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Abstract

Data dependencies play an important role in analyzing and explaining the data. In this paper, we
look at dependencies between discrete values and a~aalyze several dependency measures. We examine a
special case of binary fields and show how to efficiently use SQL interface for analyzing dependencies in
large databases.

1 Introduction

|
Analysis of data dependencms is an important and active area of research. A number of methods have been
developed in database theory for determining functional dependencies (Mannila and Raiha 1987), (Siegel
1988), where the value of one field certainly and precisely determines the value of second field.

There are many more approximate dependencies, where the value of one field determines the value of
another field with some uncertainty or imprecision. Knowing such dependencies is helpful for understanding
domain structure, relating discovered patterns, data summarization (PiatetskyoShapiro and Matheus 1991),
and improving learning of decision trees (Almoaullim and Dietterich 1991).

Several methods have recently been developed for discovery of dependency networks. A method for
determining dependencies in numerical data using the Tetrad differences is given in (Glymour et al 1987,
Spirtes et al 1993). Methods for analyzing the dependency networks and determining the directionality
of links and equivalence of different networks are presented in (Geiger et al 1990). Pearl (1992) presents
a comprehensive approach to inferring causal models. For discrete-valued data, there is a Cooper and
Herskovitz (1991) Bayesian algorithm for deriving a dependency network. A problem with these approaches
is that they rely on assumptions on data distribution, such as normality and acyclieity of the dependency
graph. Not all of these methods provide a readily available quantitative measure of dependency strength.

In this paper we deal with discrete-valued fields. We propose a direct and quantitative measure of how
much the knowledge of field X helps to predict the value of field Y. This measure does not depend on
data distribution assumptions, and measures dependency in each direction separately. The measure, called a
probabilistic dependency, or pdep(X, It), is a natural 1 generalization of functional dependency. A normalized
version of pdep(X, Y) is equivalent to Goodman and Kruskal (1954) measure of association v (tan). 
pdep measure can be efficiently computed, since it takes no more time than sorting value pairs of X and Y.

We analyze the behaviour of pdep(X, Y) and r under randomization and prove surprisingly simple formulas
for their expected values. In particular, if N is the number of records and dx is the number of distinct values

1 So natural, that it was rediscovered several times. A measure similar to pdep was proposed by Russell (1986) under the name
of partial de~ermlna~ion. We proposed pdep measure in (Piatetsky-Shapiro and Matheus, 1991). Independently, desJardins
(1992, p. 70) proposed a measure called uniformity (as a variation of Russell’s measure), which turns out to be identical to
pdep measure.
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of X, then E[v(X, Y)] = (dx - 1)/(N - 1). This formula has significant implications for work on automatic
derivation of dependency networks in data, since it measures the bias in favor of fields with more distinct
values. It also has potential applications for the analysis of decision tree accuracy and pruning measures.

Note that the dependence of Y on X does not necessarily indicate causality. For example, we found a
data dependency discharge diagnosis ---* admission diagnosia, even though the causal dependency is
in the other direction. However, the dependency information in combination with domain knowledge of time
(or other) order between variables helps in understanding domain structure (e.g. the discharge diagnosis 
a refinement of the admission diagnosis).

Measures like X2 can test for independence between the discrete field values and provide a significance
level for the independence hypothesis. The pdep measure does two things that X2 does not: 1) it indicates
the direction of the dependence, and 2) it directly measures how much the knowledge of one field helps in
predicting the other field. Our experiments indicate that X2 significance levels are similar to pdep significance
levels obtained using the randomization approach. Thus, it is possible to use X2 to determine the presence
of dependence and use pdep to determine the direction and strength of dependence.

This paper is limited to measures of dependency between nominal (discrete and unordered) values,
such as maritM status or insurance type. Various regression techniques exist for deMing with dependency
between continuous field vMues, such as height or weight. An intermediate case is that of ordinal fields,
which are discrete yet ordered (e.g. number of children or level of education). Statistical measures 
association between ordinal vMues include 7, proposed by Goodman and Kruskal (1954, 1979) and Kendall’s
tau (Agresti 1984). Those measures, however, are symmetric and cannot be used for determining the direction
of dependency.

2 A Probabilistic Dependency Measure

In the rest of this paper we will assume that data is represented as a table with N rows and two fields, X
and Y (there may be many other fields, but we examine two fields at a time).

We want to define a dependency measure dep(X, Y) with several desirable features. We want dep(X, Y)
to be in the interval [0, 1]. If there is a functional dependency between X and Y, dep(X, Y) should be 1.
If the dependency is less than functional, e.g. some amount of random noise is added to X or Y, we want
dep(X, Y) to decrease as the amount of noise increases. When X, Y are two independent random variables,
we want dep(X, Y) to be close to zero. Finally, to measure the direction of dependency dep(X, Y) should
be asymmetric and not always equal to dep(Y, X). With these criteria in mind, we define the dependency
measure as follows.

Definition 1. Given two rows R1, R2, randomly selected from data table, the
probabilistic dependency from X to Y, denoted pdep(X, Y) is the conditional
probability that R1.Y = R2.Y, given that R1.X = R2.X. Formally,

pdep(X, Y) = p(R1.Y = R~.Y I R1.X = R2.X)

We note that pdep(X, Y) approaches (and becomes equal to) 1 when the dependency approaches (and
becomes) a functional one.

To derive the formula for pdep(X, Y), we first examine the self-dependency measures pdep(Y), which is
the probability that Y values will be equal in two randomly selected rows. Without loss of generality, let
Y take values 1,..., M, with frequencies yl,..., YM. The probability that both randomly selected rows will

~denoted pdep!(Y) in Piatetsky-Shaplro (1992)
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have Y = j is p(Y = j) x p(Y = j) = 2, and pdep(Y) is t he sum of t hese probabilities over all j , i. e.

m 2

pdep(Y) = Ep(r = j)’ = E NY~ (1)
j=l

Let X take values 1, .... K with frequencies zl,..., ZK, and let nq be the number of records with X -- i,
Y = j. Assume that the first row R1 had X - i. Selection of the second row R2 is limited to the subset of
size zl where X = i. The probability that two rows randomly chosen from that subset will have the same Y
value is equal to pdep(Y[X = i) for that subset, which is

M M 2
nij

pdep(YIX = i) y]~p(Y = jl X = 02= z_,z?
~=1 j=l *

(2)

Since the probability of choosing row Rx with value X = i is zi/N, we can compute pdep(X, Y) as the
weighted sum of pdep(YIX = i), i.e.

K K M_2 K M

pdep(X,y)=Ep(X=i)pdep(Y.X=,) ~"~ziX"’’
li~1~n~’= Z--~NZ---a z? = z--7

i=1 i=1 j=l t = =

I

The following table 1 shows a sample data set and a corresponding frequency table.

(3)

Data
File

Table 1: An example dataset

X Y Y=i 2[x_i
Frequency --+ ....... +--

i I Table X= 11 2 0 [ 2
i i 2li 112
2 1 31 0 11 1
2 2 +
3 2 y_jl3 215

Here we have pdep(Y) = 9/25+4/25 = 0.52, and pdep(X, Y) = 0.8, while pdep(X) = 4/25+4/25+ 1/25 =
0.36, and pdep(Y, X) = 0.533.

By itself, however, the measure pdep(X, Y) is insufficient. If, for example, almost all values of Y are
the same, then any field will be a good predictor of Y. Thus we need to compare pdep(X, Y) with pdep(Y)
to determine the relative significance of pdep(X, Y). The relationship between these measures is given in
theorem 1.

Theorem 1.
K--1 K M

1 (zhnq -- Zinhj)2pdep(X,r) pdep(V): x,,x,
h=l i=h+l j=l

Proof: By rearranging sums (details omitted for lack of space).

(4)

This theorem implies
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Corollary 1:
pdep(X, Y) >_ pdep(Y)

It also implies that pdep(X, Y) = pdep(Y) only in a rare ease when no/nhj - zi/za for all h, i,j, which
implies that pdep(YlX = i) = pdep(X, for all i.

To account for the relationship between pdep(X, Y) and pdep(Y) we normalize pdep using a standard
statistical technique called proportional reduction in variation (Agresti 1990). The resulting measure is the
Goodman and Kruskal r (tau) measure of association:

r(X, Y) pdep(X, Y) - pdep(Y) (5)
1 - pdep(Y)

The r measure is always between 0 and 1. If r(A, B) > v(B, A), we infer that A ---, B dependency 
stronger, and vice versa. For data in Table 1, r(Y,X) = 0.271, while r(X,Y) = 0.583 . We conclude that
the dependency X --* Y is stronger than Y -* X. ~-

We can understand these measures in the following way. Suppose we are given an item drawn from the
same distribution as the data file, and we need to guess its Y. One strategy is to make guesses randomly
according to the marginal distribution of Y, i.e. guess value Y = j with probability yj. Then the probability
for correct guess is pdep(Y). If we also know that item has X = a, we can improve our guess using conditional
probabilities of Y, given that X = a. Then our probability for success, averaged over all values of X, is
pdep(X, Y’), and r(X, Y) is the relative increase in our probability of successfully guessing Y, given 

l

A difficulty with pdep and r is determining how significant are their values. In our experience with
analysis of dependencies for fields in customer and insurance databases, r values are rarely above 0.05,
even for strong dependencies that are extremely significant as measured by X2. This reflects the diffuse
phenomena under study: the target field is not completely determined by any single predictor. However,
knowledge of weak predictors is important, since a combination of several weak predictors may give a strong
predictor. When the studied population is large, and the target field is important, even weak improvements
in predictive abilities are very valuable.

We have used the randomization testing approach (Jensen 1991) to analyze the significance of pdep values.
Consider a file with fields X and Y, and let pdep(X, Y) = po. The idea of randomization is to randomly
permute Y values while keeping X values in place. We can estimate the probability of pdep(X, Y) > 
as the percentage of permutations where pdep(X, Y) > Po, assuming that all permutations of Y values are
equally likely.

2.1 Expected value of pdep

We have analyzed the expected value ofpdep measure under randomization and derived the following formula:

Theorem 2 (Piatetsky-Rotem-Shapiro)
Given N records of fields X and Y, where X has dx = K distinct values,

K-1
E[pdep(X, Y)] = pdep(Y) ~-~--T(1 -p dep(Y)) (6)

The proof of this theorem is in the appendix.

The interesting implication of this formula is that for a fixed distribution of Y values, E[pdep(X, Y)]
depends only on the number of distinct X values and not on their relative frequency.

Theorem 2 gives us the expected value of 1- under randomization:
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Corollary 2.1

Elf(X, Y)] - E~dep(X, Y)] - pdep(Y) _ K - 1 (7)
1 - pdep(Y) N - 1

So, if dx > dz, then for any field Y, X is expected to be a better predictor of Y than Z. Tan values
that are higher than the expected value indicate additional relationship between the fields. This formula is
especially important when the number of distinct field values is close to the number of records.

We can further refine our analysis of dependency by observing that pdep(X, Y) (and r) will indicate 
significant dependency for large values of dx, even for a random permutation of all Y values (which destroys
any intrinsic relationship between X and Y). We can compensate for this effect by introducing a new measure
p, which normalizes pdep(X, Y) with respect to E~dep(X, Y)] instead of pdep(Y):

p(X, Y) pdep(X, Y) - S~dep(X, Y)] 1 - pdep(X, Y) N - 1
1 - E~dep(X, Y)] - 1 - 1 - pdep(Y) g - (8)

Since E~dep(X, Y)I >_ pdep(Y), we have p(X, Y) < r(X, Y). When N/K increases, E[pdep(X, Y)]
asymptotically decreases to pdep(Y), and p(X,Y) asymptotically increases to r(X,Y). The additional
advantage of p is that it increases, like X2, if the data set size is doubled, whereas pdep and tan do not
change.

We used the randomization approach to compute the exact significance values for pdep(X, Y) (see 
pendix). However, for large datasets the exact computation is too computationally expensive. Instead, we
use X2 statistic for measuring the significance of dependency. Our experiments indicate that randomization
and X2 significance levels are quite close.

Finally, we note that the two-field dependency analysis of Y on X can be straightforwardly generalized
into a multi-field dependency analysis of Y on several fields, X1, X2,.. ¯ by replacing conditional probabilities
p(Y = blX = a) with p(Y = blX1 = 1, X2 - 2,...) (see also Goodman and Kruskal, 1979).

3 Binary Fields

An important and frequent special case is that of binary fields. Assuming that there is a significant depen-
dency between X and Y, as measured by standard tests for 2x2 tables, we want to know the direction of the
dependency. When both X and Y have only two values, then we cannot use r or p measures to determine
the direction of dependency, since r(X, Y) = r(Y, 

For binary fields, the value (w.l.g. denoted as "t" for true) which indicates the presence of a desirable
feature is generally more useful than the other value (denoted as "f" for false). So we need to compare the
rules (X = t) --* (Y = t) versus (g = t) --* (X = t). If, It, if, it, denote the counts of X =f, Y=f; X=f,
Y=t; X=t, Y-f; and X=t, Y=t, respectively.

Ix=t & Y=t] tt of cases, while (Y -- t) ---* (X = t) is true Then (X = t) ~ (Y = t) is true IX=, l =
u of cases. Hence the rule (X = t) --* (Y = t) is stronger tf < f t, and the inverse rule is st ronger if

~t+lt
tf > ft.

The following table shows the statistics for a sample of customer data for fields CHILD-O-5, CHILD-O-17,
and FEMALE-35-44, which have a value "Y" if the household has such a person, and "N" otherwise.

In the first case, the rule Child 0-17 --* Child 0-5 is correct 2~--+~s24 - 31% of the time, while the rule
Child 0-5 ---* Child 0-17 is correct 100%, so the second rule is obviousTy better. In the second case, rule Child

327 = 37%.327 = 43%, while the inverse rule has correctness0-17 --~ Female 35-44 has correctness
Thus, the first rule is preferred.
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Child 0-17

Child 0-5 Female 35-44
N Y N Y

+ .......... + ~ +

N I 5363 OI NI 4803 860 I
Y J 524 238J YI 435 327 I

+ .......... + 4 +

4 Using SQL interface to compute Dependencies

Some databases are so large that they cannot be analyzed in memory. Such databases can be analyzed by

using a DBMS query interface to retrieve data and to perform at least some of the computation. We limit
our discussion to SQL interfaces, since SQL, with all its limitations, is the de-facto standard query language.
Using SQL for data access makes analysis tools more portable to other DBMS.

Here we examine the use of SQL queries on a file File1 to perform the dependency analysis. In the
simplest case of both X and Y being discrete, we can extract the necessary statistics for computing pdep
with the query

select X, Y0 count(*) from Filel group by X, 

A more interesting case arises when we need to discretize numeric data fields. Consider a field Y which
contains toll-call revenue. While Y has many distinct values, we are interested in whether Y = 0 (no usage);
0 < Y < 3 (low usage); 3 < < 10(medium usage); or Y >10(h igh usage). Such d iscre tization may ne
to be done frequently, and for different sets of ranges.

To get the necessary statistics for computing dependency of discretized Y upon some X we have to issue
four standard SQL queries:3

select X, count(*) from Filei where Y = 0 group by 

select X, count(*) from Filel where Y > 0 and Y <= 3 group by 
select X, count(*) from Filel where Y > 3 and Y <= I0 group by 

select X, count(*) from Filel where Y > I0 group by 

If X is discretized into 5 buckets and Y is discretized into 3, then 5 x 3 = 15 queries would be needed
to compute the dependency. Fortunately, several popular DBMS, such as Oracle" or Raima"n, have SQL
extensions that allow us to compute the necessary statistics with just one query.

4.1 Dynamic Discretization using Raima

Dynamic discretization is relatively straightforward using Raima, which has a conditional column function
if(condition1, exprl, expr2), meaning if condltionl is true, then exprl else expr2. Expressions exprl,
expr2 may in turn contain conditional columns. The necessary code for the above example is:

select X, if(Y=O, O, if(Y<=3, 2, if(Y<=lO,5,10))), count(*) from 

group by 1, 2;

In general, the code for discretization is specified as one long conditional column in a straightforward
manner.

3The last query can be avoided if we have previously computed select X, count(*) from Filet group by 

AAAI-93 Knowledge Discovery in Databases Workshop 1993 Page 167



4.2 Dynamic Discretization using Oracle

The discretization is more complex with Oracle SQL which does not have the conditional column feature.
Instead, we will use the functions LEAST and GREATEST to achieve the same effect. We will also rely on the
fact that most numerical fields typically have a limited number of digits after the period. For our databases,
the only non-integer values are the dollar amounts which 2 digits after the period. That means that if Y > 0,
then 100 * Y ~ 1.

We can formulate the discretization problem as follows. Given a field Y, a set of non-overlapping ranges
rangei = [al lop Y lop bi], where lop is < or <, and a value vi for each range, we want to specify a function
DIS(Y) that will return vl if Y is in rangel, and zero otherwise. Then, the statistics for dependency between
X and discretized Y can be computed by the query

select X, DIS(Y), count(*) from Filel
group by X, DIS(Y)

The case where X is also discretized is handled by replacing X in the above query with DIS(X).

Consider the expression LEAST(I, IO0*GREATEST(Y, 0)). It is 1 if Y > 0 and zero if Y ~ O. Below 
show how to specify similar indicator functions ind(range) for each comparison Y op a (we include Y = 
as a simplification of range a <Y< a). The M constant below is 10d, where d is the number of Y digits after
the period.

¯ ind(Y = a) 

¯ ind(Y > a) 

¯ ind(Y > a) 

¯ ind(Y < a) 

¯ ind(Y < a) 

I

1 - LEAST(l, ABS(M,Y))

LEAST(i, M*GREATEST(0,Y-- a))

LEAST(i, M*GREATEST(0,Y-- a+I/M))

LEAST(l, M*GREATEST(O,a-- Y))

LEAST(i, M*GREATEST(O,a--Y+I/M))

If a range contains two comparisons, e.g. a < Y < b, then ind(a < Y _~ b) = ind(a < Y) x ind(Y _~ 
Finally, we get the dynamic discretization function by

DIS(Y) = Z vi × ind(rangei) (9)
i

If one of the vi is zero, as is the case for the first range in our example, then the corresponding term may
be omitted. The complete Oracle SQL query to discretize Y for the above example is

select X,

from Filel
group by X,

2*LEAST(I, IO0*GREATEST(O,Y-O))*LEAST(I, IO0*GREATEST(O,3-Y)) 
5*LEAST(I, IO0*GREATEST(O,Y-3+O.OI))*LEAST(I, IO0*GREATEST(O,IO-Y)) 
IO*LEAST(I, IO0*GREATEST(O,Y-IO+O.OI)) Y, count(*)

2*LEAST(I, IO0,GREATEST(O,Y-O))*LEAST(I, IO0*GREATEST(O,3-Y)) +
S,LEAST(I, IOO*GREATEST(O,Y-3+O.OI))*LEAST(I, IO0*GREATEST(O,IO-Y)) 
IO*LEAST(I, IO0*GREATEST(O,Y-IO+O.OI))

5 Summary

Knowing data dependencies is important for understanding the domain and has many applications in ana-
lyzing, refining, and presenting information about the domain.
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In this paper, we have discussed ways to measure the strength of approximate, or probabilistic, depen-
dencies between nominal values and showed how to determine the significance of a dependency value using
the randomization approach. We proved formulas for the expected values of pdep and Goodman-Kruskal r
under data randomization.

We also described how to efficiently use SQL interface for analyzing dependencies in large databases.

Acknowledgments. We thank Philip Chan, Greg Cooper, Marie desJardins, Greg Duncan, and Gail
Gill for their insightful comments and useful suggestions. We are grateful to Shri Goyal for his encouragement
and support.
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A Analysis of the PDEP measure under Randomization

We use the randomization testing approach (Jensen 1991) for analyzing the pdep measure. First, we prove
a formula for the expected value of pdep under randomization, and then we discuss ways of measuring the
significance of pdep value.

Consider a file with only two fields X and Y, and let pdep(X, Y) = Po. The idea of randomization is to
randomly permute Yvalues while keeping X vMues in place. We can estimate the probability ofpdep(X, Y) 
P0 as the percentagd of permutations where pdep(X, Y) > Po, assuming that all permutations of Y values
are equally likely.

A.1 Expected Value of PDEP under Randomization

Without loss of generality we can assume that X takes values from 1 to K, and Y takes values from 1 to
M. Let N be the number of records. Then we have the following theorem, proposed by Gregory Piatetsky-
Shapiro and proved by Doron l~tem.

Theorem 2 (Piatetsky-t~tem-Shapiro): The expected value of pdep(X, Y) under random-
ization is

N-K K-1
E~dep(X, Y)] = pdep(Y)--ff-~ + N ------1

K-1
-- pdep(Y) ~- --~(1 - pdep(Y)) (10)

Proof: For convenience, we reformulate this problem in terms of balls and cells. We will call a set of
tuples with equal y-values a y-set. We have M y-sets, each consisting of yj bMls. Partitioning of the record
according to K distinct X values is equivalent to partitioning the N cells into K compartments, each of zi
cells. From the definition of pdep it is clear that

K My

E~dep(X,Y)] -" Z Z E~dep(X -- i,Y = j)]
i=1 j=l

(11)

First, we will compute E~dep(X = i, Y = j)] by looking at the problem of placing yj balls among N cells,
so that r balls fall into a compartment of size zi, contributing r~/(Nz~) to pdep.

Let( n) n~.i -- ~ denote the number of ways to select i items from n.
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For a given y-set with yj balls, the probability that r balls fall into a compartment of size zl is

r xi--r r yj --r
(12)

Then E~dep(X = i, Y = j)] is the sum of the above equation from r = 1 to r = zl (r = 0 contributes zero
to pdep), which is

N =
Y~

(13)

We reduce this sum to a closed form using the following combinatorial lemmas.

Lemma 2.1:

i=0

Proof: Consider the task of placing b balls into n cells. Assume that the first a cells are marked as special.
The number of placements of b balls into n cells, so that exactly / of them will fall into special cells is

(a)(n-a)i . Summing this for i fromO to a givesthe sum on the l eft . This sumis al so equal to the

()total number of placements of b balls into n cells (regardless of the partition), which 
n Q.E.D.
b "

Corollary 2.2

"()( )( Ei a n--a n--1
i b i

-a b 1
i=0

Proof: By reducing to Lemma 2.1.

(15)

Corollary 2.3

()( )()( ~-’~(i + 1)
a n - a n n - 1
i b-i = b +a b-1

i=0

Proof: By summing the previous two equations.

We can now reexamine the sum in earlier equation 13 after replacing r with r’ = r - 1,

r -- ~-~(r’+l) zi-1
(N 1)

r- 1 yj -r d
r=l rl=0

(16)

(17)

We see that Corollary 2.3 applies, with a = z~ - 1, b = yj - 1, and n = N - 1. Hence E~dep(X = i, Y = j)]
(from equation 13) is equal 

1 [(N-l)

(N-2)1

(x,- 1)(yj

N()yi yjl +(zi- 1)YJ -2 = --~-- (1 -I-N2 N- 1 -1))
(18)

Finally, to compute E~pdep(X, Y = j)] we sum the above over all zi, obtaining (since E xi = N)

E[pdep(X,Y=j)] = ~ yj (1+ -1))=~ 1).)
i----1
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V] N-K K-1
N2 N - 1 -b yj N(N - 1) (19)

As we can see there is no dependence of this expression on zi, but only on N, yj, and K. Finally, the value
of E~dep(X, Y)] is obtained by summing the above equation over all y-sets:

M 2 N-K
K-1E[pdep(X’Y)] ~’ ~(~2 N--1 +Y I N( N--1))

j=l
(20)

Since ~’~’~M1 yj ---- N and ~--~M y~/N2 = pdep(Y), the above simplifies to

N-K K-1 K-1
E[pdep(X, Y)] = pdep(Y)~ + N ----~1 -- pdep(Y) ~-~-T(1 - pdep(Y)) (21)

End of Proof.

A.2 Determining significance of PDEP

Table 2: Sample Data partitioned by different X values.
X Y

l

Data I I pdep(X,Y) = 0.800
File I I

.... pdep(Y) = O.S2
2 1 !I=5, K=3
2 2

3 2

For our sample data, we have dependency X ---* Y with pdep(X, Y) = 0.800. How significant is this? Let
us consider permutations of record numbers and their Y values, while keeping X values in the same place.
Each permutation is partitioned into three parts: records with X = 1, X = 2, and X = 3. Let us denote a
particular permutation by listing its Y values, with a vertical bar to denote the partition. The above table
would be denoted as [1,1 I 1,2 [ 2], where the first section 1,1 represents Y values for X = 1, the second
part 1,2 is Y values for X = 2, and the last part 2 is Y value for X = 3.

For the purpose of measuring pdep, the order of Y values within a partition is irrelevant. Consider a
permutation that leads to a partition [vl,v2 I v3,v4 I vS]. Any permutation of values in the first (or
second) part will lead to a partition with the same pdep. Partitions are differentiated by the count of values
with Y - 1 and Y - 2 in each part, called the partition signature. Since the number of values in each part
is 2, 2, and 1, respectively, each signature will appear at least 2!2!1! = 4 times among the 5!--120 possible
permutations.

(3)Consider partition [1,1 [ 1,2 [ 2]. There are 2 =3 ways to choose 2 records with Y = 1 in the first

part’ (2) 1)1  1 -2waystochooserecordswithY--landY-2inthesecondpart, andoneway

to choose the remaining record in the third part. Thus, there are 3x2-6 choices that lead to signature [1,1
[ 1,2 [ 2]. For comparison, signature [2,2 [ 1,1 [ 2] can be chosen in 3 ways.

Regardless of the signature, each choice can be permuted in 2!2!1! = 4 ways to get a pdep-equivalent
partition. These results are summarized in tables 3A and 3B.
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Table 3A. Pdep and prob. of all signatures

-y-signature--- choices probability pdep
[1,1 ] 2,2 1 I] 3 3x4/120 = 0.1 1.0
[2,2 ] I,I [ 1] 3 3x4/120 = 0.1 1.0
[I,I [ 1,2 [ 2] 6 6x4/120 = 0.2 0.8
[1,2 I 1,1 I 2] 6 6x4/120 = 0.2 0.8
[I,2 ] 1,2 1 i] 12 12x4/120 = 0.4 0.6

Table 3B. Pdep probability s~mmary

pdep probability
1 0.2
0.8 0.4
0.6 0.4

Here the probability ofpdep(X, Y) >_ 0.8 for a random permutation of Y values is p(pdep -- 1) + p(pdep = 0.8)
= 0.2+0.4 = 0.6.

We can also use table 3B to check Theorem 2. From table we get E[pdep(X, Y)] = 1 x 0.2 + 0.8 x 0.4 
0.6 x 0.4 = 0.76. For this data pdep(Y) 0.52, K = 3,andN = 5, and Theorem 2 givesE[pdep(X, Y)] =

3--I0.52 + ~:T(1 - 0.52) = 0.76, same answer[

Let us consider a general case where X has values 1, 2,... K, and Y has values 1, 2,... M. Let zi be the count
ofX = i, yj be the count ofY = j, nq be the count ofX = i, Y = j, and N be the total number of records.
Let C(N, nl, n2,..., nk) = N!/(nl!n2!...nk!) be the number of ways to distribute (without remainder) 
items into K bins, so that bin i will have.nl items.

The probability of a~ particular combination is obtained by the following reasoning. Let us group together
records with the same value of X. This will produce K bins, one bin for each value. First bin has nil
records with Y = 1, second has n12, etc. There are C(y1,n11,n21,...,nK1) ways to put Yt records with
Y = 1 into those bins. Similarly, there are C(y2, n12, n22,...,nK2) ways to place Y2 records with Y = 2.
After all records have been placed, records in each bin can be independently permuted. This will produce
zl!z2!.., zg[ permutations. The product of all those factors should be divided by N!, the total number of
permutations. Hence the total probability of a particular configuration [nq ...] is

prob([n,i." .]) = 1-IM1C(yj,nlj,...,ngj) I-I,K=I xi! = I’IM1C(yj,nlj,...,nKj) (22)N! C( N, Xl, . . . , xlf )

It is possible to enumerate all the partition signatures and construct a complete distribution of pdep values
and their probabilities. However, the number of different signatures grows very fast and it is impractical to
enumerate them for a large number of partitions. Instead, we can use X2 statistic to measure the significance
of the dependency.

To compare X~ and pdep significance levels, we computed them for datasets obtained by repeating N times
the data in Table 1. The following table summarizes the results, which indicate that pdep and X~ are quite
close.

Table 5. Sig(p obtained by randomization vs significance of X2

Significance N=2 3 4 6 8 16
sig(pdep) 0.934 0.984 0.9973 0.99995 1 - 1.5 x 10-6 1 - 7.8 x 10-l a
sig(x 0.946 0.987 0.9971 0.99985 1 - 8.6 x 10-6 1-7.4x 10-11

Note that since pdep and 1" values do not change, when the data set is doubled (which increases significance),
pdep or r values cannot be used by themselves to measure the significance of dependency and should be used
only together with N.
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