
Automating Path Analysis for Building Causal Models from Data: First
Results and Open Problems

Paul R. Cohen Lisa BaUesteros Adam Carlson Robert St.Amant
Experimental Knowledge Systems Laboratory

Department of Computer Science
University of Massachusetts, Amherst

cohen@cs.umass.edu carlson@cs.umass.edu balleste@cs.umass.edu stamant@cs.umass.edu

Abstract mathematical basis than path analysis; they rely on

Path analysis is a generalization of multiple linear regres-
sion that builds models with causal interpretations. It is
an exploratory or discovery procedure for finding causal
structure in correlational data. Recently, we have applied
path analysis to the problem of building models of AI
programs, which are generally complex and poorly
understood. For example, we built by hand a path-
analytic causal model of the behavior of the Phoenix
planner. Path analysis has a huge search space, however.
If one measures N parameters of a system, then one can
build O(2N2) causal mbdels relating these parameters.
For this reason, we have developed an algorithm that
heuristically searches the space of causal models. This
paper describes path analysis and the algorithm, and
presents preliminary empirical results, including what we
believe is the first example of a causal model of an AI
system induced from performance data by another AI
system.

1. INTRODUCTION

This paper describes a statistical discovery procedure for
finding causal structure in correlational data, called path
analysis lasher, 83; Li, 75] and an algorithm that builds
path-analytic models automatically, given data. This
work has the same goals as research in function finding
and other discovery techniques, that is, to find rules, laws,
and mechanisms that underlie nonexperimental data
[Falkenhainer & Michalski 86; Langley et al., 87;
Schaffer, 90; Zytkow et al., 90].1 Whereas function
finding algorithms produce functional abstractions of
(presumably) causal mechanisms, our algorithm produces
explicitly causal models. Our work is most similar to that
of Glymour et al. [87], who built the TETRAD system.
Pearl [91; 93] and Spirtes [93] have recently developed
causal induction algorithms with a more general

1The term "nonexperimental" is perhaps confusing, because data are

usually collected in an experiment. Nonexperimental means that the
experiment is over and the opportunity to manipulate variables to see
effects has passed. Causal hypotheses must therefore be generated and
tested with the data, alone.

evidence of nonindependence, a weaker criterion than
path analysis, which relies on evidence of correlation.
Those algorithms will be discussed in a later section.

We developed the path analysis algorithm to help us
discover causal explanations of how a complex AI
planning system works. The system, called Phoenix
[Cohen et al., 89], simulates forest fires and the activities
of agents such as bulldozers and helicopters. One agent,
called the fireboss, plans how the others, which are semi-
autonomous, should fight the fire; but things inevitably go
wrong, winds shift, plans fail, bulldozers run out of gas,
and the fireboss soon has a crisis on its hands. At first,
this chaos was appealing and we congratulated ourselves
for building such a realistic environment. However, we
soon realized that we could explain very little about the
behavior of the fireboss. We turned to regression analysis
to answer some questions, such as, "Which has more
impact on the time to contain a fire: the wind speed or the
number of times the fireboss must replanT’ But although
regression assumed these factors interacted, it provided no
explanation of their causal relationship. For example, we
knew that the wind speed could affect the incidence of
replanning and not vice versa, but this causal, explanatory
knowledge was not to be found in regression models. Nor
would automated regression procedures (e.g., stepwise
multiple regression) find causal models of our planner.
Path analysis, however, is a generalization of regression
analysis that produces explicitly causal models. We built
one such model of Phoenix by hand, and by automating
path analysis as we describe below, we have been able to
discover other causal explanations of how the Phoenix
fireboss works.

Readers who are familiar with regression analysis might
skip to the end of the next section, where we introduce
path analysis, or Section 3 where we illustrate a path
analysis of Phoenix. Section 4 describes our algorithm.
Section 5 discusses two experiments, an informal one in
which we applied the algorithm to Phoenix data, and a
factorial experiment in which the behavior of the
algorithm was probed by applying it to artificial data.

AAAI-9$ Knowledge Discovery in Databases Workshop 1993 Page 153

From: AAAI Technical Report WS-93-02. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

2. BACKGROUND: REGRESSION

Path analysis is a generalization of multiple linear regres-
sion, so we will begin with regression. Simple linear re-
gression finds a least-squares line relating a single
predictor variable x to a performance variable y. A
least-squares line is one that minimizes the sum of
squared deviations of predicted values from actual values.
That is, simple linear regression finds a line ~ = bx + a
that minimizes Y.i(Yi - Yi)2.

Multiple linear regression finds least-squares rules (i.e.,
planes and hyperplanes) for more than one predictor vari-
able, rules of the form ~=blxl+...+bkxk+a. The
regression^equation is better represented in standardized
form as Y = fliXi +f12X2 +f13X3 (standardized variables
are denoted with uppercase letters). The interpretation of
this model is that a change in XI of one standard
d^eviation, Sl, produces fll standard deviations change in
Y. Thus, beta coefficients axe comparable: if
fll =. 4, f12 =. 8, then a standard deviation change in X2
has twice the influence on Y as a standard deviation
change in XI.

To fred beta coefficients the following equations are
derived from the regression equation and solved:

= + +
9x. = + + x.x.

= + +
The previous equations can be rewritten in terms of
correlations:

q,x, = ~ + ~zrx, x, + [33rx, xlrrx’ = [~ r x:x, + f12 + ~r x3x,
(1)

rrx, = ~rx, x, + flzrx, x, + f13

Clearly, with these three equations we can solve for the
three unknown beta coefficients. We have not shown that
these coefficients guarantee that Y =flaXl +/~_X2 +f13X3
is a least-squares rule, but the interested reader can find

beta coefficients is plausible because betas are standard-
ized partial regression coefficients; they represent the ef-
fect of a predictor variable on Y when all the other pre-
dictor variables are fixed. You can interpret 131 as what
happens to Y when only XI is systematically varied. In
this sense, beta coefficients provide a statistical version of
the control you get in an experiment in which X2 and X3
are fixed and XI is varied; in such an experiment, the ef-
fect on Y is attributable to X1. (Alternatively, the effects
might be due to an unmeasured or latent variable that is
correlated with Xl; we will not consider this case here.)

Figure 1: The path model that corresponds to
the multiple linear regression of Y
on Xl, X2 and X3.

So far we have described how a prediction model
I~ = fllX1 +/~X2 + f13X3 gives rise to a set of normal equa-
tions, and to beta coefficients that make the prediction
model a least-squares fit to our data. If this were all we
could do, path analysis would be identical to linear
regression and not worth the effort. The power of path
analysis is that we can specify virtually any prediction
model we like, and then solve for beta coefficients that
ensure the model is a least-squares fit to our data.

3. PATH ANALYSIS OF PHOENIX DATA

Let us illustrate a path model other than the regression
model with an example from the Phoenix system [Cohen
& Hart, 93; Cohen et al., 89; Hart & Cohen, 92]. We ran

this demonstration in [Li, 75] or any good statistics text.

The three equations (I) are called the normal equations,
and they have an interesting interpretation, illustrated in
Figure 1. Consider the first normal equation,
rl’Xt =ill +fl2rx2xz +fl3rxax~. The [31 term is represented
in Figure 1 by the direct path between Xl, and Y; the
second term is represented by the indirect path from Xl,
through X2 to Y; and the third term is represented by the
indirect path through X3. Thus, the correlation rl’xt is
given by the sum of the weights of three paths in Figure 1,
where the weight of a path is the product of the coeffi-
cients (either correlations or betas) along the constituent
links of the path. The second and third normal equations
have similar interpretations in Figure 1. By convention,
curved arcs without arrows represent correlations and di-
rected arcs represent causes. The causal interpretation of

......Phoenix on 215 simulated forest fires and collected many
measurements after each trial, including:

WindSpeed The wind speed during the trial

RTK The ratio of fireboss "thinking speed" to the
rate at which fires bum

NumPlans The number of plans tried before the fire is
contained

FirstPlan The name of the first plan tried

Fireline The length of fireline dug by bulldozers

FinishTime The amount of simulated time required to
contain the fire

We specified a prediction model and the path model
shown in Figure 2, and solved for the path coefficients on

Page 154 Knowledge Discovery in Databases Workshop I998 AAAI-93

each link. The coefficient on a path from X to Y is the
correlation of X and Y if X is uncorrelated with any other
node that points to Y; otherwise it is the beta coefficient
from the regression of Y on all the correlated nodes that
point directly to it (including X). With this rule it is easy
to solve for path coefficients by hand, using the
correlation matrix and running multiple regressions as
necessary.

The estimated correlation between two nodes is the sum
of the weights of all legal paths between them. A legal
path goes through no node twice, and, for each node on
the path, once a node has been entered by an arrowhead, it
cannot be left by an arrowhead. The weight of a path is
the product of the coefficients along it. For example, the
estimated correlation between FirstPlan and FinishTime
is the sum of three paths

rFirstPlan, FinishTime = (-" 432x. 287) + (. 219x. 506)
(-.432x.843x.506)

= -.19

As it happens, this estimated correlation is very close to
the actual empirical correlation, calculated from our data.

R//(j
-.183 " .287 ~,

WindSpeed ~.......~ NumPlans

7 FinishTime

FirstPlan " -- Fireline
.219

Figure 2: The result of a path analysis of
Phoenix data

The disparities or errors between estimated and actual
correlations of FinishTime with all the other factors are
shown in Table 1. With the exception of the disparity be-
tween the correlations of Wb~Speed and FinishTime,
the estimated and actual correlations accord well, suggest-
ing that Figure 2 is a good model of our data.

WS RTK #Pln First Fline

^
rFactor FinishTime .118 -.488 .704 -.197 .765

r Factor FinishTira~ -.053 -.484 .718 -.193 .755

Table 1: Errors in estimated correlations. The first row is
the estimated correlation of FinishTime and the factor
listed in each column; the second row is the actual, empir-
ical correlation.

4. AUTOMATIC GENERATION OF PATH
MODELS

The question that motivated the current research is
whether models like the one in Figure 2 can be generated
automatically by a heuristic search algorithm. This sec-
tion describes such an algorithm.

The search space for the algorithm is the set of all possible
path models. We can represent any path model as an
adjacency matrix of size N x N, where N is the number of
variables in the model. Thus the search space is of size
2N2"

The algorithm uses a form of best-first search. A single
path model constitutes a state, while the sole operator is
the addition of an arc to one variable in the model from
another (possibly new) variable. We begin with a graph
consisting of just the dependent variables. During the
search we maintain a list of all the models and all possible
modifications to those models. At each step in the search
we select the best modification in the list, apply it to its
target model, evaluate the new model, and add it to the
list. We continue until either we have reached an accept-
able model or we canmake no more significant improve-
ments. The most complex issue to be addressed in apply-
ing this algorithm is constructing the evaluation function.

We must first distinguish two senses in which a model can
be "good." A common statistical measure of goodness is
R2, the percentage of variance in the dependent variable,
Y, accounted for by the independent variables X1, X2
If R2 is low, then other variables besides XI, X2 in-
fluence Y, and our understanding of Y is therefore in-
complete. However, for any set of independent variables,
no model accounts for more of the variance in Y than the
regression model, in which all independent variables are
correlated and all point directly to the dependent variable
(e.g., Frzg. I). No wonder this model accounts for so much
variance: every variable directly influences Y ! It is not a
parsimonious model. Nor is it likely to be a plansible
causal model of any system we analyze. For example, a
regression analysis of the Phoenix data treats WilwlSpeed
and Fireline as causes at the same "level," that is, both
pointing directly to FinishTime, but we know that
WindSpeed is "causally upstream" of Fireline. In fact,
we know that wind speed influences the rate at which fires
bum, and, so, probably influences the amount of fireline
that is cut. So R2, the statistical measure of goodness, is
not necessarily the researcher’s pragmatic measure of
goodness. The researcher wants a model that is a plausi-
ble causal story, and that includes as few correlational and
causal relations among variables as possible, so causal in-
fluences are localized, not dissipated through a network of
correlations. Such a model will necessarily have a lower
R2 than a highly-connected model, but will often be pre-
ferred. In fact, when we constructed the Phoenix model
by hand, an important measure of goodness was the errors

AAAI-93 Knowledge Discovery in Databases Workshop 1993 Page 155

between estimated and empirical correlations, and we
never even calculated R2.

Another distinction is between modification evaluation
and model evaluation. Assuming that good models are
clustered together in model space, a few heuristics can
move the search into that general region of the space.
These are the modification heuristics. A model evaluation
function should dominate the search once the modification
evaluation heuristics have brought the search into the right
neighborhood. This is achieved by including the model
evaluation function as a term in the modification
evaluation function.

We rely on a variety of heuristics to guide search toward
good models and to evaluate a path model. These
comprise three general classes. The first contains what
we might call syntactic criteria:

¯ no cycles are allowed;
¯ there must be a legal path (as defined in Section 3)

from every variable to a dependent variable;
¯ a dependent variable may have no outgoing arcs.

The second class contains domain independent heuristics.
These apply to any path analysis problem; however, the
weighting of the heuristic may depend on the particular
problem. Some heuristic~s we have tried are

¯ R2, the statistical measure of goodness;
¯ the predicted correlation error (minimize the total

squared error between the actual correlation matrix
and the predicted correlation matrix for the model);

¯ parsimony (i.e. the ratio of variables to arcs, or the
number of arcs that don’t introduce a new variable);

¯ the correlation between the variables being connected
by a new link;

¯ the total number of variables and arcs.

The third class represents domain/problem dependent
forms of knowledge. These include knowledge that

¯ particular variables are independent;
¯ particular variables axe likely/unlikely causes of oth-

ers;
¯ a particular range of values for a domain independent

heuristic is appropriate for the problem.

Our evaluation of a modification is a function of these
heuristics. In the current implementation we use a
weighted sum of the actual correlation between the vari-
ables to be linked, the predicted correlation error and the
evaluation of the resulting model.

The modification evaluation step hides a good deal of
computation required for the heuristic evaluation func-
tions, including path coefficients in the model and the
correlation estimates between variables. In the basic
algorithm we calculate these parameters from scratch for
each newly generated model. Because these calculations
dominate search cost, we are currently working on im-
proving the algorithm by incrementally calculating

changes to each model’s evaluation. This should greatly
increase efficiency.

5. EXPERIMENTS

We have run several experiments to demonstrate the per-
formance of our algorithm and probe factors that affect
performance. In the first experiment we tested whether
the algorithm could generate a model from the Phoenix
data. The second experiment was more exhaustive; for
this we used artificial data.

5.1. EXPERIMENT 1

We provided the algorithm with data from 215 trials of
the Phoenix planner, specifically, Windspeed RTK
NumPlans Fireline and FinishTime (we dropped
FirstPlan from the data set). We designated FinishTime
the dependent variable. The search space of models was
large, 2N2-N = 1,048,576, but the model-scoring and
modification-scoring functions were sufficiently powerful
to limit the solution space to 6856 models. When the al-
gorithm terminated, after four hours work on a Texas
Instruments Explorer II+ Lisp Machine, its best two mod-
els were the ones shown in Figure 3. These models have
much to commend them, but they are also flawed in some
respects. A good aspect of the models is that they get the
causal order of WindSpeed, NumPlans, and Fireline
right: wind speed is causally upstream of the other
factors, which are measures of behavior of the Phoenix
planner. However, both models say WindSpeed causes
RTK when, in fact, these are independent variables set by
the experimenter. (Later, probing this curiosity we
realized that due to a sampling bias in our experiment,
WindSpeed and RTK covary, so connecting them is not
absurd.)

RTK

WindSpeed NumPlans ~ FinishTime

Fireline
Best Model

RTK
7

WindSpeed ~ NumPlans----I~FinishTime

Fireline
Second Best
Model

Figure 3: The best and second best Phoenix
models found by the algorithm.

A disappointing aspect of the models is that neither
recognizes the important influence of RTK on NumPlans
and the influence of NumP/ans on Fireline. In defense

Page 156 Knowledge Discovery in Databases Workshop 1993 AAAI-93

of the algorithm, however, we note that it used model
scoring and modification scoring functions that valued
R2, while we, when we built Figure 2 by hand, were
concerned primarily about the errors between estimated
and empirical correlations, and not concerned at all about
R2. Thus we should not be too surprised that the
algorithm did not reproduce our model in Figure 2.

Although the algorithm ran slowly, and is in some ways
disappointing, it did produce what we believe is the first
causal model of a complex software system ever gener-
ated automatically.

5.2. EXPERIMENT 2

The first experiment raised more questions than it an-
swered: Does the performance of the algorithm depend
on the sample variance for each variable? Does perfor-
mance depend on the number of data for each variable?
How do we know whether the algorithm is finding the
"right" model? To address these and other questions we
ran an experiment in which we constructed path models
that represented "truth" and tested how frequently our al-
gorittma could discover the true models. Specifically, we
followed these steps:

1
1. Randomly fill some cells in an adjacency matrix to

produce a path model.
2. Randomly assign weights to the links in the path

model subject to the constraint that the R2 of the
resulting model should exceed .9.

3. Generate data consistent with the weights in step 2.
4. Submit the data to our algorithm and record the

models it proposed.
5. Determine how well our algorithm discovered the

tree model.

Steps 3 and 5 require some explanation. Imagine some-
one asks you to generate two samples of numbers drawn
from a normal (Gaussian) distribution with mean zero
such that the correlation of the samples is a particular,
specified value, say, .8. Now make the problem more
difficult: generate N columns of numbers so that all their
pairwise correlations have particular, specified values.
Solving this problem (step 3, above) ensures that we gen-
erate data with the same correlational structure as the path
model specified in step 2. The details of the process are
sketched in the Appendix.

We evaluated the performance of our algorithm (step 5,
above) by two criteria:

Shared path score: For each true model, make a list of all
the paths from each independent variable to the dependent
variable; what fraction of these paths exist in the model
discovered by our algorithm?

Share0 link score: For each true model, make a list of all
the finks between variables; what fraction of these links
exist in the model discovered by our algorithm?

Our experiment was designed to test the effects of sample
size on the performance of the algorithm. The Phoenix
data included 215 values of each variable, but for this ex-
periment we looked at four levels of the factor: 10, 30,
50, and 100 data per sample. We thought that the perfor-
mance of the algorithm might deteriorate when sample
sizes became small, because the effects of outlier values
in the samples would be exacerbated. We generated five
true path models with four variables, shown in Figure 4.
For each model we generated 12 variants, that is, 12 sets
of data for variables A,B,C and D that conformed to the
correlation structure established in step 2, above. This
produced 60 models. We ran our algorithm on these vari-
ants in each of the 4 conditions just described. Thus, the
algorithm ran 240 times.

The algorithm found the true model in 109 of the 240 tri-
als. Summary statistics for these trials, and trials in which
the algorithm did not find the true model, are presented in
Table 2. When the algorithm did find the true model, it
explored 174.6 models, on average. This is about four
percent of the 4096 models that were possible. Trials that
did not fred the true model explored only 86.96 models,
which suggests that one reason they failed to find the true
model is they gave up too soon. This in turn suggests that
our critelia for terminating a search can be improved.

(A"----.----..~ A"--I~ B----I~ C ~ D

P.

o

Figure 4: Five path models used to test the al-
gorithm.

In all trials, the average score of the best model found by
the algorithm was better than the average score of the true
model. Our immediate inclination was to say the scoring
criteria led the algorithm astray, away from the true
model. In fact, the problem arises from using R2 as our
model evaluation function. The value of R2

monotonically increases as the number of links in the
model increases. Consequently, in most of our trials, the
model from which we generated the data is not the model
with the highest score since the addition of new links to it
produced a model with a higher R2. We must investigate
other model evaluation metrics before we can evaluate
whether or not our algorithm will find the best model.

We would like to place more stock in two measures of
structural similarity between the true model and the best
found model. The shared path score is the proportion of
paths in the best found model that also exist in the true
model. For example, the top-left model in Figure 4 has 5
paths from A, B and C to D, so if the best found model

AAAI-93 Knowledge Discovery in Databases Workshop 1993 Page 157

was, say, the top-right model, which has only three paths
from A, B and C to D, then the shared path score would
be 0.6. Another criterion is the shared link score, which is
the fraction of the finks connecting variables in the true
model that are also in the best found model.
Unfortunately, neither score strongly differentiates trials
in which the true model was found from those in which it
wasn’t. On average, 56-61% of the paths, and 50-54% of
the links, in the true model are also in the best found
model. These numbers ale not high. On the other hand, if
the disparity between the true model and the best found
model was just two links, then the average shared link
score would be 52%. So although the shared path and
shared link scores are low, they suggest that the best
found model differed from the true one by little less than
two links on average. Clearly, the algorithm can be im-
proved, but it performs better than the first impression
given by the shared path score and .~hared link score.

Trials that did Trials that did
find the true not find the
model true model

Mean Std. Mean Std.
I

Number of models 174.600 93.300 86.962 72.770

Best model score .974 .O27 .954 .018

True model score .847 .258 .708 .417

Shared path score .612 .202 .565 .133

Shared link score .542 .193 .501 .144

Table 2. Summary statistics from 240 trials.

We ran a one-way analysis of variance to find the effects
of the number of data points in our samples. The depen-
dent variables were the five measures in Table 2.
Happily, sample size appears to have no impact on the
number of models expanded by the algorithm, the score of
the best found model, or the shared path or shared link
SCOreS.

6. RELATED ALGORITHMS

6.1 INDUCTIVE CAUSATION ALGORITHM

The underlying probability structure of a set V of random
variables in a system can be described by a joint
probability distribution P. Pearl and Verma [1991] have
developed a method for inducing causal structure from P,
a sampled distribution of V, which they refer to as the
Inductive Causation Algorithm (IC algorithm). Causal
models are represented by directed acyclic graphs (DAG)
whose nodes represent random variables and whose edges
represent causal relationships between those variables.

DAG construction is based on the notion of conditional
.... independence under the assumptions that fi is stable and

model minimality holds true. P is considered to be
stable if it has a unique causal model. Minimality means
it is reasonable to rule out any model for which there
exists a simpler model that is equally consistent with the
data.. Two variables x and y are considered independent if
a change in either of them does not cause a change in the
other. Conditional independence can be stated in
mathematical terms as e(xly, z) = e(xlz). Intuitively this
means that given some knowledge about the value of x
given z, discovering knowledge about y does not effect
what we know about x. In this case, x and y are
conditionally independent on z. This condition is also
known as the Markov condition applied to graphs: for all
graph vertices x, x is independent of its remote ancestors
given its parents.

To find D, a causal model, the algorithm begins with /3,
by looking for a set Sxy c_ V for all pairs of variables x
and y such that x and y are conditionally independent on
z, k/z E Sxy. If no such set can be found and x and y are
dependent-in every context, then an undirected link is
placed between x and y to represent that there is a
potential causal influence between x and y.

In the second step, for all pairs of unconnected variables
having undirected links to a common variable z, if
z E Sty then do nothing. Otherwise, add arrowheads

pointifig at z. The reasoning behind this step is that if a
and b are not independent conditional on z, but are
correlated to z, then this correlation must be due to their
common effect on z or through a common cause.

Finish building D by recursively adding arrowheads by
applying the following rules:

1. If x and y are joined by an undirected link and there
exists some directed path from x to y, then add an
arrowhead at y. Since x is known to effect y
through x’s effect on some other variable, then the
direction of potential causal influence between x
and y must be toward y (this prevents cycles).

2. If x and y are not connected but there exists a variable
z such that there is a direct effect of x on z and
there is an undirected link from z to y (i.e.
x ---) z- y), then add an arrowhead at y. Nodes
and y are not connected because they were found to
be conditionally independent on some Say. If
z ~ Sxv, then arrowheads would have been i)laced
towards z from both x and y in step two for the
reason stated above. Therefore, x and y must be
conditionally independent on z and since we know
x has a causal influence on z, the direction of
potential causal influence must be from z to y in
order for the conditional independency to hold.

Finally, if there is an unidirected or bidirected link from x
to y, then mark all unidirected links from y to z in which z
is not connected to x.

Page 158 Knowledge Discovery in Databases Workshop 1993 AAAI-93

The causal model resulting from analysis of a data set by
the IC algorithm will contain four types of links
representing different relationships between the variables
they connect; unmarked unidirectional (potential causal
influence), marked causal influence (direct causal
influence), bidirectional (evidence of a common cause),
and undirected (undetermined relationship). The model
used as a template for developing a causal theory which is
consistent with the data. That theory is built upon the
following theorems:

If every link of a directed path from x to z is marked
then x has a causal influence on z.

A marked unidirectional link from x to y suggests a
direct causal influence of x on y.

The existence of a bidirectional link between x and y,
suggests a common cause z affecting both x and y,
and there is no direct causal influence between
them.

Pearl and Verma have shown that particular patterns of
dependencies dictate a causal relationship between
variables and that the IC algorithm can be used to recover
the structure of those causal relationships. However there
are situations for which the method returns poor or
inconclusive results. With respect to the latter, if there are
no independencies between the variables in/;, all of the
variables will be interconnected with undirected links
since it may be impossible to determine the expected
nature of the potential causal influence. It may also be
impossible to determine the nature of a potential causal
influence between two variables when there are no control
variables acting on either of the variables in question. If
the direction of potential causal influence between
variables x and y is uncertain but there exists a variable z
that is known to affect x and not y, then we can eliminate
the possiblity of x causing y. z is known as a control
variable.

6.2 TETRAD II

Spirtes et al. [1993] take a different approach to
discovering causal structure, based on constraints on
correlations. Their approach is implemented in the Tetrad
II program. During search, constraints implied by a
model are compared to constraints found in the data, and
the program returns a model that best reflects constraints
in the data. To describe this method it will be necessary
to give a few definitions:

An open path is a directed link from variable x (the
source) to variable y (the sink).

A trek is a pair of open paths between two variables x and
y, having the same source and intersecting only at
that source. One of the paths can be the empty path
which consists of one vertex (the source of the
trel0.

Partial equations represent correlational constraints on
three variables. Let x, y, and z be three measured
variables in a causal model, then rxz = ray. ryz is
their partial equation. This is equivalent tb s~iying
the paltial correlation between x and z (with y held
constant) is equal to zero (known as a vanishing
partial). For a linear model, vanishing partials are
equivalent to conditional independencies.

Tetrad equations represent correlational constraints on
four variables. If x,y,z, and v are four measured
variables in a causal model, one of the following is
their tetrad equation:

rxy. rzv = rxz. ryv, or, rxy. rzv -- rx2" ryv = 0
ray. rzv = rxv. ryz, or, rxy. rzv - rxv. ryz = 0
rxz. ryv = rxv. ryz, or, rxz. ryv - rxv. ryz = 0

where r r is the sample correlation between
variables ’+i and j. These constraints are known as
vanishing tetrad differences. A DAG, G, linearly
implies ray. rzv = rxz. ryv- 0 iff either r or¯ x~_
rzv = O, and rxz or ryv = 0, or there is a set O of
random variable~ in G such that

A
rxy.o = rzv.o = rxz.o = ryv.o = O.

ssociated probability. P(t), of a vanishing tetrad
difference is the probability of getting a tetrad
difference equal to or larger than that found for the
sample, under the assumption that the difference
vanishes in the population. P(t) is determined by
lookup in a chart for the standard normal
distribution.

T-maxscore is the sum of all P(t) implied by the model
and judged to hold in the population.

Tetrad score is the difference between the sum of all P(t)
implied by the model and judged to hold in the
population, and the weighted sum of (1-P(t)) for
P(t) implied by the model that are not judged to hold in
the population.

The input to TetradlI is a sample size, a correlation or
covariance matrix, and a DAG, representing an initial
causal structure, having no edges between measured
variables and all having all latent variables connected.
The search generates all possible models derived by
addition of one edge to the initial model and each model
is ranked by its tetrad score, which basically rewards a
model for implying constraints which are judged to hold
in the population and penalizes the model for implying
constraints which are not judged to hold in the population.
For example, consider the DAG’s of Figure 5. 5a implies
the following vanishing tetrad differences:

l~ . r~w - r,~ . r~, =0
r~.r~ r~.r~ = 0
r~ .r~ -1"~v-r~ = 0

If the population distribution is represented by 5b, then
the only vanishing tetrad difference implied by 5a that
exists in the population is the second one.

AAAI-93 Knowledge Discovery in Databases Workshop 1993 Page 159

C--------~ B

XYZW X Y Z W

a) b)

Figure 5: DAGs implying different sets of
vanishing tetrad differences.

This process is repeated recursively on each model
generated until no improvements can be made to any
model. Search is guided by the t-maxscore since models
are expanded according to their t-maxscore. If M" is the
model generated by adding an edge to model M and M"s
t-maxscore is less than the tetrad score of M, it is
eliminated from the search. A proof of the following
theorem is provided by Spirtes (1993):

If M’ is a subgraph of directed acyclic graph M, then
the set of tetrad equations among variables of M"
that are linearly implied by M is a subset of those
linearly implied by G.

This theorem intuitively says that the addition of links to a-
graph will never cause more tetrad equations to be
implied by the resulting graph. It then follows that if
t - max scoreM, < tetrad - scoreM, neither M
or any modification of M’ will have a tetrad score as
high as M. The algorithm essentially uses a form of best
first search and in cases where the search is too slow to be
practical, the depth of search is limited to reduce the
amount of time spent on search. The program returns a
list of suggested additions of edges to the initial model
which will yield the model found by the search to have
the highest tetrad score.

7. CONCLUSION
¯ We have described an algorithm for path analysis and first
results from experiments with the algorithm. In a crude
sense the algorithm "works," that is, it generates causal
models from data. However, preliminary results suggest
that other methods of modification and model evaluation
as well as algorithm evaluation need to be explored. We
believe our use of the difference between estimated and
empirical correlations, and of R2, as terms in our
modification evaluation function serve to bring the search
into the neighborhood of good model space, but it is
obvious that R2 applied as a model evaluation function is
less than ideal because it drives the algorithm to generate
regression models (i.e., "flat" models in which all the
predictor variables point directly at the dependent variable
and are intercorrelated). Followup experiments to those
reported earlier confirm this: As R2 is given more weight
in the modification evaluation and model evaluation, we

see more regression models. Clearly our measures of
structural similarity, shared link score and shared path
score, also can be improved. These problem must be
addressed before we can establish that the algorithm
works well.

At this early stage, we have not made any empirical
comparisons between our algorithm and those of Pearl
and Verma, and Spirtes and his colleagues. We believe
that unlike Pearl’s algorithm, a lack of independencies will
not negatively effect the results obtained by our
algorithm; and unlike TetradlI, ours does not require an
initial model. However, the complexity of our algorithm
is significantly greater than that of the others2 Moreover,
it performs more computation for each model because it
estimates edge weights and predicted correlations. We
are not convinced that this is a negative aspect of our
algorithm since we believe estimated correlations, and
specifically the deviations between estimated and actual
correlations, are important criteria in controlling search in
our algorithm.

Our algorithm would probably be helped a lot if the
modification and model evaluation functions were
"monotonic" in a sense similar to TetradII, which
eliminated models under particular conditions that
guaranteed that no descendants of the eliminated models
could be preferred to previous models. We need
modification and model evaluation functions that will
allow us to prune subtrees of the space of models. For
example, it is easy to compute whether a modification will
increase or decrease the difference between estimated and
actual correlations; we might prune modifications that
don’t reduce disparities.

Causality plays an important role in human understanding.
As researchers, we feel it is not enough to be able to
predict the behavior of computer systems; we must strive
to discover rules that dictate their behavior. We believe
behavior results from the interaction of a system’s
architecture, environment, and task; all these components
must be present in a causal model. These models are
essential to establishing general theories concerning the
types of behaviors that might occur in certain types of
tasks, architectures, and environments. We have yet to
answer many questions about factors that affect the
performance of our algorithm. Still, we are encouraged
by our results, and by the promise the algorithm holds for
automatically finding causal models of systems. However
ponderous it is, however difficult it is to evaluate, the fact
remain.~ that the algorithm generated causal models of a
complex AI planning system, and promises to be a
valuable tool for those who seek to understand AI systems
with statistical methods.

Acknowledgments

We would like to thank Glenn Shafer for his help with the
development of these ideas.

Page 160 Knowledge Discovery in Databases Workshop 1993 AAAI-93

This research was supported by DARPA-AFOSR contract
F30602-91-C-0076. The United States Government is au-
thorized to reproduce and distribute reprints for govern-
mental purposes notwithstanding any copyright notation
hereon.

References

Asher, H.B. 1983. Causal Modeling. Sage Publications,
Newbury Park, CA.

Cohen, P.R. Empirical Methods for Artificial Intelligence.
Forthcoming.

Cohen, P.R & Hart, D.M., 1993. Path analysis models of
an autonomous agent in a complex environment. To
appear in Proceedings of The Fourth International
Workshop on .41 and Statistics. Ft. Lauderdale, FL. 185-
189.

Cohen, P.R., Greenberg, M.L., Hart, D.M. &’Howe, A.E.,
1989. Trial by fire: Understanding the design require-
ments for agents in complex environments. A/Magazine,
10(3): 32-48.

Falkenhainer, B.C. & Michalski, R.S.; 1986. Integrating
quantitative and qualitative discovery: the ABACUS sys-
tem. Machine Learning 1(1): 367-401.

Glymour, C., Scheines, R., Spirtes, P. & Kelly, K., 1987.
Discovering Causal Structure. Academic Press.

Hart, D.M. & Cohen, P.R., 1992. Predicting and explain-
ing success and task duration in the Phoenix planner.
Proceedings of the First International Conference on AI
Planning Systems. Morgan Kaufmann. 106-115.

Langley, P., Simon, H.A., Bradshaw, G.L. & Zytkow,
J.M., 1987. Scientific Discovery: Computational
Explorations of the Creative Processes. The MIT Press.

Li, C.C. 1975. PathAnalysis-A Primer. Boxwood Press.

Pearl, J. & Verma, T.S., 1991. A theory of inferred causa-
tion. Principles of Knowledge Representation and
Reasoning: Proceedings of the Second International
Conference, J. Allen, R. Fikes, & E. SandewaU (Eds.).
Morgan Kaufman. 441--452.

Pearl, J. & Wermuth, N., 1993. When can association
graphs admit a causal interpretation? Preliminary Papers
of the Fourth International Workshop on AI and Statistics.
Ft. Lauderdale, FL. 141-150.

Schaffer, C., 1990. A proven domain-independent scien-
tific function-finding algorithm. In Proceedings of the
Eighth National Conference on Artificial Intelligence.
The MIT Press. 828-833.

Spirtes, P., Glymour, C. and Scheines, R. (1993)
Causation, Prediction and Search. Springer-Veflag.

Zytkow, J.M., Zhu, J. & Hussam, A., 1990. Automated
discovery in a chemistry laboratory. In Proceedings of
the Eighth National Conference on Artificial Intelligence.
The MIT Press. 889-894.

AAAI-98 Knowledge Discovery in Databases Workshop 1993 Page 161

