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Abstract

Machine discovery systems help humans to find natural laws from collections of
experimentaUy collected data. Most of the laws found by existing machine discovery
systems describe static situations, where a physical system has reached equilibrium.
In this paper, we consider the problem of discovering laws that govern the behavior of
dynamic systems, i.e., systems that change their state over time. Based on ideas from
inductive logic programming and machine discovery, we present two systems for dis-
covery of qualitative and quantitative laws from quantitative (numerical) descriptions
of dynamic system behavior.

1 Introduction

The task of modelling natural and artificial dynamic systems, i.e., systems that change their
state over time, is omnipresent. To make the modelling task easier, qualitative modelling
formalisms, such as QSIM, [Kuipers 1986] use qualitative relationships to describe depen-
dencies among the system variables. In QSIM, these relationships are qualitative differential
equations, in contrast to ordinary differential equations used to numerically model dynamic
systems. States are also described qualitatively as pairs of quMitative values and qualitative
directions of change.

Considerable effort has been devoted to the problem of automating the task of build-
ing qualitative models from example behaviors, i.e., the task of qualitative identification of
dynamic systems [Coiera 1989], [Kraan et al. 1991]. Viewing qualitative models as logic pro-
grams and representing the QSIM theory in logic, [Bratko et al. 1992] and
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[D~eroski and Bratko 1992] used systems for inductive synthesis of logic programs (inductive
logic programming [Muggelton 1992]) to automatically synthetize qualitative models from
example behaviors. MISQ [Kraan et al. 1991] can generate a qualitative model from a nu-
merical trace by translating the numerical trace into a qualitative behavior from which a
qualitative model is then generated.

The first part of the paper describes QMN (Qualitative Models from Numerical traces), 
system that generates qualitative models (qualitative differential equations) from numerically
described behaviors directly, without translating them to qualitative behaviors. To this end,
QMN assumes the original numerical interpretation of the qualitative constraints used in
QSIM, which include addition, multiplication and time derivation. A generate and test
methodology is used in QMN, similar to the ones used in GENMODEL [Coiera 1989] and
MISQ [Kraan et al. 1991].

It turns out that there is only a short step from the automatic generation of qualita-
tive differential equations from numerical traces to the generation of ordinary differential
equations from numerical traces. The latter problem is actually the problem of numerical
discovery of the dynamics of a given system. Although there exists a variety of systems for
numcrical discovery, they have not addressed the problem of discovering dynamics from ex-
ample behaviors. This problem is attacked by the discovery system LAGRANGE, described
in the second part of the paper.

Initially, LAGI~ANGE was to use a very simple process: give the derivatives of the
observed system variables and the system variables themselves, observed over a period of
time, to an existing system for numerical discovery. The discovery system would then produce
a set of laws (differential and algebraic equations) describing the behavior of the observed
system. However, existing discovery systems were not suitable for use within LAGRANGE
as they ask for additional data or consider dependencies between two variables only.

We thus had to develop a discovery mechanism to be used within LAGRANGE, which
does not ask for additional data and considers dependencies among several variables at
the same time. It is based on multidimensional linear regression, and introduces new
terms by multiplication, following ideas from other discovery systems, such as BACON
[Langley et al. 1987], ABACUS [Falkenheiner and Michalski 1990] and
FAHRENIIEIT [ZytkowandZhu 1991], and inductive logic programming systems
[D~eroski et al. 1992], [De Raedt and Bruynooghe 1993].

Section 2 first defines the task of numerical discovery of dynamics and then describes
QMN, a system that generates qualitative models from numerically described behaviors.
LAGRANGE, a machine discovery system that constructs quantitative models of dynamic
systems, i.e., sets of algebraic and differential equations, is described in Section 3. Ex-
perimental evaluation of QMN and LAGRANGE is given in Section 4. Finally, Section 5
concludes with a discussion of related work and directions for further work.

2 The QMN algorithm

The task of identification of dynamic systems by numerical discovery is to find a set of
laws that describe the dynamics of the system, given a sample behavior. More precisely, a
set of real-valued system variables is measured at regular intervals over a period of time, as
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illustrated in Table 1. The laws to be discovered (also called a model of the dynamic system)
typically take the form of a set of qualitative or ordinary differential equations.

Table 1: A behavior trace of a dynamic system.

time Xl .x2 ..... x. .
to Xl0 X20 XnO

to+h Xll X21 Xnl

o..

to + Nh XlN X2N XnN

QMN (Qualitative Models from Numerical traces) generates a qualitative model from 
numerically described dynamic system behavior. QSIM [Kuipers 1986] constraints on the
system variables are used in the generated qualitative model. The constraints are taken from
the repertoire given in Table 2.

Table 2: (: SIM constraints tested in QMN.
QSI’M Constraint Meaning
const( F)
deriv( F1, F2)
minus(F1, F2)
M+(F1,F2)
U-(El, F2)
add(F1, F2, F3)
mult(F1, F2, F3)

F is constant over time
F2 is time derivative of F1
F1 = -F2
F1 is monotonically increasing with F2
F1 is monotonically decreasing with F2
F1 + F2 = F3
F1 * F2 = F3

The input to QMN is a behavior trace of a dynamic system, such as the one given in
Table 1. In addition, the values of three parameters have to be specified. These are: the
order o of the dynamic system (the order of the highest derivative appearing in the dynamics
equations), the maximum depth d of new variables introduced by combining old variables,
and the error tolerance c used when testing qualitative constraints.

Table 3 gives the QMN algorithm. Taking the set of system variables S = {X1,..., X~},
QMN first introduces their time derivatives (up to order o). It then introduces new variables
by repeatedly applying the basic arithmetic operations to the variables from S and their
time derivatives. Finally, given the set of all (old and new) variables, it generates and tests
all possible qualitative constraints.

The time derivatives of the system variables are introduced by numerical derivation in
step 1. Step 2 combines all variables (the system variables and their time derivatives) pairwise
in all possible ways, using the four basic arithmetic operations. If vi -- IVil, then we have
v0 - (o÷ 1)n and vi <_ 4VoVi-~, which gives Vd-x = O((4n(o+ 1))d) at the end of step 2. The
values of the new variables in all time points are also calculated in this step.
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Table 3: The QMN algorithm.

1. Introduce time derivatives (up to order o) of the system variables
D:=0
for all variables v in S do

V0 :--~ V

fori:=l toodo
d

vi := /vi-1 (* .i = i-1 *)
D := D U {vi}

V:=SUD

2. Introduce new variables
V0:=V
forl:=l tod-1 do

Yt:=0
for all pairs of variables (v, u) C V0 x Yi-1 

av,u := v + u

mv,u := v ¯ u
dr, u := V/U

(* duplicate terms removed in this step *)
V:= VUV~

3. Generate and test qualitative constraints
M:=O
for all v E V do

test const(v)
add to M if holds

for all (v,u) E V x V 
test deriv/minus/M+ /M-(v, u)
add to M if holds

for all (v,u,w) E V x V x do
test add/mult(v, u, w)
add to M if holds
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The qualitative constraints are generated and tested in step 3. The total number of
constraints tried is O(vd_13), that is O((4n(o 1))3d). Th is nu mber isexponential in 
parameter d.

The testing of generated constraints is done as follows:

A system variable X is considered constant if its standard error is below the error

tolerance e, i.e., const(X) ¢:~ o’x < 

To test whether Y is a derivative of X, the numerical derivative of X, named )~7, is
first computed. A linear regression Y = aX + b is then performed. If the correlation

coefficient R and a are close to one and b is close to zero, all within the error tolerance
e, then Y is considered a derivative of X.

For the constraint minus(X, Y) a linear regression Y = aX + b is performed, and the
constt’aint is considered to hold if R and a are close to minus one and b is close to zero,
all within the error tolerance e.

For add(X,Y, Z) and mult(X,Y, Z), a linear regression Z = aW + b is performed,
where W = X + Y and. W = XY, respectively. The constraints are considered to hold

if R and a are close to one and b is close to zero, all within the error tolerance e.

To test whether the constraint M+(X, Y) is consistent with the observed behavior, one
has to check that for all time points tl End t2 it holds that (Xt~ < Xt2 =~ Ytl < Yt2).
Similarly, M-(X, Y) is consistent with the sample behavior if Vtl, t2 : (Xtl < Xt2 =~

Y,, >

3 The LAGRANGE algorithm

While QMN generates a set of qualitative differential equations from a given behavior of a
dynamic system, LAGRANGE is able to generate a set of ordinary (quantitative) differential
equations. The input to LAGRANGE is a behavior trace of a dynamic system specified
in Table 1. In addition, the values of four parameters have to be specified. These are:
the order o of the dynamic system (the order of the highest derivative appearing in the
dynamics equations), the maximum depth d of new terms introduced by combining old terms
(variables), the maximum number r of independent regression variables used for generating
equations, and the error tolerance e used when testing equations.

Table 4 gives the LAGRANGE algorithm. Taking the set of system variables S =
{X~,..., Xn}, LAGRANGE first introduces their time derivatives (up to order o). It then
introduces new variables (terms) by repeatedly applying multiplication to variables from 
and their time derivatives. Finally, given the set of all (old and new) variables, it generates
and tests equations by using linear regression.

The time derivatives of the system variables are introduced by numerical derivation in step
1. Step 2 introduces as new variables all the terms of depth not greater than d consisting of
system variables and their derivatives (variables from V0). When introducing new variables,
terms of depth l are gathered in Vt-1. A term I-[i~1 X/~i is of depth l iff l = ~in=l a/. For

3 2example, X1X2 is of depth 2 and X1X2 is of depth 5. As V0 contains (o + 1)- n variables,
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Table 4: The LAGRANGE algorithm.

1. Introduce time derivatives (up to order o) of the system variables
D:=O
for all variables v in S do

V0 :~ V

fori:=l toodo
d

vl := ~vi-1 (* vi = ~i-1 *)
D := D U {vi}

V:=SUD

2. Introduce new variables with multiplication
Vo:= V
forl:=l tod-1 do

Vl:=O
for all pairs of variables (v, u) E V0 x Vl-1 

nv, u :~ V *

yz := V; u {no,~}
(* duplicate terms removed in this step *)

V:= VuVt

3. Do linear regression on subsets of all variables
M:=O
for i := 1 to r + 1 do

for all subsets n e P(V), ]R] = i 
choose dependent variable y E R
if Linear Regression (y, R \ {y}) is significant
thenM:=MU{y=co+ ~ cxx}

(* add Linear Regression formula to M *)
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contains O(((o+ 1)/?,)/+1) variables. Consequently, at the end of step 2, IV] = O(((o+ 1)n)d).
The values of the new variables in all time points are also calculated in this step.

Equations are generated and tested in step 3. Roughly speaking, each subset of V sized
at most r + 1 is used to generate a linear equation, where one of the terms is expressed as
a linear combination of the remaining ones. The constant coefficients in the linear equation
are determined by applying linear regression [Volk 1958]. The multiple correlation coefficient
R [Volk 1958] is used to judge the significance of the equation. If R > 1 - e, where e
is a prespecified threshold (a user definable parameter in LAGRANGE), the equation 
considered significant and is retained in the model of the dynamic system.

The total number of regressions tried is O(IVIr+l), that is O(((o+ 1)n)d(r+l)). While 
number is exponential in the parameters d and r, we should note that small values of these
parameters were sufficient for all the experiments we performed (d = 2, r = 3).

4 Experimental evaluation

The experimental evaluation of QMN and LAGRANGE was done as follows: A set of differ-
ential equations, modelling a real-life dynamic system was first chosen, as well as appropriate
values of the parameters involved. The initial state for the system variables, the integration
step h for solving tl~e differential equations and the number N of integration steps were then
selected. The differential equations were then !ntegrated using the fourth-order Runge-Kutta
method [Press et al. 1986] (pp. 550-554). The obtained behavior was then given to QMN
and/or LAGRANGE, which generated a set of laws describing the behavior.

Both QMN and LAGRANGE are implemented in the C programming language and were
run on a Sun SPARC IPC workstation. All systems we considered were first-order dynamic
systems. The parameters o and d were set to one in all experiments. The parameter r in
LAGRANGE was set to three. The maximum running time for QMN and LAGRANGE for
the experiments described was four seconds.

4.1 Experiments with QMN

QMN was applied to two dynamic systems, which have been used earlier as test examples for
the automatic generation of qualitative models. These are a U-tube system and a cascaded
tanks system [Kraan et al. 1991].

A large number of qualitative constraints were found to be true by QMN in both cases.
Redundant and trivial constraints were removed manually. Future versions of QMN might
benefit from a path-finding (graph connectedness) approach, similar to the one in MISQ
[Kraan et al. 1991], which retains only those constraints necessary to connect all system
variables.

U-tube

A U-tube system consists of two containers (A and B) connected by a thin pipe. Both
containers have some water in them, one more than the other. The system is described by
the following model
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l’A = C(IB--/A)
IB = --IA

where IA and lB are the water levels in the tanks. The value c = 2 was chosen for the constant
and the behavior of the system was simulated from the initial state lA = 100, IB = 40 for
N = 100 steps of h = 0.02 time units.

The following qualitative constraints were found, among others, to be true for the U-tube
system:

m-ptU4 A,
m_minus( lB, IB 

m_minus(!A, ls)
deriv( ln, 1B 

,~_plu~( ln, :A ).
m_minus( I A, I A 

deriv(la, l’A)

Cascaded tanks

A cascaded tanks system has been used to illustrate the use of MISQ [Kraan et al. 1991] for
learning qualitative models of dynamic systems. It consists of two tanks (A and B), where
water flows from the first into the second. The first tank has a constant inflow. The whole
system can be desoribed by the following model

iA = Cl

l’A = iA--OA OA = C~Va-2
t’B = oA--on OS = c~vq-i

where iA is the inflow into tank A, OA and oB are the outflows from tanks A and B and
IA, IB are the corresponding water levels. The values cl = 200 and c2 = 13 were chosen
for the constants and the behavior of the system was simulated from the initial state lAo =
10000, IBo = 0 for N = 115 steps of h = 0.5 time units.

Given the above behavior, the following qualitative constraints were found, among others,
by QMN:

const(iA)
m_minus( l A, l A 
m_plus(IA, OA)

deriv(1B, l’B)
add(oA, l’A, iA)

m_minus( oA , I A 
m_plus( lB: oB 
deriv(lA,.lA)
add(on, Is, OA 

4.2 Experiments with LAGRANGE

Models for several real-life dynamic systems were generated by LAGRANGE. These include
a U-tube system, a cascaded tanks system [Kra~n et al. 1991], a linear chemical reaction,
and a predator-prey system [Babloyantz 1986].

A significant equation might be re-discovered several times in similar forms by LA-
GRANGE. For example, the equation X + Y = Z could be re-discovered as X2 +XY = XZ.
Without loss of generality, we have removed this particular farm of redundancies manually.
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Future versions of LAGRANGE will take care of this problem automatically. More sophis-
ticated redundancies are complicated to handle and have been left untouched, as in the
chemical kinetics example.

U-tube

The following set of equations, equivalent to the original model, was generated by LA-
GRANGE from the U-tube system behavior.

IB = 140 -- IA

IA = 280--4"1a

lB = --280 -4- 4. lA

This set of equations is redundant. Any single equation can be removed without loss of
completeness.

Cascaded tanks

The following set of equations, equivalent to the original model, was generated by LA-
GRANGE for the dascaded tanks system described above.

iA = 200
lA = 200--OA 169"lA = OA~

Is = OA--OS 169.1B = oB2

Chemical kinetics

The following is a simple chemical kinetics model of a two-step chemical reaction, where a
substance A is transformed into substance B, which is then transformed into substance C
[Babloyantz 1986] (p. 37).

The constants kl and ks are the corresponding reaction rates. The evolution of the concen-
trations of the substances involved in the reaction is described by the following equations:

= -klA

= klA- k2B

= k2B

Only substance A was initially present (Ao = 100, B0 = Co = 0). The above differential
equations, with reactions rates kl = 2 and k2 = 3, were integrated with a time step of 0.01
units for 500 steps. An equivalent model was generated by LAGRANGE:
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fi = -2. A

= 2.A-3.B

C=3.B

(.) C = 100-A-B

The equations for A,/~ and C are obtained by filling in the values of the constants kl and ks
in the original model. Equation (,), on the other hand, is not found in the original model.
It expresses the law of mass conservation for the particular case at hand. Any single of the
four generated equations can be removed without losing equivalence to the original model.

Population dynamics

A Volterra-Lotka model of periodic behavior can be used to model the coexistence of prey
and predator populations [Babloyantz 1986] (p. 145). For example, take the populations 
lynxes and hares. The latter is a vegetarian, the former a carnivore that hunts hares. The
lynx population must behave in such a manner that it must not eat all the hares, or its own
species will disappear. The dynamics of this system is described by the following model

1~rl= kiN1 - sN1N~
IV2 = s N1N2 - k~ N2

We chose the initial hare and lynx populations to be N10 = 10 and N~0 = 140, and the
parameters s -- 0.01, kl = 1.6, k2 -- 0.2. We than integrated the above differential equations
with h = 0.05 for N = 240 time steps. The following two equations were generated by
LAGRANGE:

N1N2 -" 160.Nl-100./’(/x
NaN2 -- 20. N2 --I- 100./’Q2

They can be obtained by substituting the values of the parameters in the original equations,
then multiplying by 100 = 1/s and expressing N1N2 from the resulting equations.

5 Discussion

QMN and LAGRANGE are inspired and benefit from ideas developed in the field of in-
ductive logic programming. First of all, QMN addresses the problem of learning qualita-
tive models that has also been tackled by the GOLEM [Bratko et al. 1992] and mFOIL
[D~eroski and Bratko 1992] systems for inductive logic programming. Second, both QMN
and LAGRANGE introduce new variables in the same way as new variables are introduced
by determinate literals in LINUS [D~eroski et al. 1992]. Finally, they are also related to the
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work on clausal discovery [De Raedt and Bruynooghe 1993], where integrity constraints are
systematically generated and tested with respect to a given database.

Besides QMN, there exist other systems (such as MISQ [Kraan et al. 1991]) that are able
to generate qualitative models from numerical traces. Also, considerable effort has been spent
on generating qualitative models from qualitative behaviors [Coiera 1989],
[Bratko et al. 1992], [D~eroski and Bratko 1992]. While GENMODEL [Coiera 1989] and
MISQ [Kraan et al. 1991] cannot introduce new variables in the model, QMN can. Inductive
logic programming systems can also introduce new variables, but have problems because of
tile indeterminacy of the new variables. Namely, when adding two qualitative variables, the
outcome is not uniquely determined. No such problems are present in QMN as the new
variables introduced numerically have uniquely determined values. The introduction of new
variables in QMN is based on the idea of introducing new determinate literals within the
LINUS inductive logic programming system [D~eroski et al. 1992]. We consider QMN to be
a stepping stone from the area of learning qualitative models, which includes inductive logic
programming, to the world of machine discovery, where LAGRANGE is situated.

LAGRANGE is unique among machine discovery systems in its ability to discover laws
that govern the behavior of dynamic systems. Although it might be regarded as a small
extension of existing discovery algorithms, it can handle a whole new world of problems
which cannot be handled by existing discovery systems. As the task of automated modelling
of dynamic systems is omnipresent, LAGRANGE is potentially applicable to a wide variety
of real-life problems.

However, several problems have to be addressed to facilitate practical applications of
LAGRANGE. Most notably, measurement errors have to be taken into account during the
process of searching for laws (differential and algebraic equations). Approaches used in ex-
isting discovery systems, such as FAHRENHEIT [Zytkow and Zhu 1991], might prove useful
in this respect.

As mentioned in the introduction, our initial idea for LAGRANGE was to employ a
transformation approach (such as used in LINUS [Lavra5 et al. 1991], [D~eroski et al. 1992])
and transform the problem of discovering dynamic to an ordinary discovery problem as
addressed by existing discovery systems. The transformation would add the corresponding
time derivatives to the existing system variables. The two basic requirements for a machine
discovery system to be used on the transformed discovery problem are:

. It must be able to find laws involving more than one variable from observational data
only, i.e. without asking for additional experiments.

¯ It must be able to find a set of laws, rather than a single one, where all laws hold for
the domain as a whole. It is not explicitly stated beforehand which system variables
are dependent and which are independent.

Existing discovery systems, such as BACON [Langley etal. 1987], ABACUS
[Falkenheiner and Michalski 1990] and FAHRENHEIT [Zytkow and Zhu 1991], may satisfy
the first or second criterion, or even both criteria partially, but do not fully satisfy both
criteria at the same time. New discovery mechanisms had to be developed for LAGRANGE,
to meet the above criteria in full. LAGRANGE thus extends the current work on machine
discovery in several directions.
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The most important contribution of our work is the extension of the scope of machine
discovery to dynamic systems. LAGRANGE is able to construct a set of differential and/or
algebraic equations describing a given behavior of a dynamic system. In this way, it extends
the scope of machine discovery systems from high-school physics (F = ma) to college physics
(F 

Another important extension is the ability to generate a set of laws (constraints) that
hold in a domain as a whole from observational data only, i.e. without asking for additional
experiments. This is in contrast with most machine discovery systems which keep some
variables constant and ask the user (scientist) to vary the others. This may prove impossible
in many cases, especially in the context of dynamic systems.

LAGRANGE was successfully used to generate models for several dynamic systems. In all
cases, LAGRANGE was able to generate models equivalent to the original. Judging on the
successful use of LAGRANGE for building models of dynamic systems and the possibilities
for further improvements, we conclude that LAGRANGE is a promising step towards the
application of machine discovery to complex dynamic systems.
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