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Abstract

This paper describes an algorithm for coordination of
communication of probabilistic information in distributed
sensing systems. We envision the distributed sensing sys-
tem as a team of observers, each of which observes locally
and communicate with other members in order to im-
prove its local estimation. Due to the limited communi-
cation bandwidth and constraints imposed by the network
topology, communicating all information with each other
is inefficient/infeasible. By quantifying information which
is communicated anmng the members, the problem of co-
ordination of communication is considered in the frame-
work of team decision theory. By maximizing the expected
overall information throughput in the distributed sensor
m.twork under resource and topological constraints, de.
cisious rules can be obtained for each sensor member on
"how nmch to communicate". Two simple examples of
distributed tracking system are presented.

1 Introduction

The problem of coordination of communication can
be broadly considered in the context of distributed
estimation and control[14] and distributed Artificial
Intelligence[5, 11]. In this paper we attempt to address
this problem using the team decision theory[7]. How much
to communicate is regarded as a decision to be made by
each individual member. Information possessed by indi-
vidual members is intrinsically uncertain and correlated.
The aim of the team is to maximize the expected informa-
tion flow within the system under bandwidth and topo-
logical constraints.

Team decision theory originated from problems in game
theory[12] and multi-person control[7, 6]. Game theory
is mainly concerned with problems where each player is
trying to maximize its own utility while minimizing that
of its opl)onents. In the area of cooperative game the
problem is much nmre complicated due to the interactions
between players. Team theory considers the cooperative
game problem when all the players only have common
interests. The members of the team may have different
inh)rmation with regard to some underline situation, but
their actions must further the interests of the whole team.

Therefore the objective of the team is to make the optimal
decision for all possible information about the state of the
problem obtained by individual team members.

The problem of coordinating comnmnication of infor-
mation in a distributed system can be address adequately
by the team decision theory. We propose to describe a
distributed sensing system as a team of observers, each
of which makes local observations on some situations of
common interest. It is clear that these observations are
uncertain yet correlated. Each member nmst therefore
communicate with other members in order to improve its
estimation of the state of the world. In the case where
communication can be achieve instantly and without cost.
it can be shown that global optimal estimation, as de-
fined in a centralized system, can be obtained for each
member[9]. In reality limited comnmnication bandwidth
and topology constraints imposed by the system archi-
tecture does not permit instant and free communication.
Therefore decisions have to be made by each member on
whether assimilation of information from other member is
needed. On the whole, their actions must further certain
common interest defined by the team, such as maximizing
the information throughput in the network.

The rest of the paper is organized as follows: In Sec-
tion 2 the general problem of estimation control is intro-
duced and algorithms for solving this problem is briefly
introduced. In Section 3 team theory is introduced. A
simple example is used to illustrate the concept of team
theory. In section 4 information metrics is defined using
the notion of entropy. Decentralized estimation, based on
the information filter, is also introduced. In Section 5 we
present a general framework for coordinating communi-
cation of information in distributed sensing systems. AI~
example of coordinating commu,fication of information,
defined by the information filter, is presented. Finally in
section 6 discussions of applying team theory to nmlti-
stage decision making and asynchronous communication
is discussed.

2 Estimation and Control

In the following, the general problem of dist.rilmt.cd esti-
mation and control is described. A brief surw~y of alg,-
rithms and the class of problems which can be solv~bd by
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these algorithms are presented.
From tile estimation and control point of view, a dis-

tributed system call be described as a network of observers
and control units (or Decision Makers (DM)). Let us 
sume that the nuntber of DMs is N (N :> 0) and the
system only operates for a limited time steps T, (T > 0).
Observations are made and controls are applied at each
time step from these nodes. Without losing generality, at
time step t, each node i makes a local observation z~ and
applies a local control u~. The operation of tile system
can he described as follows:
¯ At time step 0:

- System assume initial state x0.

¯ At time step 1:

- Observations zl,... ,z~ are made at each node.

- Controls u],..., uN are applied at each node.

- System transits to state xj.

¯ .... ......

¯ At time step t:

- Observations z~ ,..., z~ are made at each node.

- Controls u~ ,..., uN are applied at each node.

- System transits to state xt.

¯ Transition to state XT.
The uncertainties concerning operation of the system

are modeled by a set of independent random vectors with
given probability distributions:

xo; vt" , wt’’ (t = 1,. ¯ ̄  , T; n = 1,..., N).

where ~,~ is the noise associated with the state transition
and w~~ is tile observation noise. The variables are related
by the state transition equations

x, =/,(~,_,,,,,,~,...,~),t = 1,...,T
and the observation equations

z’~ = g’/(xt-j,w’/),n = 1,... ,N;t = 1,...,T.

A loss function can be defined by the expression

7’

t=|

Note that tile decision problem is not to find a sequence
of ul,..., UT" which minimizes the expected loss described
by Equation 1, which is not probabilistically well defined
if the decision rules are not specified. In general it is an
optimization problem on functionals (Ul,’",UT). One
must therefore specify the possible ways in which the con-
trol variables are generated so that the lost function will
be well defined.

The problem of finding the best decision rules (or strate-
gies) is usually considered as planning in AI. In con-
trol theory the most popular results are those for uncon-
strained control of linear systems with Gaussian noise and

quadratic criteria and classical information pattern[14].
In this case it is possible to separate the i)roblem of esti-
mation and control. In other words, the control probh, m
can be divided into two steps:

¯ A filtering algorithm independent of control rules to
obtain the optimal estimation;

¯ Control policies based on the optimal estimation.

For non-linear systems with finite decision rules and states
dynamic programming algorithm can be used. However
the general problem of designing optimal control strate-
gies remains unsolved.

In distributed systems the problem is further compli-
cated because instant communication among the nodes is
not always possible. Team decision theory[’?] was intro-
duced to deal with the above problem. Each team mem-
ber makes a local decision based on its local observation
on the state of the world. The probabilistic distribution
of the state vector is assumed to be known. However no
communication of observation is allowed among the mem-
bers. The team theory states that optimal decision rules
can be obtained by maximizing the expectation of some
pre-arranged global utility function. It is, however, only
concerned with one step decision problemsL.

On the other hand distributed estimation algorithms
based on the Decentralized Kahnan Filter(DKF) and tile
Extended DKF (for non-linear systems)J9] have been de-
veloped. Each node updates its local estimation based
on its local observations and local state transition model.
An assimilation step is then introduced to obtain global
optimal estimation at each node. No centralized fusion
centre is needed. Information filter[8], which is based on
the Kalman filter but updates an information state vec-
tor and an information matrix, has also been developed.
However, assimilation requires communication from ew,ry
other node. In general, this is limited by tile communica-
tion bandwidth and network topology.

It is, therefore, desirable to consider situations where
communication might be an option for the local node to
choose. Consider a distributed system, each node updates
its local estimation based on its local observations. It then
decide whether to act on the local estimation (without fur-
ther communication) or to act on assimilated estimation
(with communication from other nodes). This is plausi-
ble since communication are not freely available, therefore
team members must coordinate so that tile overall infiJr-
mation flow in the system is maximized.

3 Team Decision Theory

Team theory was introduced in [7] to describe the problem
of decentralized statistical decision making in economic
systems. A team of decision makers have access to differ-
ent information concerning the underlying uncertainties.

IThe extensions of team decision theory to multi-stage
problems[6] can be regarded as the general multi-stage decision
problem since complete recall are allowed
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Each member makes local decisions based on its local ob-
sq,rvations. The aim is to find tile optimal decision rules
for each members so that the expected utility of the team
as a whole is maximized.

3.1 Problem Statement

We will first briefly introduce the team theory in the
framework of the general estimation and control problem
described in the previous section and then follow it with
a simple example.

A random vector x with known distribution, described
by its Probability Distribution Function (PDF) pz(x), 
used to represent all the uncertainties that have bearing
ou the problem we are considering. A set of observations
Z = [zl,"’,zN] with

z~ = m,(x),i-- 1,...,N (2)

is obtained by each member. A set of decision variables
[ul ,..., u/v] is also defined. The variables x, zi and ui are
all assumed to take values in appropriate spaces --, Z, U.
The strategy (decision rule, control law) of the ith mem-
ber is a map 71 : zi ---, ui which can be interpreted as a
plan of which decision to take under what circumstances
(observations):

u~ = "r,(zd (3)
The loss is defined as a map L : --- x U --* R, i.e.,

Lo,s = L(u,,... ,UN,X). (4)

Note that the integration or the expectation of the Loss is
meaningful only when the decision rules 71(’) are specified.
For a given set of strategies tuples 7i, i = 1,..., N, L is a
well-defined function of the state vector X, i.e.,

L(u,,... ,UN,X)= L(’" ,ul = 7i(mi(x)),.’’ 

Thus the expectation of L with respect to px(x) is well
defined. Finally the team decision problem can be de-
scribed as

Find "Yi(’) F,Vi in order to minimize

J =- Ex[L(’" ,ul = "ri(mi(x)),...,x)] 

In general the above formulation is conceptually simple
hut practically very difficult to solve since it is a function
optimization problem and J is a functional. However, by
further restricting the class of problems it is possible to
solve the above problem. Examples include parameteri-
zation or allowing only finite decisions.

3.2 A Robot "Shepherd"

Consider a mobile robot armed with a tracking camera
and a ring of sonar sensors trying to keep track of a
"laml~". The tracking mechanism of the camera is im-
idemented independently from that of the robot nmtion,
i.e., the camera is programmed to track a moving target
from any position. On the other hand the control of the

robot motion is dictated by the sonar bumper for real time
obstacle avoidance and following. The task of the robot
"shepherd" is to track and keep a reasonable distance to
a moving "lamb".

The two sensor system must cooperate in order to track
and follow the moving target due to the following rea~sons:

. The vision system tracks the target with accurate an-
gular estimation but poor distance estimation. Tile
turning angle depends on both angular and range es-
timations.

¯ The vision system can be affected by background tex-
tures.

¯ The infra-red and sonar system tracks the target with
more accurate range estimation than angular estima-
tion. The motion of the base depends oa both angular
and range estimations.

¯ The infra-red and sonar system cast be affected by
specularity and other factors.

In order to track and follow the target effectively both
systems must make decisions as fast as possible so that
they will not miss the target. On the other hand, when
the local estimation of the target position becomes un-
certain due to various reasons it is desirable to communi-
cation with each other so that more effective actions can
be taken. However, communication comes with costs and
will slow down the control of both systems. It is, there-
fore, desirable to find the optimal decision rules for both
sensor systems, so that the expected loss some common
concern is minimized.

3.3 Communicate or Not Communicate?

To simplify the formulation and clearly demonstrate the
concept we shall only consider a one-step ahead situation.
The decision rules are also discrete and so it tile set of
possible state of the world.

The state of the world x is either "tracked" or "not
tracked". Both the tower and the base maintains their
own local estimates of the state of the world, xb and xt.
They take value as either "tracked" or "not tracked". It is
assumed that the joint distribution of the above random
variables is known (see Table 1).

Target tracked

base \ tower comm. not comm.

comm. -8 -3
not comm. -3 6

Target missed

base \ tower conlnl. not coulnl.

comm. 10 -3
not comm. -3 -8

Table 1. Loss function table
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Each member (the tower and the base unit) takes a local
observation, and update xb and xt respectively. The deci-
sions, Ub = 7b(Xb) and ut = 7t(xt), available to both mem-
bers are either "request communication" or "not request
communication". We consider four possible combinations:
none requests COlilmunieation; tower requests conllnunica-

fion; base requests conmnufication;both request commu-
nication, xA% assume that only the member who requests
eomuumication pays for tile communication. In other
words, the requesting member has to obtain the infor-
mation from other members and update its own estimate.
One possible decision rule can be based on the variance of
the local estimate E(xb - E(Xb))2. If the variance exceed
certain threshold the memnber decide to request commu-
nication from other members.

We associate a cost matrix with respect to the decision
pairs and the state of the world (see Figure 2). The as-
signment of costs are arbitrary in this case, but it is not
difficult to calculate them from certain physical quanti-
ties, such as the time delay cost when conmmilication is
needed and the costs due to the variance.

t-tracked; m-mnissed

x t t t t m m m ill

Xb t t n| Ill t t Ill Hi

X# t ii| t in t Ill t nl

Prob 0.25 0.05 0.1 0.1 0.1 O.l 0.05 0.05

Table 2. Joint i~robalfility distrilmtiou of tile state x and
the individual observations

The expected loss for any 7b and 7t is

J = ~/.(ub = ~b(xb),u, 7,(x,),x)P~(Xb, X,(6)
X

By enumeration it. is not too difficult to find the optimal
decision rule for the robot "shelfllerd’.

4 Information and Decentralized
Estimation

In the previous section we presented a very simple exam-
pie of using team theory to find the optimal decision rules
in order to coordinate communication in a distributed sys-
tem. The loss function and decision rules are somewhat
contrived but nevertheless demonstrates the need for co-
ordinated communication when communication is itself
an action whh:h incur losses. Statistical estimation al-
gorithms such as those based on Decentralized Kalman
Filter[9] (DKF) requires each node to communicate its
local information with other nodes in order to obtain
a global optimal estimation. In reality, however, tile
conmmnication bandwidth and the network topology will
limit the amount of information which can be communi-
cated. In the following we shall introduce the notion of
information based on entropy as a quantitative measure

of information contained in the random variables. Obser-
vation is therefore a process of "gathering" information
(or reducing entropy). We shall describe how information
are "gathered" and communicated among the node of a
distributed system using the notation of the DKF.

4.1 Measures of Information

Before we attempt to coordinate communication it is
necessary to define clearly what is being communicated.
Since the state of the world that we are interested in is
described by a random vector with probabilistic distribu-
tion, it is natural to use entropy, or sometimes known as
Shannon information[10, 3], as the measure of information
contained in that random vector.

Information can be defined as the expectation of the
log-likelihood of a PDF[10, 4, 3]

I(p(x)) ~- E{lnp(x)}. (7)

Similarly we can define the entropy of the posterior dis-
tribution of x given observation z(k) at time k, defined
by the Bayes Theorem, as follows

I(k) ~ h(p(xlz(k))lnp(xlz(k))dx. (8)

Let zk denote the collection of observations up to time
step k and z(k) the observation at teim step k, i.e.,

zk =~ {z(1),...,z(k)).

Applying the Bases Theorem one more time we can obtain

E{ln[p(x[zk)]} = {l n[p(xlzk-~)]} (9)

E J’ln [ p( (k))lx + (10)
t [P(z(k)lzk-I)J 

Let l(x, z(k)) denote the information about x c,ntaim,d
in the observation z(k), i.e.,

= L p(z(k)) J

Note that the observations are assumned to be uncorrelated
sequence. The information relationship for Bayes theorem
can be rewritten simply as

I(k) = I(k I) + i (k). (12)

or

posterior I = prior I ÷ ! in observations.
It is not difficult to see the relationship between infor-

mation contained in the random variable and the variance
of the variable from Equation 7. In the case of a random
vector, the information contained in the random variable
is related to the covariance matrix.

Using tile above notion of information, an information
filter, which is simply a Kalman filter recast in terms of
the information-state vector[8], can be obtained. The il,-
formation matrix is simply the inverse of the covariance
matrix.
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In order to show how the above information definition
can be used ill practical estimation process let us consider
a system described in linear form:

x(k) = F(k)x(k- 1)+w(k) (13)

where x(j) is the state of interest at time 3, F(k) 
tile state transition matrix from time k - 1 to time k,
and where w(k) -,, N(0, Q(k)) is the associated process
noise modelled as all uncorrelated white sequence with
E[w(i)wT(j)] = 61jQ(i). The system is observed accord-
ing to the linear measurement equation

(14)

where z(k) is the vector of observations made at time
k, H(k) the observation matrix, and where v(k) 
N(0, R(k)) is the associated observation noise modelled
as an uncorrelated white sequence with E[v(i)vT(j)] 
6qR(i). It is also necessary for E[v(i)wT(j)] 

From the above assumption the linear Kalman filter
can be derived[I]. Adopting the information formulation
introduced previously an alternative form of the Kalman
filter, known as the information filter[8], can be obtained.
Define the information-state vector

= (k)x(k)

where P(k) is the covariance matrix of x at time step k,
and the information matrix

we can obtain the information filter update equations as
follows:

I(k) = I(k- 1)+HT(k)R-’(k)H(k) (15)

Y(k) = Y(k- 1)+HT(k)R-l(k)z(k) 

4.2 Distributed Information Filtering
Applying the information form to the decentralized
Kalman filter algorithm[9] we can obtain the decentral-
ized information filter.

Consider the distributed system described in Section I,
at each time step k the stacked observation is denoted by

rock) = [z~(k),..., ~.T(k)]T. (17)

Partition the observation matrix and the observation noise
vector corresponding to the observations as follows

H(k) lt lT(k),...,uTck)]T (18)
vCk) = [v~(k),...,v~(k)]T. (19)

It, is assumed that the observation noise partitions are
uncorrelated

Elv(k)vT(k)] = R(k) bl ockdlag{Ri(k),..., RN(k)}
(20)

The system now consists of N equations in the form

zj(k) =Hj(k)x(k)+vj(k) (21)

with

Defining

(22)

V~(k) ~ ~T(k)R;~(k),.j(k) 
as the information-state contribution from observatio1~
Zj(k) and

Ij(k) ~- HT(k)RfI(k)Hj(k) (24)

The information-state and information matrix update
equations are therefore

N

Y(k) = Y(k - 1) + ~ Y~(k) (25)
j=l

N

,(k) = *(k-1)+~-’i~(k) 
j=l

In a decentralized system where no central fusion and
control is provided, each node obtains the optimal estima-
tion by assimilating information from all the other node.
From the information update equation it can be seen that
the information provided by each node depends on the
configuration (the measurement model Hi(k)), and the
relative accuracy of the sensors (Rj(k)). It is therefore
necessary to coordinate the inter-nodal comnmnication of
observation information when the communication band-
width and network topology prevent complete and speedy
inter-nodal communication.

With proper measure of information, we are now ready
to address the problem of coordinating communication in
distributed sensor system using the team theoretic ap-
proach introduced in Section 2.

5 Coordinating Communication
of Information

In the previous sections we have shown that in order fi~r
each node in a distributed system to obtain a global op-
timal estimation it is necessary to assimilate information
from all other node. We have also introduced a measure
for the quantity of information contained in observations.
In the following we shall present an algorithm for coordi-
nation of communication in a distributed sensing system.

5.1 A General Framework
Let x(k) represent the state of the world at time 
Each node makes an observation with measurement model
Hi(k) and measurement noise covariance Ri(k). The in-
formation li(k) contained in the measurement is therefore
HT(k)R-l(k)Hi(k). However the information is in a ma-
trix form. In order to compare information with ditfereut
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dimensions we define a scalar i~(k), or the absolute in-
formation, as tile trace of the infornlation matrix. Hence

i,(k) z~
= trace(Ii(k)) trace(Hir(k)R-I(k)Hi(k)). (27)

Each node makes a decision ui on how much informa-
tion from other nodes are to be assimilated. Note that
this decision is made based only on each node’s local ob-
servations. Further specification of the set of decision
strategies must be specified to satisfy tile requirement of
a well-defined loss function (see Section 2). For example,
each node can decide whether assimilation of information
is reql,ired at that node by comparing the information
contained ill its local observation with certain threshold
value:

assimilation required, if i~(k) < io .... h
Ui ~-

no assimilation needed, if ii(k) Il hrelh

Next we define the team utility as the throughput of
information within the network. The throughput L is de-
filled as the sum of the total information being assimilated
within the network. It is obvious that the throughput is
a function of all the local decisions and the state of the
world:

Z = i(ul,... , UNsX).

The aim is to find a set of decision rules ua,"’, uN so that
L is maximized. In tile case of no communication costs
and constraints the optinml local decision rule is to always
comnmnicate. However there exists a linfitation on the
communication bandwidth and topological constraints. In
general these constraints can be represented as a vector
function of local decisions:

C(Ul,’’’,aN) = (28)

Finally the coordination of coumnlnication ill distributed
system is t.ransfo,’med into a constrained ol~timization
l)rol~lem. Methods such as the Lagrange multiplier and
the Penalty function methods[2, 13] methods can be used.
In general the above optimization is still a functional op-
timization problem which is hard to solve. Next we shall
use an example to illustrate the tile co,~cept of communi-
cation coordination when resources are limited.

5.2 An Example: Surveilance

Considering a surveilance system consists of four inde-
pendent tracking cameras monitoring all area which is
divided into four sectors each of which is associated with
a tracking camera. All cameras can monitor the whole
area, but the accuracy of the observations differs depend-
ing on whether the target is inside the sector which be-
longs to that camera. Each camera independently decides
on whether to assimilate informatiml front other cameras
or not2. The overall communicatimi capacity is limited.

;/Other strategies itre possible, h)r example, the calttcra indcpen-

deldly decide whether to assimilate information from one, two or all

other [~ irll!ril.%

In this case it is assumed that there is a limit on how
many assimilations which call be made at a time. This
simplification is justified since each assimilation requires
the communication of the information state vector ;rod
the information matrix, which are of the same sizes for all
cameras. The problem is therefore to decide the cmmnu-
nication strategy for each camera. In this case there are
four decision pairs for each camera: target in own secto,"
and communicate; target in other sector and connmmi-
cate; target in own sector and not communicate; target in
other sector and not communicate. Note that whether tile
target is in own sector or not is a local observations. Tile
real location of the target and individual observations are
correlated and this correlation must be known in advance
before the expected team utility (overall information flow)
can be calculated.

Let us number the sectors of the monitored area as
1,2,3 and 4. Denoting the location of the target as x so
x = {1,2,3,4}. The decision variables ui,i = 1,... ,4 is
the permutation of communicate/not communicate and
target in own sector/target in other sector. The utility is
calculated as the sum of the assimilated information. The
information is computed from Equation 24 in section 4.
Assuming the measurement matrix is an identity matrix,
i.e. H = I, and the variance of tile observation noise R
when the target is in the other sector is twice as high a.~
that when the target is ill its own sector. The inf,~rmatiou
can be calculated from Equation 27.

Before this can be done we must obtain the joiul prob-
ability of the random variable x (the state of the worhl)
and the observations made by each camera. Assuming
the target is equally likely to appear in each of these sec-
tors, the probability of all cameras agreeing a,ld partially
agreeing is shown in Table 3. The constraint imposed by
the comnmnicatlon capacity in the network is described
as tile total number of assimilations allowed within the
network. This constraint will reduce the total numlwr of
possible decision permutations. By emnuerating the de-
cision permutations it is not difficult to find the decision
strategy which will give maximum information through-
put in the network.

x = i Number of cameras correctly
identifying target in sector i

0

I 0.03

Table 3: Joint probability distribution of tile state x and
local observations

6 Discussions and Future Work

Tile decentralized estimation and control i~roblem has of.
tell been addressed separately in the literature[14], lu
reality communication constraints which exist in the dis-
tributed network mean that it is essential to coordinate
the comnmnication in order to achieve best estimation
results while satisfying those constraints. Team theory
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has been found Itseful in addressing the above problem
although many questions are still unanswered:
¯ The ftmctional ol~timization problem doesn’t have a

solution ill general. Only finite number of decision
rules are allowed in tile examples presented in this pa-
per.

a In general the comnmnication coordination problem is
a multi-stage decision making problem. In the case of
limited horizon and finite decision rules it is straight-
forward to apply the stochastic dynamic programming
algorithms since both methods can be regarded as to
maximizing some global expected utility functiona.

a By not. assimilating information from all the nodes, the
global optimality coi~dition of the decentralized infor-
mation filter is violated. This problem is equivalent to
that of the asynchronous communication problem[9].

Future work include the extension of the basic team
theory as well as implementation to non-trivial systems.
This includes:
¯ Applying mixed strategies instead of the finite strate-

gies by associating probability to each decision rules.
a Applying the team theory to solve the communication

coordination l~roblems in multi-sensor robot system.
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