
Forming grammars for structured documents *

ttelena Ahonen
University of Helsinki

Heikki Mannila
University of Helsinki

April 1993

Erja Nikunen
Research Centre for Domestic Languages

Abstract

We consider the problem of finding a small regular grammar that correctly describes the structure
of a large text with named components. Examples of such texts are dictionaries, user manuals, business
letters, and so on. A structural description in the form of the regular grammar can be used, e.g., to help
in retrieving information from the document. We start by constructing for each named component of
the document a weighted finite-state automaton that accepts all the structures for that component that
are present in the original document. The weight of a transition shows how many times the transition
is used in the original document. This automaton is generalized by merging states and updating the
weights until the automaton satisfies a certain context condition. The automata corresponding to
different components in the document are also generalized with respect to each other. The generalized
weighted automata are transformed into a series of regular expressions corresponding to the heavy
paths in the automata.

1 Introduction

Huge amounts of documents are created every day. Many of these documents have some
kind of structure: consider for instance user manuals, business letters, technical documents,
dictionaries, electronic letters, and so on. The structure of a document can be used to define
transformations and queries with structurM conditions. The structure Mso gives important
knowledge of the data: what components the documents can have, which components can
appear together, and so on.

In recent years, research on systems for writing structured documents has been very inten-
sive. Recent surveys of the field are [3, 4, 19]. The interest in the area has led to the creation
of several document standards, of which the best known are ODA and SGML [14, 6, 7, 10].
The common way to describe the structure of a document is to use regular or context-free
grammars [11, 8, 9, 18]. In database terminology, grammars correspond to schemas, and parse
trees to instances.

It is typical to use regular expressions in the right-hand sides of the productions of the
grammar. For example, the following might describe the simplified structure of a dictionary
entry:

Entry ~ Headword Sense*.

*This work was partially supported by TEKES and the Academy of Finland. Authors’ addresses: Helena Ahonen, Heikki
Mannila, Department of Computer Science, University of Helsinkl, P.O. Box 26 (Teollisuuskatu 23), SF-00014 University
of Helsinki, Finland. Erja Nikunen, Research Centre for Domestic Languages, SSrn~isten rantatie 25, SF-00500 Helsinki,
Finland. e-mail: hahonen~cs.helsinki, fi, malmila@cs.helsinki, fi, enikunen~domlang, fi Part of the work of Heikki
Mannila was done while he was visiting the Technical University of Vienna.

Page 314 Knowledge Discovery in Databases Workshop 1993 AAAI-9$

From: AAAI Technical Report WS-93-02. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

This tells us that tile dictionary has components named Entry, Headword, and Sense. Each
instance of an Entry component can consist of an instance of a tteadword component, followed
by zero or more instances of the component Sense. A more complicated example is

Entry + Headword [Inflection]
(Sense_Number Description [Parallel_Form I Preferred_Form] Example*)*,

which states that an instance of an Entry component consists of a Headword instance, followed
by an optional Inflection instance and zero or more groups, each group consisting of an instance
of Sense_Number, an instance of Description, a further optional part which is either an instance
of Parallel_Form or of Preferred_Form, and a sequence of zero or more instances of Example.
If there is no fear of confusion, we speak about components of a document instead of instances
of components in the document.

Currently only few documents are created in structured form. Documents are written by
numerous text processing systems, most of which are wysiwyg-oriented. However, existing
documents can be transformed to structured documents, if

1. the instances of the components of the document can be identified, and

2. a simple and usable description of the structure of the document can be formed from the
component structure.

The first problem, identification of components and their instances can be done if the
instances are represented in a consistent way by wysiwyg features. These features are converted
into structural tags, i.e. begin and end marks for the components. The conversion can be done
using tools like AWK.

In this paper we consider the second problem, finding a small description of the structure of
a document with a large number of named components. The problem is not trivial, since large
documents can have a lot of different variations in their component structure. For example, the
part A-J of a new Finnish dictionary [1] has 17385 articles with 1318 different structures. Thus
one has to generalize the individual instances to obtain a useful description of the document’s
structure. Simple attempts to do this by hand do not succeed satisfactorily.

The method we have developed proceeds as follows.

1. Each instance of a component of the text is transformed to a production

A ~ B1,...,B~,
where A is the name of the component and B1,..., B,~ are the names of the components
forming this instance of A. The production is given a weight which is the number of
times this particular structure appears in the document. Such a production is also called
an example in the sequel.

2. The productions are transformed into a set of finite automata, one for each nonterminal.
These automata accept exactly the right-hand sides of the productions for the corre-
sponding nonterminal. Every transition gets a weight which is the sum of the weights of
the productions using this transition.

3. Each automaton is modified independently, so that it accepts a larger language. This
language is the smallest one that includes the original right-hand sides, and has an ad-
ditional property, called (k,h)-contextuality. This property states roughly that in the
structure of the document what can follow a certain component is completely determined
by the k preceding components at the same level. The modification is done by merging
states. The weight of a merged transition is the sum of the two transitions that are
merged.

AAAI-93 Knowledge Discovery in Databases Workshop 1993 Page 315

4. The automata are modified further by considering them in pairs. These modifications
guarantee that the resulting document structure is uniform, in tile sense that a component
is used in every position where all its subcomponents occur in the correct order.

5. The resulting automata are transformed to regular expressions, which form the right-
hand sides of the productions for the corresponding nonterminals. Tile weights are used
to construct a production which covers most of the examples for a nonterminal, and then
several productions which cover the rare cases.

Steps 2 and 3 are similar to the synthesis of finite automata presented in [5, 16]. Specifically,
our class of (k, h)-contextual regular languages is a modification of the classes of k-reversible
[51 and k-contextual[16] languages.

Learning context-free and regular grammars from examples has been studied also in, e.g.,
[13, 20, 21]. However, these results are not directly applicable to our setting because they
assume that positive and negative examples are available. Reference [17] makes the assumption
that the examples are given to the system in lexicographic order. These assumptions are not
valid in our case: it is unnatural to make up document structures which are not allowed, and to
be practical the method has to be incremental, which excludes any ordering of the examples.

We have implemented our method in connection with the structured text database system
HST [15]. Our preliminary empirical evidence indicates that the method is a useful tool for
transforming existing texts to structured form.

The rest of this paper is organized as follows. Section 2 gives the basic definitions. Section 3
describes the construction of the initial automaton. In Section 4 we first describe the general
method for generalizing the productions, and the particular inductive biases, k-contextuality
and (k,h)-contextuality, we use in generalizing the examples. Section 5 considers the in-
teraction between nonterminals and Section 6 the manipulation of weights in the automata.
Section 7 describes the conversion to regular expressions. Empirical results are discussed in
Section 8. Section 9 contains some concluding remarks.

2 Definitions

Our method uses finite automata to represent and manipulate the collection of examples.
We assume that the reader is familiar with finite-state automata, context-free grammars, and
regular expressions (see, e.g., [12] for details), and just give the basic definitions for reference.
A finite-state automaton is a quintuple (Q, g, a, S, F), where Q is the set of states, P, is the
set of input symbols, 6 : Q x P,* --+ Q is the transition function, S E Q is the start state and
F C_ O is the set of final states. For an automaton A the language accepted by A is denoted
by L(A).

Regular expressions are defined as follows:

1. {~ is a regular expression.

2. e is a regular expression.

3. For each a E P,, a is a regular expression.

4. If r and s are regular expressions, then (ris), (rs), and (r*) are regular expressions.

A context-free grammar is a quadruple G = (N, T, P, S), where N and T are finite sets
nonterminals and terminals, respectively, P is a finite set of productions, and S is the start
symbol. Each production is of the form A --+ ~, where A is a nonterminal and ~ is a regular
expression over the alphabet N U T.

Page 316 Knowledge Discovery in Databases Workshop 1993 AAAI-93

3 Prefix-tree automata

Tile right-hand sides of productions obtained from the document are represented by an au-
tomaton that accepts exactly those strings. This prefix-tree automaton is simply a trie that
contains the right-hand sides. The transitions are weighted by counting how many times they
are used in the construction of the automaton. For example, for the following productions the
result is the automaton shown in Figure 1. For simplicity, we have left the weights out from
the figure.

Entry --* Headword Inflection Sense Sense
Entry ~ Headword Inflection Parallel_form Sense Sense Sense
Entry ~ Headword Parallel_form Sense Sense
Entry ~ Headword Preferred_form Sense
Entry ~ Headword Inflection Preferred_form Sense Sense

i~TTRY:

Figure 1: Prefix-tree automaton containing all the examples.

4 (k,h)-contextual languages

A prefix tree automaton accepts only the right-hand sides of the example productions. To
obtain useful grammars, we need a meaningful way of generalizing the examples, and the
automaton describing them.

In machine learning terms, the examples of productions are all positive examples, that is,
the user gives no examples of forbidden structures. To learn from positive examples, one
needs some restrictions on the allowed result of the generalization. Namely, a consistent
generalization of a set of positive examples would be an automaton accepting all strings! Thus
we have to define a class of automata that are allowed as results of the generalization.

By merging some of the states we get an automaton which accepts more strings, i.e., this
automaton generalizes the examples. To merge states sl and sj we first choose one of them
to represent the new state, say si. All the incoming arcs of sj are then added to the set of
incoming arcs of si , and all the outgoing arcs of sj are added to the set of outgoing arcs of si.

How do we choose the states to be merged? Our assumption is that the grammars used in
structured documents have only limited context in the following sense. Let k be an integer and

AAAI-93 Knowledge Discovery in Databases Workshop 1993 Page 317

consider two occurrences of a sequence of length k of component instances in the document.
Then we assume that the subsequent components can be the same in both cases. Consider for
example k = 2 and the production

Entry --* Headword Example Example Example,

which says that an entry can contain three examples. Now the sequence Example Example
of length 2 occurs two times on the right-hand side. Since the first occurrence is followed by
Example, the structure should allow that also the second one is followed by Example. This
means that an entry can contain also four examples. Continuing, we come to the conclusion
that an entry can contain any number of examples, and thus we construct a production

Entry ---, Headword Example Example Example*.

A language satisfying the condition above is called k-contextual [16]. This property is
defined formally as follows. For a language L, denote by TL(X) the set of strings that can
follow x in a member of L, i.e.,

TL(X) = {vlxv e L}.

Definition 1 A regular language L is k-contextual if and only if for all strings ul, u2, wl, w2
and v, if ulvwl and u2vw2 are in L and Ivl = k, then TL(UlV) = TL(u2v).

The condition of k-contextuality can be described simply in terms of automata.

Lemma 2 A regular language L is k-contextual if and only if there exists a finite automaton
A such that L = L(A), and for any states p and q of A and all sequences ala2...ak of
input symbols we have: if there are states p0 and q0 of A such that g(P0, ala2 ... ak) = p and
~(qo, ala2...ak) = q, then p = q.

For a set of strings H, a k-contextual language L is called a minimal k-contextual language
including H if

1. HCLand

2. for all k-contextual languages M such that H C_ M we have L C_ M

It can be shown [2] that for each H there exists a unique minimal k-contextual language
containing a given set of strings. If A is an automaton such that L(A) is k-contextual, we
say that A is a k-contextual automaton. The above lemma gives a way of constructing, for
an automaton C, a k-contextual automaton which accepts the smallest k-contextual language
containing L(C). States of C satisfying the conditions in the implication of the lemma are
merged until no such states remain. For brevity, we omit the description of the algorithm.

The resulting 2-contextual automaton looks like the one in Figure 2. We can see that it
generalizes the examples quite well. The automaton, however, accepts only entries which have
two or more Sense nonterminals in the end. This is overly cautious, and therefore we need a
looser generalization condition. In Figure 2, for example the states s4 and ss could be merged.

The intuition in using k-contextuality is that if there are two occurrences of a sequence
of components of length k then the subsequent components can be the same in both cases.
We relax this condition and generalize the k-contextual languages further to (k, h)-contextual
languages. In these languages two occurrences of a sequence of length k implies that the
subsequent components are the same already after h characters.

Definition 3 A regular language L is (k, h)-contextual if and only if for all strings ul, u2, wl,
and w2, and all input symbols vl,...,vk, if ulvl ...vkwl and u2vl ...vkw2 are in L, then
TL(ulvl...vi) = TL(u2vl...vi) for every i, where 0 _< h <: i < k.

Page 318 Knowledge Discovery in Databases Workshop 1993 AAAI-98

F~TRY: h’F

Figure 2: 2-contextual automaton.

Note that k-contextuality is equivalent to (k, k)-contextuality, and (k, h)-contextuality
plies (k,h 4- 1)-contextuality. As for k-contextuality, we obtain an easy characterization
terms of automata.

Lemma 4 A regular language L is (k, h)-contextual if and only if there exists a finite au-
tomaton A such that L = L(A), and for any two states pk and qk of A, and all input sym-
bols ala2...ak we have: if there are states P0 and q0 such that (f(po, al) = pl,~(pl,a2)
P2,...,~(Pk-l,ak) = Pk and ~(q0, al) ql ,~f(ql,a2) = q2,...,~(qk-l,ak) = then Pi = qi,
for every i, where 0 < h < i < k.

The algorithm for producing the automaton that accepts the smallest (k,h)-contextual
automaton is similar to the previous algorithm: one looks for states satisfying the conditions
of the above lemma, and then merges states. If similar paths of length k are found, not only
the last states but also some of the respective states along the paths are merged. If h = k only
the last states are merged. If h < k the paths have a similar prefix of length h before they are
joined, i.e k - h 4- 1 states are merged. In Figure 3 we can see the (2,1)-conte~ual automaton
resulting from the set of example productions.

ENTRY:

Figure 3: (2,1)-contextual automaton.

AAAI-93 Knowledge Discovery in Databases Workshop 1993 Page 319

5 Interaction between nonterminals

Tile structure of the document can possibly be described much more concisely by taking into
account the interaction between nonterminals. If, for instance, we had the examples

Entry ~ Headword Sense_number Description

an d

Sense --~ Sense_number Description,

it would be sensible to replace Sense_number Description in the first production by Sense.
The interaction necessitates the redefinition of the concept of an automaton and its lan-

guage. The labels of arcs are no more simple nonterminals but names of other automata. This
kind of automata have slightly confusingly been called recursive [22].

Definition 5 Let V = VT U VIv, where VT is the terminal alphabet and VN the nonterminal
alphabet, and consider a set S = {Ax I X C VN} of finite automata, one for each member of
VN. Then the set of terminal strings accepted by Ax in context S, denoted by L(Ax, S), is
defined by

L(Ax,S) = {wl ...w,~ th ere is awordvl...vnEL(Ax),
and for each i = 1,...,n either

(1) vi VTandwi =vi, or
(2) Vie VN and wl E L(Av,, S)}.

Definition 6 Let M and N be regular languages. The language M is N-closed, if for any
w E M such that w = xvy for some x,v,y, with v E N, we have xv~y E M for all vt E N.

!
Thus M is N-closed, if for any string v of N occurring as a substring in a string w of M,

we can replace v in w by an arbitrary string vt of N, and the resulting string is still in M.
Note that if e E N and N contains a lot of strings, then the condition is fairly strong.

The inductive bias we adopt for handling the interaction of several nonterminals is as
follows.

Let S = {A1 ...An} be the set of automata used. Then L(Ai,S) has to be L(Aj,S)-
closed for every i # j with 1 < i,j <_ n.

Again, the definition of closedness is transformed to automata. An automaton A is B-closed
for an automaton B, if L(A)is L(B)-closed.

Given regular languages M and N, we can make M N-closed as follows. Let A and B be
automata such that M = L(A) and N = L(B). To make A B-closed we search for a path
pl...pro in A, where ~(Pl, al) P2,..., ~(Pn-l,an-1) = Pro, such that B accepts the st ring
al. ¯ ¯ am-1. If such a path is found, an arc labeled B is added from pl to Pro.

6 Weights in the automata

In existing texts the structure of components can be fairly complicated, and even generalizing
to (k, h)-contextual languages does not necessarily produce a simple expression of the structure.
Therefore we use weights in the automata to quantify the importance of different types of
structures for the component.

Page 320 Knowledge Discovery in Databases Workshop 1993 AAAI-g$

Adding weights to the prefix-tree automaton is easy: each transition is given a weight
which is tile number of examples in which this transition is used. When the automata are
generafized, the weight of a merged transition is the sum of the weights of the two transitions
that are merged.

7 Conversion into a regular expression

After the generahzation steps presented in the previous sections have been performed, we have
a collection of (k, h)-contextual automata that are closed with respect to each other. To obtain
a useful description of the structure of the document, we still have to produce a grammar from
these.

An automaton can be converted into a regular expression by using standard dynamic pro-
gramming methods [12]. While this is useful in itself, we need something more refined. Namely,
we want to produce one, hopefully simple, regular expression that describes most of the docu-
ment instances correctly. This is done by considering a lower bound on the allowed transition
weights and by pruning away all transitions whose weights are below the bound. This gives a
smaller automaton that can then be transformed to a regular expression.

When this regular expression describing most of the document has been produced, the task
is to describe the rest. This can be done either by considering a sequence of smaller and
smalle~ bounds for the weights, and producing for each bound a regular expression using only
transitions with weights greater or equal the bound.

With this approach, the sequence of regular expressions produced is monotonic in the sense
that the language accepted grows as the bound decreases. To obtain a simpler description of the
structures with smaller frequency, we can also use only one bound. For each transition whose
weight is below that bound, we construct the automaton where that transition is mandatorily
used. Each such automaton is converted to a regular expression and the results are simplified.

8 Experimental results

We have implemented the method described above in connection with the HST structured
text database system [15]. We have experimented with several different document types, and
the results are encouraging. Our experience shows that the method is a useful tool for finding
the grammar for a structured document.

The most challenging document we experimented with was a part of a Finnish dictionary [1].
Originally the entries of the dictionary had only typographical tags (eg. begin bold - end bold).
These tags were changed to structural tags (eg. begin headword - end headword). Then the
text, and the end tags, were removed, and the structures of the entries were obtained, for
instance:

<EN> --+ <H> <I> <CG> <S> <EX>.
The data consisted of 15970 entries. The total number of different entry structures was

about 1000 but only 82 of them covered more than ten entries (see Appendix A for the
productions and the meanings of the abbreviations). These 82 example structures, which
together covered 15131 entries, were input to our learning program which generalized the
examples and produced 13 productions. These productions were used to parse the whole data,
and the coverages were counted.

AAAI-93 Knowledge Discovery in Databases Workshop 1993 Page 321

The weight bound was 400, meaning that to be considered important, the structure needs to
appear at least .400 times in tile dictionary. The production corresponding only to transitions
of at least this weight was

EN ---} H [ll(I CG I[I] [TF])
I(l cc s I[I] [TEl [S])
I[I] TEl

and it covered 11274 examples. Out of the other productions, the most common were the
complex

EN --. H ((I (CG S [(EX S)* TF ([S] (EX S)* TF)*
I [S (EX S)*] TF ([S] (EX S)* TF)* IS]

S[(EX S)* TF ([S] (EX S)* TF)* [S]]) EX [(S EX)*
I (CG S [((EX S)* (I S](EX S)* TF)*[[S] EX (SEX)*] I EX (SEX
] [S (EX S)*] TF ([S] (EX S)* TF)* [[S] EX (S EX)*
Is (EX S)*

S [((EX S)* TF ([S] (EX S)* TF)* [[S] EX (S EX)*] I EX (SEX)*

and the simpler

EN ~ H [I] [EX] TF (EX TF)* [EX] I)
S [(EX TF (EX TF)* [EX] S)* [EX [TF (EX TF)* [EX]]

which covered 6536 and 1796 examples, respectively. Note that these productions could be
easily simplified if, for instance, EX and [EX] were unified. The reason for these complicated
structures is the flexibility of the dictionary. The TF-, S-, and EX-components can occur in
any order.

The other ten productions were the following:

EN ~ H [I [CG]] TF (TF)* (S I R) (64 examples)
EN ~ H [I] PI (R[S) (163)
EN -, H (PRIR) (428)
EN --, H [I [CG]] R EX (63)
EN ~ H I[CG] SW EX (75)
EN~ HIIIS(15)
EN ~ H I[CG] PA [TF] S (68)
EN ---. H I (PR [((II I PI) TF [PA [TF]) S] R) (330)
EN --* H I CG (EX I PR] R I(PA]TF) S) (306)

These show how the generalization method performs fairly reasonably: for example, the 75
articles containing the elsewhere nonexistent component SW get their own production.

9 Conclusion and further work

In this paper we have presented a method for generating a regular grammar describing the
structure of a large text. The method is based on identifying the components in the text,
generating a production from each instance of a component, forming finite-state automata
from the productions, generalizing the automata first in isolation and then with respect to
each other, and then transforming the result to a regular expression for each component.

Page 322 Knowledge Discovery in Databases Workshop 1993 AAAI-9$

Ill the generalization of the examples we have first applied the idea of h-contextual languages
and further developed tllem to (k, h)-contextual la, nguages. The interaction of nonterminals
is taken into account by introducing the concept of an N-closed regular language. These
conditions seem to describe quite natural constraints in text structures.

The emprical results we have so far seem fairly encouraging; the complexity in the resulting
grammars seems largely due to the real complexity in the underlying document. Still, it seems
that the generalization conditions should be slightly stronger to give smaller grammars. More
experimentation is needed to verify this.

Acknowledgements

We thank Thomas Eiter, Pekka Kilpel£inen, and Greger Lind6n for useful comments.

References

[1] Suomen kielen perussanakirja. Ensimmiiinen osa (A-It). Valtion painatuskeskus,
Helsinki, 1990.

[2] Helena Ahonen, Heikki Mannila, and Erja Nikunen. Interactive forming of grammars
for structured documents by generalizing automata. Report C-1993-17, Department of
Computer Science, University of Helsinki, April 1993.

[3] J. Andr6, R. Furuta, and V. Quint. By way of an introduction. Structured documents:
What and why? In J. Andre, R. Furuta, and V. Quint, editors, Structured Documents,
The Cambridge Series on Electronic Publishing, pages 1-6. Cambridge University Press,
1989.

[4] J. Andr6, R. Furuta, and V. Quint, editors. Structured Documents. The Cambridge Series
on Electronic Publishing. Cambridge University Press, 1989.

[5] Dana Angluin. Inference of reversible languages. Journal of the ACM, 29(3):741-765,
1982.

[6] David Barron. Why use SGML? Electronic Publishing, 2(1):3-24, 1989.

[7] Heather Brown. Standards for structured documents. The Computer Journal, 32(6):505-
514, December 1989.

[8] G. Coray, R. Ingold, and C. Vanoirbeek. Formatting structured documents: Batch versus
interactive. In J. C. van Vliet, editor, Text Processing and Document Manipulation, pages
154-170. Cambridge University Press, 1986.

[9] R. Furuta, V. Quint, and J. Andr6. Interactively editing structured documents. Electronic
Publishing, 1(1):19-44, 1988.

[10] C. F. Goldfarb. The SGML Handbook. Oxford University Press, 1990.

[11] G.H. Gonnet and F.Wm. Tompa. Mind your grammar: A new approach to modelling
text. In VLDB ’87, Proceedings of the Conference on Very Large Data Bases, pages
339-346, 1987.

[12] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison Wesley, Reading, MA, 1979.

[13] Oscar H. Ibarra and Tao Jiang. Learning regular languages from counterexamples. Journal
of Computer and System Sciences, 43(2):299-316, 1991.

AAAI-93 Knowledge Discovery in Databases Workshop 1993 Page 323

[14] Vania .loloboff. Document representation: Concepts and standards. In J. Andr6, R. Fu-
rata., and V. Quint, editors, Structured Documents, Tlle Cambridge Series on Electronic
Publishing, pages 75-105. Cambridge University Press, 1989.

[15] Pekka Kilpel/i.inen, Greger Lind6n, Heikki Mannila, and Erja Nikunen. A structured
document database system. In Richard Furuta, editor, EP90 - Proceedings of the In-
ternational Conference on Electronic Publishing, Document Manipulation ~ Typography,
The Cambridge Series on Electronic Publishing, pages 139-151. Cambridge University
Press, 1990.

[16] Stephen Muggleton. Inductive Acquisition of Expert Knowledge. Addison Wesley, Read-
ing, MA, 1990.

[17] Sara Porat and Jerome A. Feldman. Learning automata from ordered examples. Machine
Learning, 7(2):109-138, 1991.

[18] V. Quint and I. Vatton. Grif: An interactive system for structured document manipu-
lation. In J. C. van Vliet, editor, Text Processing and Document Manipulation, pages
200-213. Cambridge University Press, 1986.

[19] Vincent Quint. Systems for the manipulation of structured documents. In J. Andr6, R. Fu-
ruta, and V. Quint, editors, Structured Documents, The Cambridge Series on Electronic
Publishing, pages 39-74. Cambridge University Press, 1989.

[20] Yasubumi Sakakibara. Learning context-free grammars from structural data in polyno-
mial time. In D. Haussler and L. Pitt, editors, Proceedings of the 1988 Workshop on
Computational Learning Theory, pages 330-344, 1988.

[21] Kurt Vanlehn and William Ball. A version space approach to learning context-free gram-
mars. Machine Learning, 2(1):39-74, 1987.

[22] W. Woods. Transition network grammars for natural language analysis. Communications
of the ACM, 13(10):591-606, 1970.

A The document structures

The
cess.

EN
H
S
EX
I
TF
CG
R
PR
PI
PA
SW
II

following page contains the original document structures used in the generalization pro-
The meanings of the abbreviations are the following:

= Entry
= Headword
= Sense
= Example
= Inflection
= Technical field
= Consonant gradation
= Reference
= Preferred form
= Pronunciation instructions
= Parallel form
= Stem word
= Inflection instructions

Page 324 Knowledge Discovery in Databases Workshop 1993 AAAI-9$

247O EN --, H S
1787 EN ~ H EX
1325 EN ~ H
1122EN-~ H IS
1056EN ~ H SEX
1031 EN --+ H I SEX
995EN ~ H TFS
574EN ~ H I CGS EX
549EN ~ H ITFS
387 EN ---> H I EX
352EN~ HICGS
329 EN ~ H R
258EN~ H ITFS EX
232EN~ HTFSEX
195 EN ~ H TF
171EN--+ H IR
138EN ~ HICGTFS
125 EN ---+ H I
117EN~ HTFEX
100 EN ~ H PR
97EN ~ HICGTFS EX
94EN---+ HIPIS
92 EN ~ H EX S
85EN~HICGR
84 EN ~ H TF R
66EN--*HIS EXTFEX
54EN---*HIPAS EX
53EN---+ HITFR
51EN ~HICGS EXTFEX
47 EN ---* H I CG PR
46EN ~HICGSWEX
45EN ~HISEXTFS EX
44 EN ~ H I PR
44 EN ~ H PI S
42EN ~HIEXS
39 EN ---* H TF EX S
34EN oHIPAS
34EN ~HICG PASEX
34EN---+ HIPITFS
31EN ~HISTFS
30EN ~ HITFTFS
29EN ~ HIIITFS
29EN---*HIS EXS
29EN ~ HISWEX
28EN ~HICGS EXTFS EX
24 EN ---+ H I CG EX
24EN ~ H SEX S

22 EN ~ H I R EX
22 EN ~ tI I PIR
22 EN ~ H TFTFS
21 EN ~ H R EX
21EN ~ H S TFS EX
21 EN --+. H SEX TF EX
20EN---, H I CG REX
20EN ~ H EXTFS
19EN~ HITFEX
18EN--+ HIPATFS
18EN~ HISTFS EX
18 EN ---+ H S TF EX
18EN--+ H S EXTFEXS
18EN ~ HEXTFEX
17EN--+ HIS EXTFS
16EN~ HITFTFS EX
16EN ~ H EXTFSEX
15EN--+ HIIIS
15EN ~ H PAEX
13EN---, HSTFS
12EN~ HIS EXTFEXS
12EN--+ HICGPAS
11EN--, HIS EXS EX
11EN~ HITFSTFS
llEN---, HITFSEXS
11EN---, HICGTFR
11EN~ HPITFS
10EN--. HITFEXS
10EN--, HICGSTFS
10EN--, HICGSTFS EX
10EN~ HICGSEXTFEXS
10EN~ HSTFEXS
10EN--, H EXS EX

AAAI-93 Knowledge Discovery in Databases Workshop 1993 Page 325

