
Knowledge Discovery in Object-Oriented Databases:

The First Step *

Shojiro Nishiot Hiroyuki Kawano:~ Jiawei Han§

t Department of Information Systems Engineering, Osaka University, Osaka 565, Japan (nishio@ise.osaka-u.ac.jp)

Department of Applied Math. and Physics, Kyoto University, Kyoto 606, Japan (kawano@kuamp.kyoto-u.ac.jp)

§ School of Computing Science, Simon Fraser University, Burnaby, BC, Canada VSA 1S6 (han~cs.sfu.ca)

Abstract

Object-oriented database system has become increasingly popular and influential in the develop-
ment of new generation database systems. This motivates the investigation of mechanisms for data
mining in object-oriented databases. In this paper, we propose our first step towards knowledge
discovery in object-oriented databases by extension of the attribute-oriented induction technique
from relational databases to object-oriented databases. By the development of sophisticated gen-
eralization operators and generalization control mechanisms, attribute-oriented induction method
can be successfully extended to knowledge discovery in object-oriented databases. Furthermore, we
show that knowledge discovery will substantially enhance the power and flexibility of querying data
and knowledge in object-oriented databases.

1 Introduction

With the rapid growth in the amount of information stored in databases, the development of efficient
and effective tools for knowledge discovery in databases (KDD, or data mining) has become an
increasingly important task in both database and machine learning researches [28, 6]. Since object-
oriented database systems are popular and influential in advanced database applications [16, 22,
4], it is important to study the mechanisms for knowledge discovery in object-oriented databases
(OODBs).

Object-oriented data models and systems [1, 2, 3, 12, 15] embody rich data structures and
semantics in the construction of complex databases, such as complex data objects, class/subclass
hierarchy, property inheritance, methods and active data, etc. This not only brings the power and
flexibility to the system but also adds complexity to the implementations, including the development
of knowledge discovery mechanisms [18].

There are different philosophical considerations on knowledge discovery in databases [7, 6, 29],
which may lead to different methodologies in the development of KDD techniques. To simplify our
discussion, the following assumptions are made as the first step in the development of mechanisms
for knowledge discovery in OODBs.

*The research of the first author was supported in part by the Ministry of Education, Science and Culture of Japan
under Scientific Research Grant-in-Aid, that of the second author was supported in part by a scholarship from the Ministry
of Education, Science and Culture of Japan, and that of the third author was supported in part by grants from the Natural
Sciences and Engineering Research Council of Canada and the Centre for Systems Science of Simon Fraser University.
The work by the second author was done during his visit to Simon Fraser University.

AAAI-93 Knowledge Discovery in Databases Workshop 1993 Page 299

From: AAAI Technical Report WS-93-02. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

Assumption 1 An OODB stores a large amount of information-rich, relatively reliable and stable
data.

Data in an OODB may be incomplete, redundant, incorrect, or highly dynamic in certain appli-
cations [29], which makes knowledge discovery a challenging task. The assumption on data stability
and reliability facilitates the development of knowledge discovery mechanisms firstly in relatively
simple environments and then evolution of the techniques step-by-step towards more complicated
situations.

Assumption 2 A knowledge discovery process is initiated by a user’s learning request.

Idealistically, one may expect that a knowledge discovery system will perform interesting discov-
ery autonomously without human interaction. However, since learning can be performed in many
different ways on any subset of data in the database, huge amount of knowledge may be generated
from even a medium size database by unguided, autonomous discovery, whereas much of the discov-
ered knowledge could be out of user’s interests. In contrast, a command-driven discovery may lead
to the guided discovery with a focus on the interested set of data and therefore represents relatively
constrained search for the desired knowledge. Thus, command-driven discovery is adopted in this
study.

Assumption 3 Generalized rules are expressed in terms of high level concepts.

Without concept generalization, discovered knowledge is expressed in terms of primitive data
(data stored in the databases), often in the form of functional or multivalued dependency rules
primitive level integrity constraints. On the other hand, with concept generalization, discovered
knowledge can be expressed in terms of concise, expressive and higher level abstraction, in the
form of generalized rules or generalized constraints, and be associated with statistical information.
Obviously, it is often more desirable for large databases to have rules expressed at concept levels
higher than the primitive ones.

Assumption 4 Background knowledge is generally available for knowledge discovery process.

Discovery may be performed with the assistance of relatively strong background knowledge (such
as conceptual hierarchy information, etc.) or with little support of background knowledge. Obvi-
ously, the discovery of conceptual hierarchy information itself can be treated as a part of knowledge
discovery process. However, the availability of relatively strong background knowledge not only
improves the efficiency of the discovery process but also expresses user’s preference for guided gen-
eralization, which may lead to an efficient and desirable generalization process.

Following these assumptions, our mechanism for knowledge discovery in OODB can be outlined
as follows. First, a knowledge discovery process is initiated by a learning request, which is usually
in relevance to only a subset of data in an OODB. A data retrieval process is initiated to collect
the set of relevant data. Second, generalization is performed on the set of retrieved data using
the background knowledge and a set of generalization operators. Third, the generalized data is
simplified and transformed into a set of generalized rules, which may facilitate query answering and
many other applications.

The first step corresponds to the processing of a database query. Query processing in OODB
is another subject of study, and many OODB query processing techniques have been developed
recently [2, 14, 15, 27, 21]. Here we simply assume that the data set in relevance to the learning task
is extracted efficiently by a data retrieval process without a detailed examination of query processing
itself.

The second and third steps are the focus of this study. The KDD process is performed by exten-
sion of an attribute-oriented induction method which was first developed for knowledge discovery
in relational databases [9, 10]. The method focuses on the generalization of individual attributes

Page 300 Knowledge Discovery in Databases Workshop 1993 AAA1-93

without examination of the inter-relationships among different attributes at low concept levels.
The generalization is performed by attribute-oriented concept tree ascension or applying other set-
oriented generalization operators. The method integrates learning-from-examples techniques with
database operations and substantially reduces the computational complexity of database learning
processes.

The paper is organized as follows. In Section 2, generalization operators for complex data objects
are examined systematically. In Section 3, generalization processes are studied with an emphasis on
the control of generalization. In Section 4, a generalization algorithm is presented and analyzed in
detail using some examples. In Section 5, the application of discovered knowledge is examined. The
study is summarized in Section 6.

2 Generalization operators for complex objects

An OODB organizes a large set of complex data objects into classes which are in turn organized
into class/subclass hierarchies with rich data semantics. Each object in a class is associated with
(1) an object-identifier, (2) a set of attributes which may contain sophisticated data structures,
or list- valued data, class composition hierarchies, multimedia data, etc. and (3) a set of methods
which specify the computational routines or rules associated with the object class.

To facilitate the development of KDD mechanisms in OODBs, it is important to efficiently imple-
ment a relatively small set of generalization operators on which a large set of possible generalization
operations can be constructed.

Formally, the generalization of a component p of an object Oi can be written in an abstract way
as Gen(Oi.p), where Gen is an abstract object generalization operator which can be transformed
into a concrete operation based on the role of the component and the specific learning requirement.
Moreover, the generalized component of an object can be further generalized by applying Gen again,
which could be the same or different generalization operators compared with the one applied in the
last generalization. If the generalization is performed by applying the same sequence of generalization
operators on a component p of Oi, we should have

Gen"-1(6en(O~.p)) - G~n(aen"-~(O~.p)). (1)

For example, a person P1’s address can be generalized from a detailed address, such as the
number of a street, into a higher leveled one, such as a street block, then a street, a district, a city, a
province, a country, etc. when necessary by applying the generalization operator Gen several times,
such as Gen(Gen(... Gen(Pl.address)...)).

2.1 Generalization of object identifiers

One of essential components of an OODB is object identifier (oid) which uniquely identifies objects.
It remains unchanged over structural reorganization of data. Since objects in an OODB are organized
into classes which in turn belong to certain class and subclass hierarchy, the generalization of objects
may refer to their corresponding class and subclass hierarchy. Therefore, an object identifier can be
first generalized into its corresponding lowest subclass names which can in turn be generalized into
a higher level class/subclass name by climbing up the class/subclass hierarchy.

Suppose the object identifier of an object Oi is Oi.oid, the name of the lowest subclass that Oi
belongs to is Ciz, and the name of the superclass of a class Ci,k is Ci,k-1, for all k (1 < k < j). The
generalization on the object identifier Oi.oid for Oi can be represented as:

Gen(Oi.oid) = Ci,j. (2)

vk(1 < k < j) Gen(C~,k) = C~,~-1. (3)

AAAI-93 Knowledge Discovery in Databases Workshop 1993 Page 301

2.2 Generalization of different kinds of attributes

An object in an OODB is described by a set of attributes and a set of methods. We study the
generalization of a set of attributes in OODBs. The attribute value of an object could be a character,
a fixed length character string, a numerical value, a structure, a class composition hierarchy, a set-
valued or list-valued data, or even some unformatted data, such as text, map, image, voice or other
forms of multimedia data. The generalization of different and complex kinds of attribute values is
a challenging task.

Suppose that an object property (attribute value) of an object Oi is Pk, its minimum generalized
concept is pk-a, which in turn has the minimum generalized concept pk-2, etc. A sequence of
generalization on the object property Pk can be represented as:

Vk(1 < k < j) Gen(pk) - Pk-1. (4)

2.2.1 Generalization on unstructured nonnumerical and numerical values

Ordinary unstructured nonnumerical and numerical attributes are the most popularly encountered
attributes in databases.

Generalization on nonnumerical values may rely on the available concept hierarchies specified
by DB designers, domain experts or users. Concept hierarchies represent necessary background
knowledge which directs the generalization process. Different levels of concepts are often organized
into a taxonomy of concepts. The concept taxonomy can be partially ordered according to a general-
to-specific ordering. The most general concept (corresponding to level 0) is the null description
(described by a reserved word "ANY"), and the most specific concepts correspond to the specific
values of attributes in the database. Using a concept hierarchy, the rules learned can be represented
in terms of generalized concepts and stated in a simple and explicit form, which is desirable to most
users.

For example, the address "5285 East Hastings St., Burnaby, B.C. Canada" can be generalized by
specifying a partial order of the generalization sequence, such as "5285 ::~ the 5200 block ~ East
Hastings St. ~ North Burnaby :¢, Burnaby =¢, Greater Vancouver Area =~ British Columbia
=~ Western Canada :¢, Canada =~ North America". Such a generalization sequence is obtained

by consulting the user-/expert- specified concept hierarchy. For example, one may specify a general
rule on how to transform a street number, such as "523ff’, into a street block, such as "the 5200
block". Also, one may indicate that deleting the street number from a street or deleting the city
name from a province is a step of generalization, etc. A generalization sequence can be implicitly
stored in tuples. In many cases, a portion of generalization sequence can also be specified explicitly
by users/experts or derived from the knowledge stored elsewhere. For example, "British Columbia
=:, Western Canada" should either be specified by experts or derived from geographical information.

Although a conceptual hierarchy could be stored or partially stored as data in a database, a stored
hierarchy may often need to be modified or refined based on user’s learning requirements and/or
database statistics. For example, if the learning requirement is to analyze the birth place of the stu-
dents of Simon Fraser University, the level 1 concepts should be: {B.C, other_provinces_in_Canada,
foreign}. However, if it is to analyze the birth place of the faculty of the University, the appropriate
level 1 concepts could be {North_America, Europe, Asia, other_countries}. Both concept hierarchies
can be obtained by dynamic adjustment of a given concept hierarchy based on the analysis of the
statistical distribution of the relevant data sets.

Generalization on numerical attributes can he performed similarly but in a more automatic
way by the examination of data distribution characteristics [5]. It may not require any predefined
concept hierarchies. For example, the ages of the graduate students in a university can be generalized
according to relatively uniform data distribution into several groups, such as {below 23, 23-26, 26-
80, over 30}. Appropriate names can be assigned to the generalized numerical ranges, such as {very
young, young, ...) by users or experts to convey more semantic meaning.

Page 302 Knowledge Discovery in Databases Workshop 1993 AAAI-93

2.2.2 Generalization on set-valued, llst-valued or other structure-valued data

An attribute may contain a set of values with homogeneous or heterogeneous types. Typically, a
set-valued data can be generalized in two ways: (1) generalization of each value in a set into its
corresponding higher level concepts, or (2)derivation of the general behavior of a set, such as the
number of elements in the set, the types or value ranges in the set, the weighted average for numerical
data, etc. Notice that in the case of set-valued attribute generalization, the generalization operator
Gen(pk) indicates that the input Pk can be a set of values and the output "P~-I = Gen(pk)" may also
be a set of values. Moreover, the generalization can be performed by applying different generalization
operators to explore alternative generalization paths. In this case, the result of generalization must
be a heterogeneous set.

For example, the hobby of a person is a set-valued attribute which contains a set of values, such
as {tennis, hockey, chess, violin, nintendo}, which can be generalized into a set of high level con-
cepts, such as {sports, music, computer_games}, or into 5 (the number of hobbies in the set),
both, etc. Moreover, a count can be associated with a generalized value to represent how many
elements are generalized to the corresponding generalized value, such as {sports(3), music(I),
puter_games(I)}, where sports(3) indicates three kinds of sports, etc.

A set-valued attribute may be generalized into a set-valued or a single-valued attribute; whereas
a single-valued attribute may also be generalized into a set-valued one if the "hierarchy" is a lattice
or the generalization follows different paths. Further generalizations on such a generalized set-valued
attribute should follow the generalization path of each value in the set.

A list-valued or a sequence-valued attribute can be generalized in a way similar to the set-
valued attribute except that the order of the elements in the sequence should be observed in the
generalization. Each value in the list can be generalized into its corresponding higher level concept.
Alternatively, a list can be generalized according to its general behavior, such as the length of the
list, the type of list elements, the value range, weighted average value for numerical data, or dropping
unimportant elements in the list, etc. A list may be generalized into a list, a set or a single value. For
example, a sequence (list) of data for a person’s education record: "((B.Sc. in Electrical Engineering,
U.B.C., 1980), (M.Sc. in Computer Engineering, U. Maryland, 1983), (Ph.D. in Computer Science,
UCLA, 1987))" can be generalized by dropping less important descriptions (sub-attributes) of each
tuple in the list, such as "((B.Sc., U.B.C., 1980), ...)", or by retaining only the most important
tuple(s) in the list, such as "(Ph.D. in Computer Science, UCLA, 1987)".

Set- and list-valued attributes are simple structure-valued attributes. In general, a structure-
valued attribute may contain sets, tuples, lists, trees, records, etc. and their combinations. Further-
more, one structure can he nested in another structure at any level. Similar to the generalization
of set- and list-valued attributes, a general structure-valued attribute can be generalized in several
ways, such as (1) generalize each attribute in the structure whereas maintain the shape of the struc-
ture, (2) flatten the structure and perform generalization on the flattened structure, (3) remove
low-level structures or summarize the low-level structures by high-level concepts or aggregation, and
(4) return the type or an overview of the structure.

2.2.3 Aggregation and approximation as a means of generalization

Besides concept tree ascension and structured data summarization, aggregation and approxima-
tion should be considered as important means of generalization, which is especially useful for the
generalization of attributes with large sets of values and complex structures, or multimedia data,
etc.

Take spatial data as an example. It is desirable to generalize a detailed geographic map into
clustered regions, such as business, residential, industry, or agricultural areas according to the land
usage. Such generalization often requires the merge of a set of geographic areas by spatial DB
operations, such as spatial union. Approximation is an important technique in such generalization.
During the spatial merge, it is necessary not only to merge the regions of similar types within

AAAI-93 Knowledge Discovery in Databases Workshop 1993 Page 303

the same general class but also to ignore some scattered regions with different types if they are
unimportant to the study. For example, different pieces of land for different purposes of agricultural
usage, such as vegetables, grain, fruits, etc. can be merged into one large piece of land by spatial
merge (a means of aggregation). However, such an agricultural land may contain highways, houses,
small stores, etc. If the majority land is used for agriculture, the scattered spots for other purposes
can be ignored, and the whole region can be claimed as an agricultural area as an approximation.
In this case, scattered small regions can be merged into large, clustered regions by spatial operators,
such as spatial.union, spatial_overlapping, spatial_intersection, etc., and such spatial operators can
be considered as generalization operators in spatial aggregation and approximation.

2.2.4 Generalization on multimedia data

A multimedia database may contain variable-length text, graphics, images, maps, voice, music, and
other forms of audio/video information. Such multimedia data are typically stored as sequence of
bytes with variable lengths, and segment of data are linked together for easy reference. Generaliza-
tion on multimedia data can be performed by recognition and extraction of the essential features
and/or general patterns of such data.

There are many ways to extract the essential features or general patterns from segments of
multimedia data. For an image, the size or color of the image, the major regions in the image can
be extracted by aggregation and/or approximation (as discussed above). For a segment of music, its
melody can be summarized based on the approximate patterns that repeatedly occur in the segment
and its style can be summarized based on its tone, tempo, and major musical instruments played,
etc. For an article, its abstract or general organization such as the table of contents, the subject and
index terms frequently occurring in the article, etc. may serve as generalization results. In general,
it is a challenging task to generalize multimedia data to extract the interesting knowledge implicitly
stored in the data. Further research should be devoted to this issue.

2.3 Generalization on inherited and derived properties

OODBs are organized into class/subclass hierarchies. Some attributes or methods of an object class
are not explicitly specified in the class itself but are inherited from its higher level classes. Some
OODB systems may allow the properties to be inherited from more than one superclass (called
multiple inheritance) when the class/subclass "hierarchy" are organized in the shape of a lattice.
The inherited properties of an object can be derived by query processing in the OODB. From the
knowledge discovery point of view, it is unnecessary to distinguish which data are stored within the
class and which are inherited from its superclass. As long as the set of relevant data are collected by
query processing, the KDD process will treat the inherited data in the same way as the data stored
in the object class and perform generalization accordingly.

Method is another important component of OODBs. Many behavioral data of objects can be
derived by application of methods. Since a method is usually defined by a computational proce-
dure/function or by a set of deduction rules, it is difficult to perform generalization on the method
itself unless the generalization of the method is clearly understood by application programmers and
is coded as a new method which directly performs the required generalization. In general, the gener-
alization on the data derived by method application should be performed in two steps: (1) deriving
the task-relevant set of data by application of the method and, possibly, also data retrieval; and (2)
performing generalization by treating the derived data as the existing ones.

3 Control of Generalization Processes

Task-relevant data can be viewed as examples for learning processes. Undoubtedly, learning-from.
examples [19, 8] should be an important strategy for knowledge discovery in databases. Most
learning-from-examples algorithms partition the set of examples into positive and negative sets and

Page 304 Knowledge Discovery in Databases Workshop 1993 AAAI-9$

perform generalization using the positive data and specialization using the negative ones [19]. Un-
fortunately, a relational database does not explicitly store negative data, and thus no explicitly
specified negative examples can be used for specialization. Therefore, a database induction process
relies mainly on generalization, which should be performed cautiously to avoid over-generalization.

A knowledge discovery process applies a sequence of generalization operators to a set of data to
generate a new set of data. A set of data can be viewed as a class from the view of OODB. The
class which is fed into a generalization operator for generalization is called the working class, W,
with the initial one (the set of task-relevant data) called the initial working class, We. The class
generated by the application of a generalization operator is called the resulting class, ~.

An attribute-oriented induction method, developed in the study of knowledge discovery in re-
lational databases [9, 10], can be extended to OODBs. The method is briefly outlined as follows.
First, a set of generalization operators are selected and applied to an attribute in the working class
without considering the inter-relationships among different attributes before the concepts in each
attribute are generalized to a desired level. The reason to ignore the inter-relationships among dif-
ferent attributes at an early stage of generalization is that such inter-relationships, if considered at
an early stage, would have to be expressed at an undesirably low level in large numbers. This cannot
lead to elegant generalized rules to be expressed at a high level and in concise terms. Attribute-
oriented induction, which considers the attribute inter-relationships only when the data has been
generalized into a relatively small set, will substantially reduce the computational complexity of a
database learning process.

Formally, a generalization operator Gen can be applied to an attribute ai on every object in a
working class W~, resulting in a new generMized class ~k. Thus, a database generalization op-
erator, DBGen, is introduced which applies the object generalization operator Gen to an attribute
ai of every object in the working class. That is,

~k=DBGen(W~,ai) = {o’ :oEW~Ao’.ai:Gen(o.ai)AV(j~i)o’.aj=o.aj} (5)

For example, for a working class W0 = Person in a university database, DBGen(Wo, address)
derives a resulting class ~0 with one-step generalization on the attribute "address" (e.g., from street
number to stree block) and all the other attributes unaltered.

A knowledge discovery process can be viewed as the application of a sequence of database gener-
alization operators, DBGen, on different attributes until the resulting class contains a small number
of generalized objects which can be summarized as a concise, generalized rule in high-level terms.

3.1 Basic strategies for attribute-oriented induction

In general, we have the following basic techniques for attribute-oriented induction [9, 10] in OODBs.

Technique 1 (Data focusing) Generalization should be performed only on the set of data which
are relevant to the learning request.

Technique 2 (Attribute removal) If there are a large set of distinct values in aa attribute in
the working class, but there is no generalization operator on the attribute, the attribute should be
removed from the working class.

Technique 3 (Attribute generalization) If there are a large set of distinct values in an attribute
in the working class, but there exists a set of generalization operators on the attribute, a generaliza-
tion operator should be selected and applied to the attribute at every step of generalization.

As a result of generalization, different objects may be generalized to equivalent ones where two
(generalized) objects are equivalent if they have the same corresponding attribute values without
considering their object identifiers and a special internal attribute count, which registers the number
of objects in the initial working class that are generalized to the object in the current resulting class.
Notice that a generalized object, though has its own new oid (object identifier) in an OODB, is a

AAAI-98 Knowledge Discovery in Databases Workshop 1993 Page 305

carrier of the general properties of a set of initial objects because the original object identifier has
been generalized into a class or superclass name. The count accumulated in the generalized class
incorporates quantitative information in the learning process.

Technique 4 (Count propagation) The value of the count of an object should be carried to its
generalized object, and the count should be accumulated when merging equivalent objects in general-
ization.

Technique 5 (Attribute generalization control) Generalization on an attribute ai is performed
until the concepts in ai has been generalized to a desired level, or the number of distinct values in ai
in the resulting class is no greater than a prespecifled threshold.

Notice that the threshold which controls the attribute generalization is called attribute thresh-
old which is usually a small number (often between 2 to 10) that can be specified explicitly by
user/expert or be built in the system as a default.

Theorem 1 The above five generalization techniques are correct and necessary for the extraction
of generalized rules from databases.

Proof sketch. Technique 1 is obvious since only the task-relevant set of data need to be studied. An
attribute-value pair represents a conjunct in a generalized rule, the removal of a conjunct eliminates
a constraint and thus generalizes the rule. If there is a large set of distinct values in an attribute but
there is no generalization operator for it, the attribute should be removed. Thus, we have Technique
2 which corresponds to the generalization rule, dropping conditions, in learning-from-examples [19].
The generalization of an attribute value using a selected generalization operator makes the object
covers more cases than the original one and thus generalizes the concept. Thus, we have Technique 3
which corresponds to the generalization rule, climbing generalization trees, in learning-from-examples
[19]. Technique 4 is based on the merge of identical tuples. Technique 5 is based on the desirability
of representation of each attribute at its desired level. Thus, we have the theorem, o

The application of a database generalization operator DBGen on a working class results in a
more general resulting class, which in turn becomes the working class in the next round of database
generalization. Such a generalization process proceeds until the concept in every attribute in the
resulting class has reached to a desired concept level, or the number of distinct values in every
attribute is no greater than its attribute threshold. The generalized resulting class so obtained is
called a prime generalized class.

3.2 Generalized rule extraction

Since the above induction process enforces only attribute generalization control, the prime gener-
alized class so extracted may still contain a relatively large number of generalized objects. Two
alternatives can be developed for the extraction of generalized rules from a prime generalized class:
(1) further generalize the class to derive a final generalized class which contains no more ob-
jects than a prespecified class threshold, and then extract the Jinal generalized rule; and (2) directly
extract generalized feature table and present feature-based multiple rules.

Alternative 1 is based on the following Technique 6. The interestingness of the final generalized
rule relies on the selection of the attributes to be generalized and the selection of generalization
operators. Such selections can be based on data semantics, user preference, generalization efficiency,
etc. A more detailed discussion is provided in the discussion section.

Technique 6 (Class generalization control) Generalization on a prime generalized class is per-
formed until the number of distinct generalized objects in the resulting class is no greater than a
prespecified class threshold.

Page 306 Knowledge Discovery in Databases Workshop 1993 AAAI-93

Alternative 2 takes the set of generalized objects and maps them into a generalized feature table.
Based on the generalized feature table, multiple generalized feature-based rules can be presented.
The algorithm for the derivation of the generalized feature table is similar to that for relational
databases [10] and is exemplified in the next section.

4 Generalization Algorithm and Example

The above discussion can be summarized into the following generalization algorithm which extracts
generalized characteristic rules in an OODB based on a user’s learning request, where a character-
istic rule is an assertion which characterizes the concepts satisfied by all or a majority number of
the examples in the task-relevant data set.

Algorithm 1 (Basic attribute-oriented induction in OODB) Discovery of a set of general-
ized characteristic rules in an OODB based on a user’s learning request.

Input. (i) An OODB DB, (it) Gen(a~), a set of concept hierarchies or generalization operators on
attributes ai, and (iii) T, class threshold, and 7], a set of att ribute thr esholds forattr ibutes
at.

Output. A characteristic rule based on the learning request.

Method.

1. Derive the initial working class, Wo, i.e., collect the set of task-relevant data by an OODB
query based on the learning request.

2. Derive the prime generalized class, Tip, by performing a sequence of attribute-oriented
induction, Z(k), for (0 < k _< p) on the initial working class W0. The induction Z(k),
performs DBGen on the working class }’Vk and generates a resulting class Tik. The
resulting class Tik is taken as the working class 142k+1 in the next induction Z(k + 1). The
processing detail is described as follows.
begin

for each relevant attribute (method) ai in Wk do {
if ai should be removed (i.e., there are a large set of distinct values in ai in Wk, but
there is no generalization operator on ai)

then remove ai

else if ai is not at a desired level
then repeatedly apply: (1) I(k): Tik DBGen(Wk, ai)(2) 1 41k+1 := Ti ~, and (
k := k + 1, until the attribute ai is generalized to a desired level. }

Merge equivalent objects in Tip with count accumulated.
Comments: Generalization on each attribute al can be implemented efficiently by
(1) collecting the distinct ai values in the working class, (2) computing the minimum
desired level L, and (3) generalizing the attribute to this level L by replacing each
value in ai’s with its corresponding superordinate concept in Hi (the concept hierarchy
for at) at level L (which may be obtained by a sequence of Gen’s).

end

3. Presentation of generalized rules.
¯ Determine which of the two alternatives: (1) final generalized class, or (2) generalized

feature table, should be chosen in the presentation of generalized rules. This can be
predetermined by experts or determined by interaction with users.

¯ If alternative 1 is chosen,
then further generalization (similar to Step 2) is performed on the prime generalized
class by selection of certain attributes for generalization until the number of distinct
generalized objects is no greater than the class threshold, T. The final generalized
class can be mapped to a rule (which is the final generalized rule) for output.

AAAI-93 Knowledge Discovery in Databases Workshop 1993 Page 307

OBJECT

Organization

Employee

Professorl

Non-Profit

Or[Company

Senior

Figure 1: Class hierarchy in OODB.

¯ If alternative 2 is chosen,
then the prime generalized class is mapped into a generalized feature table, which can
be further mapped into a set of generalized rules for output. []

Step 1 of the algorithm is essentially an OODB query whose processing efficiency depends on a
particular query processing algorithm. We have the following theorem for the processing efficiency
of Steps 2 & 3.

Theorem 2 The worst-case time complexity of Steps 2 Ffl 3 in Algorithm I is O(n log(n)) where n
is the number of data objects relevant to the learning request.

Proof sketch. The cost of Step 2 is dominant in Steps 2 & 3 processing since Step 3 works on a much
smaller set of objects than Step 2 but using a similar algorithm. For every task-relevant attribute, (1)
the collection of attribute values in the working class takes at most O(n log(n)) (retrieval of every
object in the class takes O(log(n)) using an appropriate indexing structure such as a B+-tree),
(2) the redundant value elimination involves sorting which takes O(n log(n)) for n object values,
(3) computing minimum desired level involves generalization of these object using a sequence
generalization operators, and total O(n) × 1 × ea generalization will be performed, where l is the
number of levels and eg is the cost of execution of each generalization operator, and (4) redundant
value elimination takes at most O(n log(n)). Summing them together, the generalization for each
attribute takes at most O(n log(n)) time. Since only a small, constant number of attributes
relevant to a learning task, the worst case time complexity should be O(n log(n)).

Example 1. Let an OODB consist of a set of classes Person, Organization, etc. and their as-
sociated subclasses. A portion of class/subclass hierarchy is shown in Fig. 1, where a subclass
senior_professor is a subclass of both senior_employee and professor (i.e., multiple inheritance).
A portion of the conceptual hierarchy for the attribute address is shown in Fig. 2, where the con-
cepts higher than Canada such as North_America, and that lower than the city level such as district,
street, block, etc. are not presented in the figure.

Let the learning task be to discover a characteristic rule in relevance to housesize, residential
area and salary for those with a Ph.D. degree, associated with U.B.C, 40 (years-old) or over, and
driving Japanese cars.

The learning task can be represented in the following query [10] in the syntax similar to XSQL
[X4].

Page 308 Knowledge Discovery in Databases Workshop 1993 AAAI-93

British

;renter Vancouver Area North B.C

Richmond West

East B.C.

Figure 2: Concept hierarchy in OODB.

LEARN Characteristic rule
FROM Person P
WHERE P.Age >= 40 and P.Car. Maker= ’Japan~

and ’Ph.D ~ in P.Education and P.Workplace.Name = ’U.B.C.’
IN RELEVANCE TO P.Name, P.Home.Housesize, P.Salary, P.Home. Address

Following Algorithm 1, the learning request can be processed as shown below.

Step 1 Collect objects that are related to the learning task. One collected object is supposed to
be as follows. Notice that some of attributes in the object could be defined by methods or be
inherited from its superordinate classes. Furthermore, the query processing will involve checking
against "House_Object", "Workplace_Object" and "Car_Object" to satisfy the query condition.

Object[I]

ObjectlD: 02EREV ;String value is given by system

Name: Alex Fleming ;String value

Home: <House_ObjeetlD> ;House_Object has
"Housesize", "Address", "Price" and so on.

Education:(..., (Ph.D. in Computer Science, UCLA, 1987));Set-data values
Workplace:<Workplace_ObjectlD> ;Workplace_Object has

Salary: $73,854
Birthdate: 23,March,1950
Age: Method(Birthdate,Today)
Face: <Bitmap data> "

"Name", "Address" and so on.
;Real value
;String value
;Method
;Multimedia data

Step 2 During the generalization process, the attribute "P.Name" is removed (even if it were in rel-
evance to the learning query) since it has no superordinate concepts except "ANY". With attribute
generalization control (assuming that every attribute threshold is 4 by default), the generalization
derives the following high level concepts for the task-relevant attributes: {Richmond, West Vancou-
ver, Vancouver} for Address (at the concept level of city), {senior professor, senior manager} for
object identifier (along the class~subclass hierarchy), {Big, Medium, Small} for Housesize, and {M
(medium), H (high), W (very high)} for Salary.

Since the generalized objects contain a small number of distinct attribute values, there are high
possibilities that some of them are equivalent and can be merged together. By merging equivalent
generalized objects, the prime generalized class is extracted. One generalized object in the prime
generalized class is shown below.

Generalized_Object[I]

AAAI-93 Knowledge Discovery in Databases Workshop 1993 Page 309

Class: Senior professor
ObjectlD: 60@WUH
Housesize: Big
Address: Richmond
Salary: High
Count: 64

Step 3 Suppose that alternative 2 is chosen in Step 3, of Algorithm 1. The prime generalized class
is mapped into a generalized feature table as shown in Table 1.

senior professor senior manager Total
M H VH Total M H VH Total

Richmond 0 64 103 167 0 16 24 4O 207
Big West Vancouver 0 29 46 75 0 9 9 18 93

Vancouver 0 11 39 5O 0 4 8 12 62
Total 0 104 188 292 0 29 41 70 362
Richmond 1 42 2O 62 0 12 1 13 75

Medium West Vancouver 0 21 62 83 0 3 18 21 104
Vancouver 0 12 32 44 1 2 5 7 51
Total 1 75 114 190 1 17 23 41 231
Richmond 0 1 0 1 1 0 0 1 2

Small West Vancouver 1 0 0 1 0 1 0 1 2
Vancouver 0 2 0 2 0 0 0 0 2
Total 1 3 0 4 1 1 0 2 6
Total 2 182 302 486 2 47 64 113 599

Table 1: A generalized feature table for the learning task.

Interesting rules can be extracted from this feature table, such as the following: Those who satisfy
the query condition are either senior professors (about 81~) or senior managers (about 19~). About
97J~ of them earn high or very high salary, and about 60~ of them are living in big houses in these
three cities: Richmond, Vancouver and West Vancouver, etc. []

5 Discussion

5.1 Variations to the basic induction algorithm

The basic attribute-oriented induction method presented above is only for the discovery of general
characteristic rules for a set of task-relevant data. Similar to knowledge discovery in relational
databases [9], the technique can be extended to the discovery of different kinds of rules in OODBs,
such as discriminant rules, data evolution regularities, approximate rules, etc. A diserlminant rule
is an assertion that discriminates a concept of the class being learned (called the target class) from
other classes (called the contrasting classes). Data evolution regularity reflects the general trend
of changes in data contents in the database over time. An approximate rule is the rule which
represents the characteristics of a majority number of facts in the database, which is especially useful
when databases contain noisy data and exceptional cases.

As an example, we briefly outline how to extend the above method to the discovery of discriminant
rules. To distinguish two sets of objects with different properties, it is necessary to first collect the
task-relevant objects into two classes: the target class and the contrasting class, and then perform
generalization synchronously on the two classes. Once the concepts are generalized to the same high
level, general behaviors can be compared between the two classes and the discriminative behaviors
can be extracted as discriminant rules.

Page 310 Knowledge Discovery in Databases Workshop 1993 AAAI-93

Another important issue is the control of a discovery process. When every relevant attribute has
been generalized to a relatively high concept level (especially when it reaches the desired concept
level), the selection of attributes for further generalization becomes subtle. Criteria for selection
of one attribute for generalization instead of another should be based on the concern of data and
query semantics, user-preference, efficiency, etc. For example, if certain attribute becomes a focus
of study, the selection of that attribute for progressive generalization should often be conservative
in order to observe its regularity with the changes of other attributes.

Semantic meaning and efficiency should be the major concerns in the selection of generalization
of complex data objects. In an OODB containing both spatial and nonspatial data, generaliza-
tion on spatial data may sometimes suffer from efficiency or meaningful semantic interpretation
problems. It is recommended to first generalize nonspatial data since it is relatively efficient to
generalize well-defined nonspatiM data, and the semantics of such generalization is usually clear.
Such a generalization and merge of objects with similar nonspatial general properties may guide
the merge of spatial objects and trigger the spatial generalization and approximation operation,
such as spatial_union. For example, the merge of agricultural land with different crops, fruits,
and vegetables can be performed by first generalizing the values in the attribute "land_usage" into
"agriculture", and then merging the regions with similar usage. Such a high-level semantic-driven
spatial generalization will capture more meaning and often lead to better efficiency than blindly
generalizing spatial data according to its spatial data structures, such as quad-trees or l%trees [26].

Another issue on the control of a generalization process is the use of different generalization
operators on the same attribute. If there is more than one generalization operator avMlable in the
system, one may selectively apply some generalization operator. Such a selection of generalization
operators may also be based on data semantics, user/expert instructions, execution history, and
processing efficiency. When it is not easy to make such a selection, one may proceed along several
generalization paths in parallel until later stage because promising regularities may be discovered
by pursuing different generalization paths.

5.2 Application of discovered knowledge

The regularities discovered by generalization in OODBs will be useful at querying data and knowl-
edge implicitly or explicitly stored in OODBs, improving query/transaction processing and other
system performance for OODB systems, and helping the design and evolution of OODBs. Because
of the limited space, only the first aspect, the application of discovered knowledge to querying data
and knowledge in OODBs, will be examined in this subsection.

Example 2. Let the database and conceptual hierarchies be the same as that presented in Example
1. We examine how conceptual hierarchies and knowledge discovery tools may help querying data
and knowledge.

First, generalization may substantially increase the power and flexibility of querying OODBs. For
example, to find everyone who has graduate degree, works in U.B.C., living in a big and expensive
house in West Vancouver. One may formulate a query containing high level concepts, such as,
P.home.house_size = "big", P.home.house_value = "expensive", graduate_degree in P.edueation,
etc. Such concepts cannot be expressed in a query without the help of concept generalization since
database stores only the dimensions or the value of a house but not high-level concepts like "big", or
"expensive". With the availability of concept hierarchies and generalization operators, the concrete
data in the database, such as the house value can be generalized into "expensive", "cheap", etc. by
applying a sequence of Gen operations.

Second, with the availability of generalization tools, queries can be answered in a more general
and interesting manner [11, 20]. Suppose the learning request of Example 1 is rewritten as a query.
That is, the request is to "select P.Name, ... from Person P where .- ." which is to find the names,
etc. of all the persons who satisfy the same condition as the learning request in Example 1. A strict
query answering will print the names and other inquired information for every 599 persons, which

AAAI-93 Knowledge Discovery in Databases Workshop 1993 Page 311

could be very boring to users. An intelligent way to answer the query is to summarize the information
and print the general characteristics as demonstrated by Example 1. The detailed information for
599 persons will be printed only when the user is not satisfied with the general answers. Obviously,
high-level answers are more attractive to most users.

Third, many different kinds of rules and generalities can be summarized using knowledge dis-
covery tools described in this paper which may substantially increase the usability of the data
stored in the database and discover important regularities for many applications. For example,
one may find good bargains on house purchasing after examination of high-level regularities among
house_location, house_value, house_price, etc. in a database. []

6 Conclusions

In this paper, an initial step is proposed and investigated for knowledge discovery in OODBs.
First, sophisticated generalization operators are examined for generalizing and handling complex
data objects, such as structured data, methods, inherited data, object identifiers, class/subclass
hierarchies, multimedia data, etc. Second, generalization control mechanisms are developed by
extensions to the attribute-oriented induction method originally designed for knowledge discovery
in relational databases. With further development of generalization operators and generalization
control mechanisms, knowledge discovery can be performed in OODBs efficiently and effectively
based on our study and complexity analysis of the developed techniques. Finally, we demonstrate
that the availability of generalization operators and knowledge discovery tools will substantially
enhance the power and increase the flexibility of data and knowledge retrieval in OODBs.

There are many research issues on knowledge discovery in OODles. The construction of efficient
and effective generalization operators for complex structured or unstructured data, such as hypertext
and multimedia data, is an important but unsolved issue. The control of generalization directions
for objects in the same class but with different features in order to merge the common (generalized)
features is another issue which should be studied further. Another interesting issue is the construc-
tion of a multi-resolution model for OODBs [25], which will help browse OODB contents and answer
interesting queries at high concept levels. Finally, software development and experimentation should
be performed on the proposed mechanisms for KDD in OODBs to verify and improve the proposed
technique and compare it with other related, promising proposals [13, 24, 23, 17, 29].

References

[1] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Mater, and S. Zdonik. The object-
oriented database systems manifesto. In W. Kim, J.-M. Nicolas, and S. Nishio (editors), De-
ductive and Object-Oriented Databases, pages 223-240. Elsevier Science, 1990.

[2] F. Bancilhon, C. Delobel, and P. Kanellakis. Building an Object-Oriented Database System:
The story of 02. Morgan Kaufmann, 1992.

[3] A. Borgida, R. J. Brachman, D. L. McGuinness, and L. A. Resnick. Classic: A structural data
model for objects. In Proc. 1989 ACM-SIGMOD Conf. Management of Data, pages 58-67,
Portland, Oregon, June 1989.

[4] R.G.G. Cartel. Object Data Management: Object-Oriented and Extended Relational Databases.
Addison-Wesley, 1991.

[5] D. Fisher. Improving inference through conceptual clustering. In Proc. 1987 AAAI Conf.,
pages 461-465, Seattle, Washington, July 1987.

[6] W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus. Knowledge discovery in databases:
An overview. In G. Piatetsky-Shapiro and W. J. Frawley (editors), Knowledge Discovery in
Databases, pages 1-27. AAAI/MIT Press, 1991.

[7] B. R. Gaines and J. H. Boose. Knowledge Acquisition for Knowledge-Based Systems. London:
Academic, 1988.

Page 312 Knowledge Discovery in Databases Workshop 1993 AAAI-93

[8] M. Genesereth and N. Nilsson. Logical Foundations of Artificial Intelligence. Morgan Kauf-
mann, 1987.

[9] J. Han, Y. Cai, and N. Cercone. Knowledge discovery in databases: An attribute-oriented
approach. In Proc. 18th lnt ’1 Conf. leery Large Data Bases, pages 547-559, Vancouver, Canada,
August 1992.

[10] J. Han, Y. Cai, N. Cercone, and Y. Huang. Dblearn: A knowledge discovery system for
databases. In Proc. 1st lnt’l Conf. on Information and Knowledge Management, pages 473-
481, Baltimore, Maryland, Nov. 1992.

[11] J. Han, Y. Huang, and N. Cercone. Intelligent query answering by knowledge discovery tech-
niques. In IEEE Trans. Knowledge and Data Engineering, (to appear), 1993.

[12] K. Higa, M. Morrison, J. Morrison, and O. R. Sheng. An object-oriented methodology for
knowledge base/database coupling. Comm. ACM, 35:99-113, June 1992.

[13] K. A. Kaufman, R. S. Michalski, and L. Kerschberg. Mining for knowledge in databasesi
Goals and general description of the inlen system. In G. Piatetsky-Shapiro and W. J. Frawley
(editors), Knowledge Discovery in Databases, pages 449-462. AAAI/MIT Press, 1991.

[14] M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented database. In Proc. 1992 ACM-
SIGMOD Conf. Management of Data, pages 393-402, San Diego, CA, June 1992.

[15] W. Kim. Introduction to Object-Oriented Databases. The MIT Press, 1990.

[16] W. Kim and F. H. Lochovsky. Object-Oriented Languages, Applications, and Databases.
Addison-Wesley, 1989.

[17] W. Kloesgen. Patterns for knowledge discovery in databases. In Proc. ML-92 Workshop on
Machine Discovery, pages 1-10, Aberdeen, Scotland, July 1992.

[18] M. Manago and Y. Kodratoff. Induction of decision trees from complex structured data. In
G. Piatetsky-Shapiro and W. J. Frawley (editors), Knowledge Discovery in Databases, pages
289-306. AAAI/MIT Press, 1991.

[19] R. S. Michalski. A theory and methodology of inductive learning. In Michalski et. al. (edi-
tors), Machine Learning: An Artificial Intelligence Approach, Vol. 1, pages 83-134. Morgan
Kaufmann, 1983.

[20] A. Motto and Q. Yuan. Querying database knowledge. In Proc. 1990 ACM-SIGMOD Conf.
Management of Data, pages 173-183, Atlantic City, NJ, June 1990.

[21] J. Orenstein, S. Haradhvala, B. Margulie, and D. Sakahara. Query processing in the ObjectStore
database system. In Proc. 1992 ACM-SIGMOD Conf. Management of Data, pages 403-412,
San Diego, CA, June 1992.

[22] K. Parsaye, M. Chignell, S. Khoshafian, and H. Wong. Intelligent DataBasese. John Wiley &
Sons, 1989.

[23] G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. In G. Piatetsky-
Shapiro and W. J. Frawley (editors), Knowledge Discovery in Databases, pages 229-238.
AAAI/MIT Press, 1991.

[24] G. Piatetsky-Shapiro and W. J. Frawley. Knowledge Discovery in Databases. AAAI/MIT Press,
1991.

[25] R.L. Read, D.S. Fussell, and A. Silbersehatz. A multi-resolution relational data model. In Proc.
18th Int. Conf. Very Large Data Bases, pages 139-150, Vancouver, Canada, Aug. 1992.

[26] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.

[27] G.M. Shaw and S. B. Zdonik. A query algebra for object-oriented databases. In Proc. 6th Int.
Conf. Data Engineering, pages 154-162, Los Angeles, CA, February 1990.

[28] A. Silberschatz, M. Stonebraker, and J. D. Ullman. Database systems: Achievements and
opportunities. Comm. ACM, 34:94-109, 1991.

[29] J. Zytkow and J. Baker. Interactive mining of regularities in databases. In G. Piatetsky-Shapiro
and W. J. Frawley (editors), Knowledge Discovery in Databases, pages 31-54. AAAI/MIT Press,
1991.

AAAI-93 Knowledge Discovery in Databases Workshop 1993 Page 313

