From: AAAI Technical Report WS-93-03. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

An Organizational Self-Design Model
for Organizational Change
Young-pa So and Edmund H. Durfee

Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, MI 48109
frege@cacn.engin.umich.edu, durfee@caen.engin.umich.edu

Abstract

Organizational Self-Design (OSD) s a model of Or-
ganizalional Change from the perspective of Distrib-
uted Artificial Intelligence (DAI). We present a top-
down odel of OSD in the context of Cooperative Dis-
teibuted Problem Solving (C'DPS). We emphasize the
task environmend as an important factor in delcrmin-
g an cffective organizalional structurc. We provide
an crample of an analylical model of organization per-
Jormance for an addition lask using lree struclure or-
ganizalions, and show how such model can be uscd to
cndow a Distribuled Network Mangement system with
the capability to adapt 1o changing task environments
via (OS1.

Introduction

Our research is directed toward finding out the factors
that affect the collective performance of a set of com-
ibnicating autonomous agents engaged in cooperat-
ive problem solving, and our ultimate goal is to de-
velop a scientific understanding of the cooperative pro-
cess Lhat can be embodied in computational mechan-
isims. Furthermore, hecause cooperating agents typic-
ally work in changing environments, it is crucial that
the coordination mechanisms they employ are cap-
able of adapting to changing circumstances. In par-
ticular, the structural aspect of a cooperative collec-
tion of agents—the agents’ organization—must change
over time as circumstances necessitate. In the field
of Distributed Artificial Intelligence (DAI), such ad-
aptive reorganization, when performed by members of
the organization, has been called Organizational Self-
Design (OSH) [Corkill, 1983, Corkill and Lesser, 1983,
Gasser and Ishida, 1091].

Organizational Self-Design

An organization capable of OSD should have one or
more members that can perform the following tasks:

YI'his work has been supported, in part, by NSF PY]
Award TRE9I58473, and by a grant from Bellcore.

I. Monitor: Monitor the organizational structure’s ef-
fectiveness in directing organizational activities (in-
cluding the OSD activities). A set of observable
parameters that affect the performance of the or-
ganization, as well as the formula for computing the
performance itself, must be defined. Also, the condi-
tions under which reorganization will be considered
must be defined which will typically involve a per-
formance threshold.

2. Design: Identify new organizational structures ap-
propriate to a new situation. For a design task,
a way to generate alternative organizational struc-
tures for the current situation or for the projected
future situations must be available. For the system-
atic generation of organizational structures, an or-
ganizational structure should he able to be specified
using a set of dimensions. Some hmportant dimen-
sions include how the overall task is decomposed into
a set of subtasks, how the subtasks are allocated to
available agents, determining roles and communica-
tion structures among agents, how many agents are
involved, and which resources are to he used and
how they arc to be shared by the agents.

3. Ewvaluate and Select: Evaluate possible organizations
and sclect the best one. This involves evaluating
each alternative (including the current one) using a
performance measure and selecting the one which is
estimated to give the best overall performance.

4. Implement: Implement (and execute) the new
structure over the network while preserving the net-
work’s problem solving activities. hmplementing the
selected structure requires transfer of cach task to
the allocated agent.

The tasks of OSD can be done in a global, top-
down manner {Corkill and Lesser, 1983] or in a local,
bottom-up manner [Gasser and Ishida, 1991]. In the
former approach, one powerful agent monitors the
global performance and the local activities of the mem-
bers, designs alternative organizations, selects the best,
and imposes the restructuring of the organization on
other agents. In the latter approach, OSD can oc-
cur at a local level where an agent will use what o

knows locally about the organization’s performance in
its neighborhood, design alternative activities for itself
(load acquisition, shedding, or modification), select an
alternative, and adopt it. This local change might in
turn affect performance in the neighborhoods of oth-
ers. causing a cascading of changes such that overall
reorganization cmerges from local choices.

These alternative views represent. extrenes of a con-
tinuum, and typical OS1D will be influenced from both
top-down and bottom-up factors. Common to all such
alternatives, however, is the need to evaluate alternat-
ive reorganization proposals, whether they involve an
individual or all individuals, in the context of what is
known of the organization’s circumstances. Because
the lead individual in an organization that can be de-
signed from the top-down would be expected to have
the richest possible model of the organization’s over-
all circumstances, the investigation described in this
paper concentrates on the top-down model of OSD de-
cision making.

An essential problem of OSD is to provide a gen-
eral cnough model ol a task, an organization, and its
performance. Thus, given a task, we would like to be
able to generate the possible organizations to solve the
problem, and evaluate cach organization with the per-
formance model. Since there may be different types of
tasks and since the possible organization types as well
as the performance of the organization will depend on
the type of the task, we wonld like to classily the dif-
ferent organization stroctures in terms of the types of
tasks each is well suited for,

Once we have sueh a predietive model of Task-
Organization- Perforimnnce, the rest of the OSD tasks
will be much easier. In sum, we sec OSD as essentially
involving a generate-and-test process,

Our Approach to OSD

Sinee dealing with all combinations of task types and
organization types is exponentially hard, we initially
concentrate on a few interesting task types and or-
ganization types. By parameterizing the model of the
tasks and organizations on few variables, we hope to
be able to enumerate the different possible tasks and
organizations. And with the aid of objective perform-
ance measures which can apply to the different organ-
izations for a given task. we hope to be able to com-
pare and evaluate the performance of the various task-
organization pairs.

Task Environment Model

The task we have ininially considered is the addition
of N numbers. The task of adding a set of numbers
can be divided into several disjoint subtasks of adding
a subset of numbers. The results of each subtask must
he combined and the result must again be combined
with other results until the final solution is synthesized.
Thus. this task is representative of many tasks con-
sidered in CDPS which reguire decomposing a single

task into subtasks and combining cach result of the
subtask into larger results and eventually into a single
final result. Jor example, distributed interpretation
tasks (e.g. DVMT [Durfee et al., 1987]) involve com-
bining local hy potheses to ultimately generate a global
solution, and usually uses tree-like hierarchical organ-
izations consisting of multiple layers of problem solving
nodes, especially if each combination of results involves
aggregation and/or abstraction of information.

However, a difference between the distributed inter-
pretation task and the addition task is that, in the
former, a node may have multiple possible interpreta-
tion tasks to choose from at a given time, and coordin-
ation between nodes in terms of selection of tasks is
required in order to avoid redundant work and/or to
construct a globally coherent interpretation.

The model of task environment we consider con-
sists of agents who can communicate with one another
and are able to do certain kinds of tasks. The unit
task exccution time and the unit message transniis-
sion time are considered as important enviromnental
parameters that affect the performance of organiza-
tions. In particular, we determine the environmental
conditions under which cooperation is effective for cach
task-organization pair.

Organization Model

Elements of an Organization. We think that the
model of an organization is tightly related to the model
of the task the organization is used for. A cooperative
organization for a particular task consists of at least
the following elements:

1. The set of tusks and subtasks to be donc.
2. ‘I'he set of agents participating in the organization,

3. An assignment of the tasks and subtasks to the par-
ticipating agents.

4. A work flow structure which dictates the process by
which the tasks and subtasks are to be distributed
to the assigned agents and how partial results are to
be synthesized.

5. Optionally, o set of resources aside from the agenis,
and a set of constraints on the usage of those re-
sources, may apply to agents.

Organizational Structure as a Distributed
Search Control Strategy. In the context of Co-
operative Distributed Problem Solving (CDPS), an or-
ganizational structure can be seen as a way of specify-
img the domain-level coordination strategy. [In par-
ticular, when a set of agents are to perform a dis-
tributed search task, the organizational structure spe-
cifies the decomposition of the search space among the
agents and the way the overall search should be co-
ordinated among the agents in terms of which agent
should communicate what inforimation to which agent
wlien [I,nss«'r, l.‘)f)l]‘

I1=1

I=2

(a)

(b)

Figure 1: (a) 2-level binary tree. (b) one-level 4-ary tree

An analogy with a single-agent search process can
he made for the distributed search case. The so-called
weak melhods of search can be seen as a set of domain-
independent methods to determine the order of search.
A corresponding set of strong methods can be defined as
aset of dommain-dependent. methods which use domain-
knowledge and heuristies appropriate for the domain to
control the search process. kxamples of strong neth-
ods include many heuaristic- or knowledge-based con-
trol methods such as minimaz and alpha-beta pruning
methods for game trees. and meta-rules for rule-based
systemns.

An organizational structure in the context of CDPS
can be seen as specifyving the control method of the
distributed search process [Corkill and Lesser, 1983],
and therefore, we might be able to find the organiza-
tional structures corresponding to the weak and strong
methods of distributed search. However, unlike single-
agent search control which only deals with the problem
of when to search what state, the multi-agent distrib-
uted scarch control must also address the problem of
who will search what states when, and the possible co-
ordination of parallel search processes in terms of what
domain and control information will be communicated
among which agents at what time.

Solving such a coordination problem can be char-
aclerized as a search through a Behavior Space where
a point. in the Behavior Space is specified by the G-
tuple of (who, what, when, where, how, why) [Durfee
and Montgomery, 1991]. If a single agent is respons-
ible for controlling the search behavior of all agents,
it hecomes a centralized coordination problem where
the control agent scarches the behavior space to find
and allocate behaviors to the agents. On the other
hand, when multiple agents participate, it becones a
distributed coordination problem which requires a dis-
tributed search of the behavior space by the multiple
agents,

Irom the behavior space point of view, an organ-
izational structure is an embodiment of long-term co-
ordination knowledge which agents share, commit to,
and follow. Therefore, OSD can be characterized as

10

a search through the behavior space for a feasible or
a best allocation of long-term behaviors among the
agents.

As in single-agent search, we expect that certain
(distributed) search control strategies will he better
suited to certain kinds of search spaces. 'Thus, the
characteristics of the scarch space (c.g. solution dens-
ity, branching factor, ctc.) will be a major factor in
determining the appropriate organizational structure
for the task.

Performance Model

In this section, we develop a performance model for
the addition task and two kinds of tree organizations.
Here, we use response time as the ounly performance
measure. We are currently expanding our models to
encompass other quantitative performance measures
(e.g. throughput, system utilization, reliability, avail-
ability) as well as qualitative performance measures in
the context of CDPS [Decker et al., 1989].

We denote the problem size of the task by N. We
assume that each agent or node is capable of storing
and retrieving numbers and also capable of standard
Arithmetic and Logical operations available in many
computers. More specifically, we assume that addition
is performed by using an accumulator to which the
first number niust be loaded. We assume that adding
N numbers take N7 time units. In other words, a
single addition operation takes 2r time units. It is
also assumed that the agents are capable of receiving
and sending messages to any other agent. For simpli-
fication, we assume that any message to be sent can
fit into a packet of fixed size, and that the communie-
ation delay between any two agents takes constant
thne units.

The two organization types we cousider are a l-level
binary tree and a one-level k-ary tree. The hcight of a
rooted tree is the length of the longest path from the
root to a leaf node. The level or depth of a node in a
rooted tree is the length of the unique path from the
root to that node. The degree of a node is the number
of subnodes incident to it. Thus a I-level binary tree is

8)) Subtree |
i T T T
I -
F Subtree 2
........... ; ; 1‘
v T
F Subtree 3
PO I } +
T3 T1+8+37
(a)
T
-
F Subtree 1
L. i 1 e
L T) T
TI -t
5 Subtree 2
s ; i i
L -—
- , Subtree 3
......... } 4 +
T3 Ti+38+1
(b)

Figure 2: (a) 6 < 7. (b) 6> 7.

a binary tree of height /, and a one-level k-ary tree is
a tree of height one with the degree of the root equal
to k. See Figure 1.

The performance measure of a given organization
for a given task will he the time taken to complete the
task. First, we note that the task of adding N numbers
can be done by a single node. ‘Fo have multiple agents
cooperate on the task we use the following coopera-
tion scheme. TFor Il-level binary tree we assume that
the problem size is 2'+'. For one-level k-ary tree we
assume that the problem size is 2k. For task distribu-
tion and result synthesis, we assume that initially there
is a single node that holds the entire task of adding N
nunbers. We call that node the root node.

We denote the time taken to complete the task of
adding N numbers by a l-level k-ary tree by T",_(N).
When N = k"' we drop the superseript and abbrevi-
ate THN) by Ti(N). 1 (N) denotes the performance
of a single node on a task of size N, whichis N7.
Definition 1 A coniplete k-ary tree is a lree of which
cvery indernal nodec has degree k where an internal node
is a non-leaf node.

Definition 2 A balanced complete k-ary tree is a (ree
of whaeh all tnternal nodes of the same level have degree
k.

Definition 3 A general balanced complete tree s a
tree of which all nodes of the same level have the same
degree.

Note that, in a general balanced complete tree, the
degree of internal nodes for different levels may differ.
If we call a tree rooted on one of the nodes at level !
a level-l subtree, we can see that for each level [in a
general balanced complete tree, all level-{ subtrees are

of the same structure. The following lenuna, which
allows us to compute the performance (i.c. response
timme) of a general balanced complete tree organization
for the addition task, allows us to derive performance
equations for special kinds of general balanced com-
plete tree organizations that are of interest to us; that
is, the l-level binary tree and the one-level k-ary tree
organizations.

Lemma 1 Let D; denote the time taken for a level-l
subtree of a general balanced complete tree Lo complelc
its lask. Let the degree of the root of that tree be k.
Then, for !l >0,

If6§ <7 then Dy = Diyy + 26+ kr

If6 > 7 then Dy = Dy + (k+ 1)+ 7

Proof. Let Af_H denote the ith subtree of level [+ 1.
Since the level-l subtree has degree of k, there will be
k subtrees on level-(I + 1), ie., from A}, to Af, .
Denote the subtask completion time of A{,; by Tj,
assuming that the time at which the level-l node as-
signs its first subtask to the first subtree is 0. Note
that 77 = 6 + Dy4 since it takes & to assign the task
to Al,,, and it takes Dy for Aj,; to complete the
assigned task.

Then, since subtasks are assigned sequentially, with
cach task assignment time 6, and since each subtask
takes the same amount of time, T4y = T; + 6 for 1 <
i<k-1.

Figure 2 shows a timing diagraim, where each 6 after
1 represents the time taken for sending the result of
A}, to the node in level {, and cach 7 represents one
a.dJit,ion operation at a level { node after receiving the
result from A ;.

If we define 3 as the time at which the level [node
receives the result of A, and adds it to the partial
surm,

(a) when 86 < 7,

Sp=Tr +é+kr ()

(b) when 6 > 7,

=Ty +ké 471 (2)

Since Q. represents the time taken to complete the
task at level I by assigning k subtasks to & level-({+ 1)
nodes (or subtrees), and receiving results from those
nodes and adding up & numbers, we can sce that) =
3. But since Ty = & + D41, we get the following by
substituting it into the above equations for J;.

(a) I & < 7 then,

D = 3y
= TV+é&+kTr
= b+l)1+| + o4kt
= Dy + 264k
(b) If 6 > 7 then,
D = 3
= Ty +kéb+T1
= 64+ Diy) + kb4
= Dy +{k+ 1)+

(W]

Tnsk Size 21!, [-Level Binary Tree Or%anization
For simplification, we assume that N = 2™+ where |
is the level or height of the binary tree. That is, we
assume that each node in the binary tree adds two
numbers. We assume that the root node divides the
task of adding N nuinbers into two subtasks of adding
N/2 numbers. The two sublasks are assigned to two
other nodes sequentially. In this way, each subtask is
divided in half and assigned to the next level down
until the size of the subtask is 2. Since we assume the
problem size is 2'*', a binary tree of I-levels will be
suflicient and necessary. After the leaf nodes add the
two numbers, the sum is propagated up to the node
that assigned the subtasks. The node that receives
the two numbers from one level down adds them and
again propagates the partial sum up one level, and so
on. When the root node linishes adding up the last two
munbers the task is completed. Also, when subtasks
are assigned down the tree, we ignore the time taken in
cach node to divide the received subtask into two equal
subtasks since it can he considered as taking constant
time and thus counted as a part of the communication
delay.!

Thie binary tree is a special case when the degree of
all internal nodes is 2. In such a case, using Lemma |,
Dy = Digy + 26 + 27 when & < 7. Since such a finite
dillerence relation holds for each pair of levels, we got.
Dy = Di+1x (20 +27). Thus, for a l-level binary tree
adding 214! pumbers according to our scheme, Dy = 2r
since all {th level nodes (i.c. leaf nodes) are assumed
to add two numbers. Thus, the time taken to add
N = 2"+ pumbers using an l-level binary tree is:

If & < 7 then,

To(N)Y = Dy
Di4 1 x (26 +27)
2r4 26+ 71)
b+ 21+)T
= ‘Jb(l(lqu.— 1) + 27loga N

Il

[l

I & = 7 then,
ToAN) = 26(logaN = 1) + 2rloga N
2r{loga N = 1) + 2rlog. N

= 27(2og, N - 1)

If & > 7 then,
Ta(N) = Do

Di+ix((2+1)0+7)

2r4+ {36 4+T1)

3o+ (1 + 2)r

= 38(log: N — 1)+ r(logaN + 1)

“I'his assumption cannot hold in DAI domains where
task decomposition itself is a non-trivial task that can con-
sume unpredictably large amounts of time.

12

We can determine the conditions under which the
binary tree structured organization is eflective for the
task by comparing its performance with single node
performance. More specifically, we want to know the
conditions under which To(N) < T¢(N). Knowing
that TO(N) = Nt we can derive such conditions. Qur
results are shown in Table 1. '

Task Size 2k, One-Level k-ary Tree Organization
In this case, there is only one-level of £ nodes to which
the task addition of 2k numbers is distributed. Each of
the k& nodes will add 2 numbers and return the result
to the root node.

We model this organization by using Lemma 1 with
T}(N) = Dy, Dy = 27, and N = 2k.

If 6 < 7 then,

THN) = Do
= Dy 4254kt
= 2r426+(N/2)r
= '26+N:4r
If 6 = 7 then,
Ny = 264 N4,
N +1

= 2r+-——l’—-r

= r4+3)

If 6 > 7 then,

Te(N) Do
Di+(k+1)b+r
= 2r+((N/2)+1)o+7

= %6-{-31’

From the above equations, we can derive the condi-
tions under which cooperation via a single level k-ary
tree organization is effective in a simmilar way to what
we did for binary tree organization. That is, by com-
paring T} (N) with T¢(N).

Table 1 suminarizes our results, using the following
definitions.

Definition 4 Let v = 7 where 7 is the unil task ez-
eculion time, and & is the unit messagc transmission
time. We call ¥ the task environment granularity.

Definition 5 A task environment is of Coarse Gran-
ularity when 7 > 1 (i.e. 8§ < 7). A task envivonment
is of Medium Granularity when y =1 (i.c. 6=7). A
lask environment ts of Fine Granularity when 4 < 1
(ie. §>71)

v ?);j:—l_l ﬁ/ll M 11]—

I-level binary tree

one-level k-ary tree

(v =1/ (N =2+ (N = 2k)
| Coarse (-l-nmi.mly Ty(N) = 28(logaN = 1) + 27logsN Te(N)=26+ ———'L—r
(y > To(N) < TO(N) <= N > 12 or THN) < TON) <= N > 8 or
A< N<12andy > Xeeli=l) 4< N<8andy> gig

Medium Granularity

Ta2(N) = 27(2logsN — 1)

Ty(N)=1(4+ %)

(y=1) To(N) < TO(N) <= N > 12 TI}E(N)<T°(N)<=>N>8
Fine Granularity Tao(N) = 36(logaN — 1) + r(loga N + 1) Tk (N) = &££26 4 37
(v< 1) Ty(N) < TO(N) <= TI(N) < THN) =

N > 12 and 7%=l <y <1

N>8andTN't—35<‘y<l

Table 1: Performance of Tree Organizations for Addition Task.

Interpretation of the Result

We can see that the performance of a given type of or-
ganization depends hoth on the size of the task and on
the granularity of the task-organization configuration.
For instance, our model shows that adding four num-
bers using a tree organization gives worse performance
than done sequentially at one node. Tree organizations
outperform single node perforinance for increased task
size since, in our model, the organization size grows
with problem size, bul even this tendency is condi-
tional on the speed of the communication links relat-
ive to the unit task execution rate of processors. Thus,
for fine granularity, hinary tree organizations usually
outperform single nodex but only if the granularity is
above some bound. That is, for fine granularity, if the
communication delay ix too large relative to the unit
task execution time, it may still be better to execute
the task at single node.

Our results confirm our intuition that cooperative
distributed problenmi solving using task-organizations
are better than centralized problem solving as long as
the task is big enough (thus exploiting the benefits of
parallelism) and conmununication is fast enough relat-
ive to computation. However, intuitions are limited in
providing precise predictive knowledge. By quantify-
ing relationships between various factors affecting the
perforinance of organizations, our mnodel provides pre-
dictive knowledge that can be used in organizational
self-design.

\We can use the model Lo determine not only the con-
ditions under which cooperation is effective, but also
the conditions under which one organization is better
than the other. We can think of the I-level binary
tree organization as representing a tall-thin hierarch-
ical organization, and the one-level k-ary trec organiz-
ation as representing a short-fat hierarchical organiza-
tion. Thus, |>y determining the conditions under which
T N) < THN), we can gain intaition on the condi-
tions umlt-r which tall thin hierarchical organizations
ontperforin short-fat hierarchical organizations.

We find that, for Coarse Granularity task environ-

13

ments,

T2(N) < Ty (N) (N <4)V (N > 26)

<
V. IB<N<26)A(y> g
<
v

T3(N) > TH(N) (4< N <8)

(8< N <2)A(1 <y < myrti)
For Medium Granularity task cnvironment,

TAN) < THN) o
THN) > THN) &

(N < 4)V (N > 26)
(4 < N < 26)

For Fine Granularity task environment.,

ToN) K THN) @ (N <4)V(N > 26)
V(16 < N < 26) A (y < DOT2gulay)
To(N)> THN) & (4< N <£16))

v (16 < N < 26) A (RLZRQaNE <y <)

Thus, in general, tall-thin hierarchies outperforin
short-fat hicrarchies when problem size is sufliciently
large (i.e. above some bound) However, for some
problem sizes (e.g. N = 24,125, or k = 12), short-fat
hierarchies may outperform tall-thin ones if the granu-
larity of the task environment is neither too large nor
too small.

Evaluation of the Model

'The assumptions made in the model were:
Uniform processing rate for all nodes.

Uniform transmission rate for all links.

?\',—

Uniform packet size for all messages.

= oc

Number of nodes grows as problem sizc increases.
5. 'Task decomposition takes negligible constant time.
The distinguishing feature of this model compared to
other models of distributed hierarchical problem solv-
ing such as in [Montgomery and Durflee, 1992] is that
this model takes into account the effect of task as-
signment. overhead. Although parallel asynehronous
connmunication is not uncommon, in many applica
tions synchronous communication such as TCP/IP is
common, and when we think of human organizations,

ror STID v
LAN = --D» GROUP
CROUP= -+

Network
Administrator

Figure 3: Overview of DBB Environment.

due to the biological limitation of a single agent, task
assignment. to other agents is often a sequential pro-
cess. However, the assumption here that the task as-
stgner has to wail for an acknowledgement before s/he
can start assigning the next task to another individual
may he unrealistic since people often do continue do-
ing other things after sending off a task but before it
arrives at the destination.

Although we used addition as our problem, the
model can apply equally well to any divisible task of
size N, where N is the number of subtasks each of
whicl takes equal time to perform it.

Application to Intelligent Distributed
Network Management

Our previous work on Distributed Big Brother (DBB)
[So and Durfee, 1992a, So and Durfee, 1992b)] focused
on integrating various techniques of DAT to implement
an organizational structure which serves as an infra-
structure for intelligent distributed computer network
management. DBB had a limited capacity for OSD
in the sense that it can recover from failure of one or
mote nodes in the structure and maintain the organ-
izational structure in a way that preserves the overall
functionality of the organization.

One simple task of DBB was to have management
agents gather and abstract information about the hosts
in the network. The response time performance (in-
forination recency) depends on the size of each task
(N; - the number of hosts to poll), the unit task ex-
ccution time (7), and the task assignment rates (o),

14

as well as the transmission delay (é). Therefore, if the
DBB agents are to not only recover from failure but
also to adaptively reconfigure themselves as the task
and resource environment changes, they must be able
to continuously monitor the changes in the environ-
ment (e.g. values of N, 7, 6) and determine whether a
change in the organizational structure (e.g. number of
levels, span of control) can lead to better performance.
In order to do that, there must be a way Lo generate
the possible changes in the organization, and a way to
evaluate each possible organization given the current
set of environniental parameter values or the predicted
future values of those parameters.

We have applied the analytical method presented in
this paper to model the performance of DBB, and our
preliminary results successfully predict the response
times of DBB under various task configurations.

Conclusions

Obviously there are many shortcomings to the ana-

lytical model of task, organization, and performance

presented above. We list some of thent in the follow-
ing.

1. The kind of task considered were those that were
decomposable to independent subtasks. That is, the
subtasks had no dependency relationships. Since co-
ordination of behaviors of agents are needed largely
due to the dependency of one's task to another’s,
the current model does not cover many interesting
coordination types and the corresponding orgatiiza-
tional structures. Although the subtasks had to be
temporally coordinated in the sense that an agent
can only execute a subtask when it reccives one
from another agent, during the execution of subtasks
agents need not temporally coordinate their activit-
ies. Also, there were no constraints as to the product
or output of two or more subtasks, or more precisely,
such constraints are implicit in the subtask decom-
position.

2. The kind of task considered had no uncertainty.
Each task to be performed by each agent or node
was fully and completely specified such that there
can be no ambiguity as to what each agent. was sup-
posed to do. In other words, each agent has no choice
but to do what it is supposed to do. Thus, agents
generally do not make decisions. Alternatively, if we
view a “task” as a set of tasks where a subset of
them needs 1o be done, an agent generally will have
to decide which subset of the tasks it will work on at
a given time (as in the DVMT [Durfee et al., 1987]).

3. There was no environment with which the agents
had to interact in order to accomplish their tasks be-
sides the other agents from and to which tasks and
results are passed. There was no environment or
world as an independent. variable aflecting the per-
formance of the agents and the organization. This
has relation to the type of task considered which in

our case does not. depend on any aspects of the envir-
onment. That is, no information about the environ-
ment is used in the execution of the task. The only
input-elements and output-elements of each agent
are the task and result. The agents neither inde-
pendently gather information from the world or from
others nor actively change the world. For example,
in a package delivery task, agents must sense the
laocation of the packages as well as the location of
other agents, and when they move around the spatial
area picking up and delivering the packages, they are
changing the environment they share. Such tasks,
which require agents to interact with a changing en-
vironment, are more complex, and need a more soph-
isticated model of task, organization, and perform-
ance.

4. There was no conflict ammong agent activities because
there was no resource sharing. That is, subtasks
were independent. as to the required resources to ac-
complish the subtasks. Since agents had no alternat-
ives to choose from when executing their tasks, they
did not have to consider the possible mconsistencies
of outputs resulting from their choices.

3. We have only looked at cases where the number of
agents can be increased indefinitely as the problem
size increases. In realistic settings, there may be cer-
tain bounds as to the number of agents that can be
employed to organize and carry out the organiza-
tional task. In gencral, we should also look for the
best organization for a given task when there are
resource bounds.

. The type of organization considered was rigid and
reflects the static characteristic of the task and the
environment. When we begin to add complexities,
dynamicitics, and uncertainties to the task and en-
vironment, the corresponding organization structure
is expected to he more flexible in order to be efficient.
Also, such a task environment is expected to force
the agents to be more sophisticated in order to be
efficient, possibly requiring them to learn from past
experience and/or plan for the future.

. We only considered one kind of performance meas-
ure, namely the response time. Other measures such
as reliability and system utilization should be con-
sidered and compared. We expect tradeoff relation-
ships between different performance measures for
various task-organization configurations.

-1

We are currently developing a more general analyt-
ical model of task, organization, and performance. By
elucidating the factors that are involved in determin-
ing the performance of an organization, we are work-
ing toward implementing a computational organization
which can automatically reorganize as the environment
changes. Such a model can also help in understanding
hinman organizations, and thus may contribute to or-
ganization science in general,

15

References

Daniel D. Corkill and Victor R. Lesser. The use of
meta-level control for coordination in a distributed
problem solving network. In Proceedings of the Lighth
International Joint Conference on Artificial Intclh-
gence, pages 748-756, Karlsruhe, Federal Republic of
Germany, August 1983. (Also appeared in Computer
Architectures for Artificial Intelligence Applications,
Benjamin W. Wah and G.-]. Li, editors, IEEE Com-
puter Society Press, pages 507-515, 198G).

Daniel David Corkill. A Framework for Organi:-
ational Self-Design in Distributed Problem Solving
Networks. PhD thesis, University of Massachusetts,
February 1983. (Also published as Technical Re-
port 82-33, Department of Computer and Informa-
tion Science, University of Massachusetts, Amberst,
Massachusetts 01003, December 1982.).

Keith S. Decker, Edmund H. Durfee, and Victor R.
Lesser. Evaluating research in cooperative distributed
problem solving. In Michael N. Huhns and Les Gasser,
editors, Distribuled Artificial Intelligence, volume 2
of Research Notes wn Artificial Intelligence. Pitinan,
1989.

Edmund H. Durfee and Thomas A. Montgomery. Co-
ordination as distributed search in a hierarchical he-
havior space. JEEE Transactions on Systems, Man,
and Cybernetics, 21(6), December 1991, (Special Is-
sue on Distributed Al).

IEdmund H. Durfee, Victor R. Lesser, and Daniel D.
Corkill. Coherent cooperation among communicating
problem solvers. IEEE Transactions on Compulers,
(C-36(11):1275-1291, November 1987. (Also published
m Readings i Distributed Artificial Intelligence, Alan
11. Bond and Les Gasser, editors, pages 268-284, Mor-
gan Kaufmann, 1988.).

Les Gasser and Toru Ishida. A dynamic organiza-
tional architecture for adaptive problem solving. In
Proceedings of the National Conference on Artificial
Intelligence, pages 185-190, July 1991,

Victor R. Lesser. A retrospective view of FA/C dis-
tributed problem solving. /[EEE Transactions on Sys-
tems, Man, and Cybernetics, 21(6), December 1991,
(Special Issue on Distributed Al).

Thomas A. Montgomery and Edmund H. Durfec.
Scarch reduction in hierarchical distributed problem
solving. In Proceedings of the 1992 Distribuled Al
Workshop, February 1992,

Young-pa So and Edmund H. Durfee. Distributed big
brother. In Proceedings of the Eighth 1EEL Coufer-
cunce on Arviificial Intelligence for Applications, 19492
Young-pa So and Edmund H. Durfec. A distributed
problem solving infrastructure for computer network
management. Internalional Journal of Intelligent and
Clooperalive Information Systems, 1(2), 1992.

