If the grid size
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is too small, the value of p is about 1.

The initial values of Az and Ay are chosen based on the discussion of a monotonic function with evenly
distributed points. However, as our algorithm makes none of these assumptions, in many situations Az and
Ay would be then changed: either increased or decreased, until the resulting “density” parameter p gets
close to the required value pg.

When p becomes significantly greater than 1, say its value is about 2, it means that there is on average
about two points per each non-empty cells. At that moment for most data one can analyze functionality
based on that grid size, therefore a good default value for po is around 2. However, when the distribution of
data is very uneven, po should be increased.

2.4 Functionality test

The input to the functionality test is a frequency table of data for a grid based on b(X) and b(Y'), the binned
values of £ and y. The grid b(X) x 5(Y) can be (1) built based on the known error, (2) determined by the
above algorithm, or (3) obtained from the already binned data (in most databases the attributes are already
binned). The following algorithm determines whether it is worthwhile to search for an equation that fits the
data: '

Algorithm: Test functional relationship between z and y
given the table of actual record counts
AV « average number of records per cell
for each value in b(X)
find all groups of adjacent cells with counts > AV
if # of groups > a then
return NO-FUNCTION
end if
end for
if average # of groups > § then
return NO-FUNCTION
else
‘ return FUNCTION
end if
end algorithm

The algorithm is controlled by two modifiable parameters, o and §, which are measures of local («) and
global (3) uniqueness in y, that correspond to the number of values of y for the same value of . The default
values used by 49er are: o = 2 (experimental data) or 3 (databases), 8 ~ 1.5. For @ = 3 the functionality
test fails when for a value in b(X) there is more than 3 adjacent groups of cells with the above average
density of points. This higher value of a solves the problem of rare outliers: there could be up to 2 outliers
(that is, cells having an above average number of points) provided it happens very rarely. However, many
outliers or frequent discontinuities in y should fail the test, therefore the value of 8 should be much smaller
and close to one. Note, that the test with both parameters set to 1 corresponds to the strict mathematical
definition of the functionality, as discussed earlier. Presence of error, noise, and other data imperfections
force values of « and B to be larger than 1. '

The values of o and § should be increased for sparse data with strong background noise, while they
should be reduced if we are looking for high-precision functional dependencies in experimental data. If the
background noise is strong, fluctuations in noise could result in cells having above the average number of
points coming from pure noise. In that case, considering cells with the above average density of points
may not always be a cure for the noise. In such cases one should increase the values of o and 3 to allow
more discontinuities in y, coming from noise. On the other extreme, if the data result from high-precision
experiments with very little noise, discontinuities in y usually would reflect the true nature of the dependency
in data (if any) and therefore should be treated more seriously: a and § should be decreased.

Generally, for high-precision data, a should be set to 2. Note, that this is practically the smallest value
(a is integer). The test with oo = 1 frequently reports lack of functionality even for artificial data generated
for a simple function plus very small error. On the other extreme, o = 4 results in assigning functionality
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to most datasets, sometimes even when the data contains only noise (provided that g is increased, too).
Therefore, o should be either 2 (high-precision experimental data) or 3 (most databases). For the similar
reasons, the value of B should always be larger than 1. Its value can be estimated by Neztra/Nx, where Nx
is the number of bins in X while N.z¢,, is the total number of permitted groups of cells other than those
following a (hypothetical) function. Again, for high-quality experimental data with very small noise and
small error one could restrict Neg¢rq to 1 or 2. However, for most databases the value of Negerq should be
significantly larger, due to strong noise.

Although the test was originally designed for real-valued attributes, it can also be used for ordinal
attributes provided that the number of different attribute values is not too small (in practice, there should
be at least 5 values).

3 An application: discovery of functionality in 49er

49er is a machine discovery system that analyzes large databases in search for regularities hidden in those
data. In the first phase of its exploration of a database, 49er looks for regularities holding for 2 attributes
(variables). We will focus on that problem. ‘

The two basic types of regularities considered by 49er are contingency tables and equations. While
analysis of contingency tables is relatively fast (for example, 49er needs about 0.1s for a typical contingency-
all regularity), the search for equations is quite costly (3-5 seconds for the same data). Therefore 49er uses
domain knowledge about attributes (for example, to avoid search for equations for nominal attributes) and
the test for functionality to avoid the search for equations when there is no hope to find them.

Table 1 presents empirical data which show advantages of the functionality test on several test runs.
While the number of detected regularities was only slightly smaller when the test has been applied, the
computation time was significantly shorter. In these tests some 26,000 of data subsets were examined by
49er. Only few of them can be reasonably approximated by functional dependencies. Most discovered
equations are very weak. Equations “lost” when the test was used belong to the weakest of all discovered
equations and their number varies when one slightly changes o and 8. Table 2 shows one of the “lost”
equations: note that one can hardly see any functional dependence for those data.

Table 1: Comparison of 49er execution times with and without test for functionality. Tests were conducted
on about 1400 records, 10 attributes, and an average 10 values per attribute. 49er considered about 26,000
datasets in those data. The results show that run-time was reduced significantly while only about 10% of
equations were not discovered.

Test Functionality | Number of CPU time | Comments
number test used? equations
1 yes 71 258 minutes | database of
2 no 77 -610 minutes | 1400 records
3 yes 24 58 minutes | same data but
4 no 26 80 minutes | a more shallow search

Tests presented in Table 3 were designed to check also the overhead introduced by the functionality test:
a strong functional dependence was present in all analyzed subsets of data. The execution times show that
that overhead is negligible. Note that this time no equation was lost. Table 4 presents a strong equation
that was discovered in one of the subsets: as opposed to data in the table 2, this time functional dependence
is clearly visible.

The example data of table 4 also clearly shows why we had to modify the mathematical definition of
functionality. First, although the discovered equation is quite strong, one can still easily see the presence
of error: for many values of & there is more than one corresponding value of y. Second, the nature of this
dependency (quite well approximated by a logarithmic function) is that for the first value of z most of y
values are present.

Many tests conducted on real and artificially generated data show that only a small percent of equations
that weakly fit data could be sometimes lost when the test is used. Our tests reported in Table 3 demonstrate
a very small overhead introduced by the test.
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Table 2: Actual frequency grid summarizing data for which a quite strong equation was found: (CANX) =
log(a + b(HST)). The fitted values of parameters a and b and their standard deviations o, and o} are
a=-023, 05 =0.13, b = 0.097, o3 = 0.030.

CANX
911 2] 0] 1] 0J0JO] ©
B 1[3[ 3] 0] 1[0]0[0] 0
75]2] 1] 2| 0| 1[1[1] 2
6(5|5| 41 5| 5| 4412 1
5 1]5] 9] 8] 6] 4]7]4] 1
4|45 6|18[12] 5]|5]5] 7
321 6] 5] 8[10]7]2] 3
2| 4|7[10] 4|12] 4]|4]2]| 2
1][2]4] 3] 4] 2| 3[3[4] 3
ol0[2[ 3] 1| 3/ 03[0 3
20 0] 2 3] T[1[1] 1
Bo[1] 1] 0] 0] 0[0[0] 0
3]ojo] 1] 0] 0] 0J0[0[ O
[ M273] 4] 5] 6[ 7[8[9]10]

HST

Table 3: Comparison of 49er execution times with and without test for functionality. Here 49er focused only
on pairs of attributes that had functional dependencies, known or discovered earlier, so that the test almost
always resulted in the “yes” answer. Note that execution times for tests 5 and 6 are almost the same — it
means that the overhead introduced by the test for functionality can be neglected compared to time saved
by not using the Equation Finder.

Test Functionality | Number of [ CPU time | Comments
number test used? equations
5 yes 23 699 seconds | 6000 records, only for
6 no 23 695 seconds | pairs of attributes with
functional dependencies

The functionality test can be also applied as a tool for discovering the presence of functional dependencies
between attributes. When requested, 49er can use only this test while analyzing a database. The results
are of interest to users investigating the existence of functional dependencies in data, but can be also used

Table 4: Actual frequency grid for a data subset where a strong equation was found: (PAYGRADE) =
log(a+b(LOS)). The fitted values of @ and b and their standard deviations are a = 3.13, 04 = 0.03, b = 4.67,
oy = 0.12. Note, that the ratio of deviation to the corresponding parameter value is significantly smaller
than for the previously discussed equation.

PAYGRADE
7 0 0 0 0 0] 0y 0] 0f Of 0] O] Of O] O 0 O] 1
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to modify the default search strategy of 49er. The latter application is especially useful for databases with
many attributes. Our functionality test can be quickly applied to many pairs of attributes, and the results of
this preliminary search can be used to direct the search in the most promising directions, without considering
combinations of attributes for which the functionality test failed or returned high values of 3.

4 Discovery of multifunctions

We will now discuss an extension of the functionality test that leads to discovery of multifunctions. The
data pass our functionality test when, for most values of z, there is only one continuous group of cells with
counts above the average. However, if the test consistently shows two groups of cells for a subrange of z, it
could mean that there are two functional dependencies in data: y = fi(z) and y = fa(z).

The existence of two or more functional dependencies in data is practically useful. For example, if one
collects data on the weight of African elephants of different age, one can observe that there seems to be two
distinct dependencies between weight and age. A closer look could show that there are actually two kinds
of African elephants: large bush elephants (Lozodonta africana) and smaller forest elephants (Lozodonta
cyclotis). Such a discovery of two or more functional depencencies in data could lead to the discovery of a
classification. Piatetsky-Shapiro and Matheus (1991) present another method for detection of multifunctions.
However, their approach is currently limited to linear functions and is O(N?).

We have implemented Multiple Equation Finder (called MEF) that uses an extended version of the
functionality test to discover multiple functional relationships. If the test returns a high value of 8, MEF
checks continuity of cell groups in the z direction, then partitions the data and runs Equation Finder for
every group of adjacent cells, and finally tries to extend range of discovered equations (if any) and reduce
number of groups by merging them, if they can be described simultaneously by means of the same equation.

Algorithm: Multiple Equation Finder
run Test for Functionality
if average # of groups < § then
run Equation Finder
else
for each group of adjacent high-density cells
merge the group with others if they are adjacent in z
end for
for every group spanning through many subranges of =
run Equation Finder
end for
repeat
merge two groups when they have similar equations or
equation of one groups describes data in the other group
until no merging happened in the last iteration
end if
end algorithm

Detailed description of group merging goes beyond the scope of this article and will be presented elsewhere.

5 Conclusions

In this article we have presented a test which detects existence of functional dependencies in data. Currently,
the functionality test is used (1) in the database mining system 49er in order to decide whether to invike
the search for equations and (2) to find multiple equations in data.

In 49er, if the user is interested in discovery of equations, the functionality test is applied to each
dataset. Based on the results of this quick test, 49er decides whether the computationally expensive search
of Equation Finder should be performed or not. In our applications on various databases we have found that
the functionality test significantly reduces the search time, thus increasing the overall performance of 49er.
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Multiple Equation Finder uses the functionality test in a different way: the test determines whether and
how the data should be partitioned so that a single equation can become a search target in each partition.
The functionality test is only one of application tests used by 49er. New tests can be very easily added to
the system. Generally, for each type of regularity a number of application tests can be defined.

Our test for functionality works very well for numeric or ordinal data.

When it is known that the data contain very small error and no noise and attributes have only few values,
one could apply a simpler test, or a test for discrete-valued attributes used by Piatetsky-Shapiro (1992) in
the Knowledge Discovery Workbench (Piatetsky-Shapiro and Matheus, 1991).

Acknowledgment: Special thanks to two anonymous reviewers for very helpful comments and sugges-
tions.
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