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Abstract

This paper proposes a kind of PAC (Probably Approximately Correct) learning frame-
work for inferring a set of functional dependencies. A simple algorithm for inferring the
set of approximate functional dependencies from a subset of a full tuple set (i.e. a set of
all tuples in the relation) is presented. It is shown that the upper bound of the sample
complexity, which is the number of example tuples required to obtain a set of functional

In }
dependencies whose error is at most £ with a probability of at least 1 -4, is O( 76\/17),
where n denotes the size of the full tuple set and the uniform distribution of examples

is assumed. An experimental result, which confirms the theoretical analysis, is also pre-
sented.

1 Introduction

Recently computer systems accumulate various kinds of data such as experimental data,
observation data from satellites, performance observation data for computer systems, logs
for computer and network managements and so on. Though these raw data are expected to
include valuable information, some of them are not fully analyzed. In order to utilize these
data, automatic or computer aided data analysis systems are required. The technique of
knowledge discovery in databases [5] is prospective method for solving this problem. The
volume of raw data is growing larger and larger and we will need to handle tens of millions
of records in the near future. In this situation, knowledge discovery from a portion of raw
data is a key issue for practical problem solving.

This paper treats data that can be represented in a relation (i.e. a set of tuples) and
discusses the problem of inferring a set of functional dependencies that approximately satisfies
the data from its subset. For a set of functional dependencies F' and a full tuple set T', we
define F’s error ¢ as a measure of difficulty in finding the evidence of inconsistency between F'
and T (see Definition 5 and 7). This means that the smaller the error is, the larger the portion
that functional dependencies are consistent with. Then the problem is to show the sample
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complexity, that is, the size of the sample required to obtain a set of functional dependencies
whose error does not exceed &€ with a probability of at least 1 — 4.

The functional dependency is a fundamental dependency of relations. It is originally
introduced as an integrity constraint and used for relational database design (i.e. building
normal form relations). The method of discovering functional dependencies can be applied
to relational database design. Kantola et al. developed a database design tool [7]. In this
tool, a set of functional dependencies are derived from a relation and the derived functional
dependencies are used to decompose the relation. The functional dependency is regarded
as cause-effect relationship where left and right sides of functional dependencies represent
cause and effect attributes respectively. From this point of view, Ziarko proposed a method
to generate a decision table using the discovery of the functional dependency [15]. Thus the
discovery of functional dependency has broad applications.

For the discovery of approximate functional dependencies, we use the framework of PAC
(Probably Approximately Correct) learning (3, 9] proposed by Valiant [14]. Though the
framework seems to be suitable for our problem, it can not be applied directly because of the
following problem:

e Whether a functional dependency is consistent or not is determined not for one tuple,
but for a set of tuples. That is, positive or negative is not defined for one example.

Therefore, we d‘eveloped a PAC learning framework for functional dependencies. In this
paper, we focus on the number of examples. We consider a very simple algorithm whose
output is a set of all the functional dependencies consistent with a sample tuple set. In our
previous paper [2], we showed that the sample complexity under an arbitrary and unknown
1

In
g /1) where n is the size of a full tuple set (a set of all tuples

probability distribution is O(
in the relations) and the number of attributes is assumed to be fixed. However, this value
is too large for practical application. Moreover, it is not realistic to consider an arbitrary
distribution. In this paper, we consider the uniform distribution and show that the number
fn 1 /

is improved to O( lnTs\/-ﬁ) The lower bound is also improved to Q( ! ; 6\/1;), while it
is Q( _1 okl
for an arbitrary algorithm, but for the simple algorithm presented in this paper.

As well as performing theoretical analysis, we made experiments for confirming the the-
oretical results. The experimental results coincide with the theoretical results very well.
Moreover, the sample complexity obtained from the experiments is closer to the lower bound
than the upper bound. These theoretical and experimental results imply that the method
described in this paper can be applied to practical cases.

A lot of studies have been done for learning rules in database systems [7, 10, 11, 12].
Quinlan and Rivest studied a method for inferring decision trees from tuples [11]. Piatetsky-
Shapiro studied a method for deriving rules from a part of data [10]. The forms of rules are
limited to Cond(t) — (t[A;] = b) and Cond(t) — (b < t[A;] < b2). Sonoo et al. studied
another method for deriving rules from a part of data [12]. The form of rules is limited to
(t[A:] = a) — (t[Aj] = by Vb V --- V bi). Functional dependencies can not be described
in either form. Kantola et al. studied methods for inferring functional dependencies (7).
They describe an algorithm for enumerating functional dependencies which are consistent
with sample data. Although their work is similar to ours, the distinction of our work is in the

/) under an arbitrary distribution. Note that the lower bounds shown are not
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approximate functional dependencies and the sample complexity for inferring them, which
were not studied in [7].

The contents of this paper are as follows. In Section 2, the usual PAC learning framework
is briefly reviewed. In Section 3 and Section 4, the sample complexity for testing a functional
dependency is studied. In Section 5, the discussions in Sections 3 and 4 are extended for
multiple functional dependencies and the main result of this paper, the sample complexity
for inferring approximate functional dependencies under uniform distribution, is described.
In Section 6, the results of this paper are compared with the results of our previous paper [2].
In Section 7, an experimental result, which confirms the theoretical analysis, is presented.
Finally, in Section 8, we conclude with proposals for future works.

2 PAC Learning

In this section, we briefly review the framework of PAC learning (3, 9, 14] (see [9] for detailed
discussion).

For an alphabet ¥, a subset ¢ of £* is called a concept. A concept can be regarded as a
function ¢ : * — {0,1} such that ¢(z) = 1if z € ¢, ¢(z) = 0 otherwise. A concept class F is
a (nonempty) set of concepts. For a concept ¢, an ezample of ¢ is a pair (z,c(z)) for z € T*.
An example (z,¢(z)) is said to be positive (resp. negative) if ¢(z) = 1 (resp. ¢(z) = 0).
Each example (z,c(z)) is given randomly according to P(z) where P(z) is an arbitrary and
unknown probability distribution of £ (% is the set of all strings of length at most n).
For concepts ¢; and cg, ¢;Acy denotes the symmetric difference (¢; — ¢2) U (¢ — ¢1) and
P(c1¢z) denotes Z P(z).

z€c1Aca
[Definition 1] ([9]) An algorithm Apac is a probably approzimately correct (PAC) learn-
ing algorithm for a class of concepts F' if

o Apyc takes as input € € (0,1], § € (0,1] and n where ¢ and § are the error and the
confidence parameters respectively, and n is the length parameter.

e Apjc takes examples where each example is given 1andomlv according to an arbitrary
and unknown probability distribution P on zi,

e For all concepts f € F and all probability distributions P, Aps¢c outputs a concept
g € F such that P(fAg) < ¢ with a probability of at least 1 — §.

The number of examples and the computational complexity required to output a concept
whose error is at most £ with a probability of at least 1 — é§ have been studied for various
concept classes [3, 9, 14).

In our framework, a set of functional dependencies corresponds to a concept and a tuple
corresponds to an example. However, the framework of Definition 1 cannot be applied directly
since the consistency of a set of functional dependencies is not determined for a tuple, but
determined for a set of tuples. While a concept is defined as a subset of elements (a subset
of ¥*) in Definition 1, a set of functional dependencies does not correspond to a subset of
tuples. The same set of functional dependencies holds not only for one subset of tuples, but
also for multiple subsets of tuples. Thus, we developed a modified PAC learning framework
for inferring functional dependencies. Of course, extensions of the PAC learning framework
have been studied extensively [1, 4, 6, 8], but they are mainly concerned with probabilistic
concepts and their results do not seem to be applicable in our case.
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3 An Algorithm to Test a Functional Dependency

To learn a set of functional dependencies, we use a simple algorithm as most PAC learning
algorithms do {3, 9, 14]. That is, we derive all functional dependencies consistent with example
tuples. In Sections 3 and 4, we consider the case of testing one functional dependency. In
Section 5, we consider the case of deriving a set of functional dependencies.

3.1 Functional Dependency

In this subsection, we briefly review the concept of the functional dependency [13]. In this
paper, we fix the domain of the relation to Dy X D; x -+ X Dy where every D; is a (suffi-
ciently large) finite set. An element of Dy X Dz X ---x Dy is called as a tuple. A; denotes the
ith attribute and ¢[A;] denotes the ith attribute value of a tuple t. t[A;, A;, - - - A;,] denotes
a subtuple (¢[A;,],t[A4i,], - -, t[Ai,]). A relation T is defined as a subset of Dy x Dy x---x Dn.

[Definition 2] A functional dependency A; A;,---A;, — A, is consistent with a set of
tuples S if, for every t € § and s € S, (1 < Vh < p)(t[A;,] = s[4:,]) = t[A,] = s[4,] holds.

Of course, a functional dependency can be defined as A;; A;, - -+ A o — AjyAjy -+ Aj,. How-
ever, we consider only the form of Definition 2 since

(Vie)(Aiy Ay - -+ Aiy = Aj) <= Ay Aiy - Ay = AjAjy - A,

holds. Moreover, we do not consider the case where A, = A;, holds for some A;, since such a
functional dependency trivially holds for any set S. In Sections 3 and 4, we fix the functional
dependency to A;, A;, - -- A;, — A, without loss of generality. F denotes A;, A;; --- A;, — Aq.
Moreover, for a tuple ¢, L(t) and R(t) denote t[A; Ay, - -+ A;,] and t[A,], respectively.

Note that the consistency of functional dependencies is defined not for a tuple, but for a set
of tuples. For example, consider a set of tuples {(a,1,p),(a,2,¢),(b,1,p)} C D1 x Dy x D3
and a functional dependency: A; — A;. In this case, it is meaningless to discuss about
whether a tuple (a, 1,p) (or (a,2,¢) or (b,1,p)) is consistent with A; — A, or not. However,
it is meaningful to discuss about whether a subset of tuples is consistent with 4; — Aj
or not. For example, {(a,1,p),(b,1,p)} is consistent and {(a,1,p),(a,2,¢)} is inconsistent.
Since the conventional PAC learning framework is based on the property that the consistency
of a concept is determined for each example [9], it can not be applied in our case. Moreover,
the error cannot be defined in the usual way since positivity or negativity are not defined for
each tuple. Thus, the conventional PAC learning framework can not be applied directly.

3.2 An Algorithm
The following algorithm (Algorithm A1) tests the consistency of I with a set of tuples §.

Procedure TestFD(S, F)
begin
for all tuples t € § do
if there is a tuple s € § such that (L(t) = L(s) A R(t) # R(s))
then return FALSE;
return TRUE
end

AAAI-98 Knowledge Discovery in Databases Workshop 1993 Page 141



There is an efficient implementation of Algorithm Al. If tuples are sorted according to
Ay Ai, -+ Ai, A, and N can be considered as a constant, the test is done in O(mlog m) time
including the time for sorting where |$| = m. Of course, any algorithm to test the consistency
of the functional dependency can be used in place of Algorithm Al.

4 The Number of Examples for Testing a Functional Depen-
dency

In this section, we consider the number of example tuples for testing F' whose error is at least
¢ with the probability at least 1 — §. For that purpose, we consider the probability that F
is consistent with example tuples although F is inconsistent with a full tuple set (i.e. a set
of all tuples in the relation). That is, we consider the probability that Algorithm A1l returns
TRUE although F is inconsistent with the full tuple set. Note that error is one-sided since
Algorithm A1 never returns FALSE when F is consistent with the full tuple set.

4.1 Preliminaries

[Definition 3] For a set of tuples U, vs(U, F) denotes a set {Uy,Us,---,U,} which satisfies
the following conditions:

o (YUi)(Ui C V), - e (V)Y # = UinT; =0),

o (VU(VE€ U(Ys € UYL = L(s)y o (VU:)(3t € Ui)(3s € U:)(R(t) # R(s)),

¢ Every U; is a maximal set.

[Definition 4] For a set of tuples U, a set of violation pairs pairs(U, F) is defined as
pairs(U,F)={U; | |U;| =2 A U; €vs(U,F) } .

Hereafter, T (|T] = n) denotes a full tuple set (a set of all the tuples in the relation) and § C T
(IS] = m) denotes a sample tuple set (a set of example tuples) in 7. Since uniform distribu-
tion is assumed, each set S such that |§| = m appears with the same probability, that is, with
the probability 1/(]). Note that an identical tuple appears in § at most once since S is a set.

[Definition 5] For a set of tuples T and a functional dependency F, the error ¢(T, F) is
defined as the minimum Ffll"\l such that F'is consistent with 7' — V.

The definition of the error seems reasonable since F' becomes consistent if V' is removed
from T. In the case of an arbitrary distribution (see Section 6), the error is defined as the
minimum z P(t), where P(t) denotes the probability that ¢ appears as an example. Note

teV
that an identical tuple may appear more than once in the case of an arbitrary distribution.

[Definition 6) P(m,T, F) denotes the probability that F' is inconsistent with ' where each
S C T such that || = m is given with the same probability 1/(”). Moreover, @(m,T, F)
denotes 1 — P(m,T, F).

[Example 1] In this example, we consider a domain of the relation Dy X D, X D3 and a func-
tional dependency: A, — Aj. Let T be {(a,1,p),(a,1,9),(a,1,7),(a,2,p),(a,2,7),(a, 3,p),
(b, 17?)’ (b72’ q), (c? 17?), (C’ 1, q)}' Then’ vS(T? F) = { {(a’ l,p), (a7 1,q)’ (a7 17 r), (a72’ p),
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(a,2,7),(a,3,p)}, {(5,1,9),(5,2,9)} } and pairs(T,F) = { {(,1,p),(4,2,4)} }. Moreover,
E:{()T,F))}: 0.4 for V = {(a,2,9),(a,2,7),(a,3,p),(b,1,p)} or V = {(a,2,p),(a,2,7),(a,3,p),
12,9)}-

4.2 Ubpper Bound of the Number of Examples

In this subsection, we show the upper bound of the number of example tuples for testing F'
such that (T, F) > € (¢ > 0) with the probability at least 1 — §. For that purpose, we derive
the upper bound of @Q(m,T, F).

The following lemma shows that we need only consider the simple case (i.e., the case

where vs(T, F) = pairs(T, F)).

[Lemma 1] For any T and F, there exists 7" which satisfies the following conditions:

¢ P(m,T,F)> P(m,T',F), o 1¢(T,F) < ¢(T', F),
o |T'| =T, o v3(T', F) = pairs(T', F).
(Proof) Let {t},---,t} ,t},---,i%,, - <, tk, .-tk } be an arbitrary element of vs(T, F). We

assume w.l.o.g. (w1thout loss of generality) that (Vp,q)(R(t) = R(t" )) and
(Vi 4, P, q)(i # 5 — R(t,) # R(t})) hold.

N
N
s
0}
LR N
Z
Y
|
L V)

Figure 1: Construction of sJ,u] in Lemma 1.
We assume w.l.o.g. n; < ng < --- < np. We construct T” such that a set of tuples

1,1 1 1 2 .2 2 2 k-1 k-1 k-1 k-1
{sl7u1"”7sm1,uml’slﬂ’u‘l’“'ﬂsmgaumz’ """ 2S1 UL e Sy Uy,

is included and the following conditions are satisfied (see also Fig.1):
o (V6,0)(L(s}) = L(w}) A R(s}) # R(w3)),
o (Vsi)(Vt e T')((t # s} Vt#uy)— L(t) # L(s%)),

PY (ml = nl-) A (VZ > 1)(m,-+1 = Ni4+1 — mi)-
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It is easy to see that such 7” satisfies the conditions of the lemma. a

Lemma 2 is used to obtain the upper bound of Q(m,T, F).

[Lemma 2] Assume that vs(T,F) = { {t1,21},{t2,t2}," -, {testi} }» 3 -1 > k > 0,
n > 3 and m > 0 hold. When (Vi)(t; ¢ SV t. ¢ S) holds, the expected number of
IS N {ts, 8}, -, tk,t,}| is less than 32E, '
(Proof) We prove the lemma by mductlon on k. Let Ex(m,n) denote the expected number
of |§ N {t1,t},+,tk,t}|. First, it is easy to see that Ex(1,n) = Zt < 3k holds for any k.
Next, we assume m > 1.

If k =1, the lemma holds since
2m(n — m) . 2m 3m

om(n~m)+(n-m)(n-m-1) n+m-1 <

E] (m, n) =

Next, we assume that the lemma holds for k. Then, the lemma holds for k + 1 since

2m 2m
Eg41(m,n) = (m)(l + Eg(m —1,n = 2)) + (1 = ———7) Ex(m,n — 2)
2m 3(m - 1)k n—m-—1_, 3mk 3m(k +1)
(n+m—1)(1+ n—2 )+(n+m-—1)(n—2) < n '
The last inequality is derived from
3m(k + 1) 2m 3(m - 1)k 3mk
n _(n+m—1)(1+ n— )—(n-i-m 1)(n—2)
m(—G(m—1)k+n2+3mn—6m—on+6)
n(n? + mn — 2m — 3n + 2)
B 6m(m — 1) o, nf=2n mn
= Gt oomi) Ftsmontz Y >0

Lemma 3 shows the upper bound of Q(m,T, F).

[Lemma 3] Assume that n > m > 8 and k < 2 hold. Let vs(T,F) = { {t1,11},{t2,13},"-
{i4,4,} . Then, Q(m, T, F) < (1 - J(22 — ).

(Proof) We consider the case where the elements of {t;,t.} are picked from T without being
replaced, and this operation is done for k times from ¢ = 1 to k. Consider the case where
i pairs are already picked and (Vj < i)(t; ¢ SV t; ¢ §) holds. Let U be a set of remained
elements in 7. By Lemma 2, |U N §| > m — [¢2] holds with a probability of more than 3.

Therefore, the probability that (ti41 ¢ SV ti,, ¢ S) holds is less than

1 (m - [¥m])(m - 1~ [52]) 1m-2-%m,
1_5 (n-2i)(n-2i-1) )<1 5(__11_—_)

n

for any 72 < k. Note that m — 2 — 9’,‘;—" > 0 holds since m > 8 and k < § are assumed. By
multiplying it k times, the lemma is proved. a
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[Theorem 1] Assume that ¢ < 1. For any T and F such that e(T, F) > ¢, the number

of examples required to test F' correctly with a probability of at least 1 —§is O( ﬁn) .

(Proof) We assume w.l.o.g. (without loss of generality) that n > m > 8 holds and %6 is an

integer. By Lemma 1, Q(m, T, F) < Q(m,T’, F) holds for T’ where vs(T', F') = pairs(T’, F)

and ¢(T', F) > §. Thus, by Lemma 3, Q(m,T,F) < (1 - %(2;—2 - 6:_;71)2)): holds where
1 m-—2 f)_lﬂ

k = . By solving the inequality (1 — z(—— - ) < 8,

weget m> - lae(n\/2(1—6?25)+2). — (A1)

Since a® > 1 + In(e)z holds for sufficiently small £ > 0 where a is a constant such that

3]
-
=
-
=
[ %]

a<l,
1 2 1 —1In(8)
1_36(n\/2(1—6¢n)+2)< 1_36(2‘/ . n + 2) - (A2)
) ) In %
holds if n — oco. Therefore, the number of examples is  O( Tn) . O

4.3 Lower Bound of the Number of Examples

In this subsection, we derive a lower bound of the number of example tuples for Algorithm A1l.

[Theorem 2] For any T and F such that ¢(T,F) > €, the number of examples required
1- 6n) '
k

(Proof) We consider w.l.o.g. the case where vs(T,F) = { {t1,11},---,{ts,t,} }and e = £
hold. Since the probability that (z; € S A t; € ) holds is less than (%)% for each ¢,
P(m,T,F) < k(;2;)? holds. Note that P(m,T, F) is the probability that (35)(t; € SAt: € §)
holds.

1-é6n-1

By solving k(:2;)* <1-8§,weget m < . - —(B) ]

to test F' correctly with a probability of at least 1 — § by Algorithm Al is €(

Note that a bad case (vs(T, F') = pairs(T, F)) is considered in this theorem and a smaller

number of examples may be enough in other cases.
Here, we compare the upper bound with the lower bound. Note that the gap lies between

O(v/1 = §) and O(y/In }). Table 1 shows several values of the expressions (A2) and (B) where
each value denotes a coefficient for \/n. It is seen that the gap is not so large.

5 Inferring the Approximate Functional Dependencies

In this section, we consider the original problem, that is, to infer the approximate functional
dependencies for the full tuple set from example tuples probably approximately correctly.
For the problem, we consider a simple algorithm. It enumerates all functional dependencies
and then tests the consistency of each dependency by means of Algorithm Al. We call it as
Algorithm A2. Note that the error of Algorithm A2 is one-sided as in the case of Algorithm
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Table 1: Comparison of Upper Bound and Lower Bound

€ 0.1 [0.01] 0.01 |0.00001

é 0.1 | 0.01 |.0.00001 | 0.00001
upper bound || 13.7 | 44.2 70.0 2146.0
lower bound 3.0 | 99 10.0 316.2
(coefficients for \/n)

Al. Although Algorithm A2 is not a polynomial time algorithm, it works in O(mlog(m))
time if the domain of the relation is fixed. Of course, any algorithm which generates a set of
all functional dependencies consistent with example tuples can be used in place of Algorithm
A2. For example, an algorithm developed by Kantola et al. [7] can be applied. However, it
seems impossible to develop an algorithm whose time complexity is a polynomial of N since
the number of functional dependencies is exponential.

[Definition 7] For a set of tuples T and a set of functional dependencies F'S, the error
e(T,FS) is defihed as the minimum {% such that each functional dependency in F'S is con-
sistent with ' — V. -

Note that, for any set F'S which does not contain inconsistent functional dependencies,
¢(T,FS) = 0 holds. If we allow any set, an algorithm which always outputs an empty set can
be used as a learning algorithm with error 0. Therefore, we consider only the sets in which
all the consistent functional dependencies are included.

[Example 2] In this example, we consider a domain of the relation Dy x D X D3 and
a set of tuples T = {(a,1,p),(a,1,4),(h,2,p),(5,2,7),(¢,3,9),(c,3,7),(d,1,7)}. The set of
all consistent functional dependencies for T is F'Sop = {A1 — Az, A143 — A3z, A24A3 — A},
and then £(T,FSo) = 0. Thus, each set must include FSp as its subset. F$ = {4 -
Ay, A1 A3z — Ag, A3Az — Ay, Az — A1} satisfies this condition. Since F'S; is consistent with
T~ {(d,1,m)}, (T, F$1) = 1.

Next, we count the number of all (consistent or inconsistent) functional dependencies. It
N

. . N .

is easy to see that the number is at most ZN ( z’> < N2V, Then, we get the following
=1

result.

[Theorem 3] For any T, the number of examples required to infer a set of functional depen-
dencies F'S such that (T, FS) < ¢ holds and all functional dependencies consistent with T’

) N2V N2N
are included by F'S with a probability of at least 1 — § is O( V —2———:—_‘5_—% ).

(Proof) We assume w.l.o.g. that N > 1 holds and 7%+ is an integer.

Note that Algorithm A2 outputs at most N 2V functional dependencies. If the error of each
functional dependency does not exceed 5w, the total error does not exceed ¢. If the proba-
bility that each functional dependency whose error exceeds x5y is consistent with example
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tuples is at most N—g,v, the probability that at least one functional dependency whose error ex-
ceeds w5 is derived is at most é. Thus, by replacing € and § with 2% and Fgw respectively

in the expression (A1) of Theorem 1, we get m > ( NN my 21— ( 8 )N2N+1 V42
press e ) g NoN — 3 NoN )
(C). Using a similar discussion as in Theorem 1, the theorem follows. a

Note that the upper bound shown in Theorem 3 is not optimal. A better bound might be
obtained if the relation between functional dependencies is analyzed and utilized for deriving
the upper bound.

6 Comparison with the Case of an Arbitrary Distribution

Here, we compare the results of this paper with the results of our previous paper [2]. First,
we briefly review the results of the previous paper.

In the previous paper, an arbitrary probability distribution for tuples was considered. As
in Section 2, let P(t) denote the probability that a tuple t € T' appears when one tuple is

selected as an example tuple from 7T'. Note that Z P(t) = 1 must hold. For simplicity, we
teT
allowed that the same tuple ¢ may appear in a sample tuple set more than once. Thus, if a

sample tuple set § C T such that |§| = m is selected, the probability that ¢ appears in §

is 1 — (1 — P(t))™. The error e(F,T,P) for a functional dependency F' was defined as the

minimum Z P(t) such that F is consistent with T — V. Similarly, the error ¢(F'§,T, P) for
teV

a set of functional dependencies F'S was defined as the minimum Z P(t) such that F'S is

tev
consistent with T — V. Algorithms A; and A, were used for an arbitrary distribution, too.

Under an arbitrary distribution, the sample complexities in Theorem 1 and 2 were replaced by
V1 Vv1i-4

ol¢ na\/ﬁ) and Q( .

with a factor by O(%) by considering the uniform distribution. The sample complexity in

N N
Theorem 3 was replaced by 0((Nf )i/1n N?

the upper bound for inferring the approximate functional dependencies is improved by a

/1), respectively. Thus, the both bounds for tests are improved

v/n) under an arbitrary distribution. Thus,

factor of O(y/ NT"’N) by considering the uniform distribution.
Next, we compare more precise numbers of upper bounds. Under an arbitrary distribu-

N2N,/321n 27
tion, the number corresponding to (C) was shown to be . 5 vn—-142 Ifnis
N2V, /321n N2T
_8_./n and the number of (C)

sufficiently large, this number is approximately . n

oN+1  [NoN |y N2X
is approximately NJ;N —_ : & _/n. Table 2 shows coefficients for \/n for several

cases. It is seen that the number under an arbitrary distribution is far from practical, but,
the number under the uniform distribution is not so large. Thus, when a uniform (or near
uniform) distribution can be assumed, our method will be practical.
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Table 2: Comparison of the Upper Bounds

€ 0.1 0.01 0.01 0.00001 0.01

) 0.1 0.01 0.00001 0.01 0.01

N 4 4 4 4 10
uniform distribution 129.2 473.9 633.7 1.50 x 10* 7529.0
arbitrary distribution || 9202.8 | 1.07 x 105 | 1.43 x 105 | 1.07 x 108 | 2.15 x 107

(coefficients for \/n)

7 Experiments

In this section, we describe the results of experiments with the sample complexity. We made
experiments on the sample complexity required to test a fixed functional dependency for
various ¢, § and n.

Experiments were done on a UNIX workstation using C-language. Since large real data
in which approximate functional dependencies are held were not available to us, we used the
following data. The domains are fixed to Dy X Dy where each of D, and D is the set of
integers {1,---,n + 1}, and only the dependency F' = A; — A; is considered. For each ¢, a
relation (i.e., a set of tuples) )

T = {(;,i)|[1<i<(1-e)n} J{(Gi+1)|1<i<en}

is created. Next, these n tuples are arranged in the appropriate order. Note that, in this
case, vs(T, F) = pairs(T, F) holds and the error ¢(T, F) is equal to ¢ except for the effect of
truncation error. Next, for various values of m, m example tuples are chosen randomly by
repeating the following procedure. A random number i from 1 to n is generated using the
random() function in UNIX system, and the ’th tuple is selected as an example tuple if the
same tuple has not been selected previously.

Since the number of example tuples for § can not be obtained directly, it is obtained in
the following way. For each m, a set of m tuples is chosen and tested to see whether or not
F = A; — Aj holds for the set. This test is repeated 500 times. Let f be the number of tests
such that no violation pair is found in the example tuples. Then, §(m) = 3 is calculated.
It corresponds to the probability é. Then, for a given €, § and n, various kinds of m where
§(m) is around § are tried and the one at which §(m) is closest to § is selected as the sample
complexity.

The experimental relation between the sample complexity and /n is plotted in Fig.2 and
Fig.3, while the experimental relation between the sample complexity and :}; is plotted in
Fig.4 and Fig.5. They show that the sample complexity is approximately proportional to
both /7 and 71; They also coincide with both the upper bound and the lower bound except
the multiplicative constant factor.

By these experiments, the theoretical result is confirmed. Furthermore, it is shown that
the sample complexity obtained by the experiments is much closer to the theoretical lower
bound, that is, a much smaller number of examples are sufficient than for the theoretical
upper bound. For example, for n = 100,000, ¢ = 0.01 and § = 0.1, the sample complexity
calculated from the theoretical upper bound is about 9900, while the sample complexity
estimated from the experiments is about 4700.
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8 Conclusion

In this paper, the number of example tuples for inferring a set of functional dependencies
probably approximately correctly was studied. It has been shown that the sample complex-
ity is improved considerably if we assume a uniform distribution in place of an arbitrary
distribution. The theoretical results are confirmed by the experiments, too. Moreover, the
experimental results suggest that the real sample complexity is closer to the lower bound
than to the upper bound. These theoretical and experimental results imply that the sample
complexity is not too large for practical applications when a uniform distribution can be as-
sumed. Of course, we cannot always assume the uniform distribution. However, an arbitrary
distribution seems to be too general since the worst case of probability distribution is in-
cluded in the case of an arbitrary distribution. We think that there are many practical cases
where distributions can be regarded as a uniform distribution or near uniform distribution.
Moreover, our method can be used in such a way as described in [10] where the uniform
distribution can be assumed. Anyway, our method should be tested with real-world data
since we do not know which distribution should be used. We plan to make experiments for
multiple functional dependencies with real-world data.

A simple method for inferring approximate functional dependencies, that is, a method
for enumerating,only the dependencies consistent with examples, is considered in this paper.
However, other methods may work better depending on applications. For example, a method
which outputs a set of functional dependencies whose error for example tuples is very small
can be considered. Such a method seems to be more robust than the method described in
this paper. Therefore, other methods for finding a set of functional dependencies probably
approximately correctly should be developed and examined.

Although only functional dependencies are considered in this paper, our framework might
be applied to other types of constraints such as multi-valued dependencies and more general
logical formulae. Such extensions would be very useful and should be studied.
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