From: AAAI Technical Report WS-93-03. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

Examples of Quantitative Modeling of Complex Computational Task
Environments *

Keith Decker and Victor Lesser
Department of Computer Science
University of Massachusetts
Ambherst, MA 01003
Email: DECKER@CS.UMASS.EDU

Abstract

There are many formal approaches to specifying how
the mental state of an agent entails thar it perform par-
ticular actions. These approaches put the agent at the
center of analysis. For some questions and purposes, it
is more realistic and convenient for the center of anal-
ysis to be the task environment, domain, or society of
which agents will be a part. This paper presents such
a task environment-oriented modeling framework that
can work hand-in-hand with more agent-centered ap-
proaches. Our approach features careful attention to the
quantitative computational interrelationships between
tasks, to what information is available (and when) to
update an agent’s mental state, and to the general struc-
ture of the task environment rather than single-instance
examples. This framework avoids the methodological
problems of relying solely on single-instance examples,
and provides concrete, meaningful characterizations with
which to state general theories. Task environment models
built in our framework can be used for both analysis and
simulation to answer questions about how agents should
be organized, or the effect of various coordination algo-
rithms on agent behavior. This paper is organized around
an example model of cooperative problem solving in a
distributed sensor network.

This workshop submiission is a shortened version of a
much longer technical report available from the authors;
see also our paper in the main conference proceedings
[Decker and Lesser, 1993b).

Introduction

This paper presents an overview of a framework, TEMS
(Task Analysis, Environment Modeling, and Simulation),
with which to model complex computational task environ-
ments that is compatible with both formal agent-centered ap-
proaches [Cohen and Levesque, 1990; Shoham, 1991; Zlotkin
and Rosenschein, 1990] and experimental approaches [Carver

*This work was supported by DARPA contract N00014-92-]-
1698, Office of Naval Rescarch contrace N00014-92-J-1450, and
NSF contract CDA 8922572. The content of the information does
not necessarily reflect the position or the policy of the Government
and no official endorsement should be inferred.

61

and Lesser, 1991; Cohen et al, 1989; Durfee et al, 1987;
Pollack and Ringuette, 1990). The framework allows us to
both analyze and quantitatively simulate the behavior of single
or multi-agent systems with respect to interesting character-
istics of the computational task environments of which they
are part. We believe that it provides the correct level of ab-
straction for meaningfully evaluating centralized, parallel, and
distributed control algorithms, negotiation strategies, and or-
ganizational designs. No previous characterization formally
captures the range of features, processes, and especially in-
terrelationships that occur in computationally intensive task
environments.

We use the term computational task environment to re-
fer to a problem domain in which the primary resources to
be scheduled or planned for are the computational process-
ing resources of an agent or agents, as opposed to physical
resources such as materials, machines, or men. Examples
of such environments are distributed sensor networks, dis-
tributed design problems, complex distributed simulations,
and the control processes for almost any distributed or paral-
lel Al application. A job-shop scheduling application is not
a computational task environment. However, the control'
of multiple distributed or large-grain parallel processors that
are jointly responsible for solving a job shop scheduling prob-
lem is a computational task environment. Distributed sen-
sor networks use resources (such as scnsors), but thesc re-
sources are typically not the primary scheduling consider-
ation. Compurational task environments are the problem
domain for control algorithms like many rcal-time and par-
allel local scheduling algorithms [Boddy and Dean, 1989;
Garvey and Lesser, 1993; Russell and Zilberstein, 1991] and
distributed coordination algorithms [Decker and Lesser, 1991;
Durfee et al., 19871

The reason we have created the TEMS framework is rooted
in the desire to produce general theories in Al [Cohen, 19911.
Consider the difficulties facing an experimenter asking under
what environmental conditions a particular local scheduler
produces acceptable results, or when the overhead associared
with a certain coordination algorithm or organizational struc-
ture is acceptable given the frequency of particular environ-
mental conditions. At the very least, our framework provides
a characterization of environmental features and a concrete,

! Organization, planning, and/or scheduling of computation.

meaningful language with which to state correlations, causal
explanations, and other forms of theories. The careful spec-
ification of the computational task environment also allows
the use of very strong analytic or experimental methodologies,
including paired-response studies, ablation experiments, and
parameter optimization. TEMS exists as both a language for
stating general hypotheses or theories and as a system for sim-
ulation. The simulator supports the graphical display of gen-
erated subjective and objective task structures, agent actions,
and statistical data collection in CLOS on the TI Explorer.

The basic form of the computational task environ-
ment framework—the execution of interrelated computa-
tional tasks—is taken from several domain environment
simulators [Carver and Lesser, 1991; Cohen et al, 1989;
Durfee et al, 1987]. If this were the only impetus, the
result might have been a simulator like Tileworld [Pollack
and Ringuette, 1990]. However, formal research into multi-
agent problem solving has been productive in specifying formal
propertics, and sometimes algorithms, for the control process
by which the mental state of agents (termed variously: beliefs,
desires, goals, intentions, etc.) causes the agents to perform
particular actions [Cohen and Levesque, 1990; Shoham, 1991;
Zlotkin and Rosenschein, 1990]. This research has helped to
circumscribe the behaviors or actions that agents can produce
bascd on their knowledge or beliefs. The final influence on
TAMS was the desire to avoid the individualistic agent-centered
approaches that characterize most Al (which may be fine) and
DAI (whlch may not be so fine). The concept of agency in
TAMS is based on simple notions of exmmon, communication,
and information gathering. An agent is a locus of belief (state)
and action. By separating the notion of agency from the model
of task environments, we do not have to subscribe to particular
agent architectures (which one would assume will be adapted
to the task environment at hand), and we may ask questions
about the inherent social nature of the task environment at
hand (allowing that the concept of society may arise before
the concept of individual agents).

Section will discuss the general nature of the three modeling
framework layers. Sections through discuss the details of the
three levels, and are organized around a model built with this
framework for the study of organizational design and coordi-
nation strategies in a multi-agent distributed sensor network
environment.

General Framework

The principle purpose of a TEMS model is to analyze, explain,
or predict the performance of a system or some component.
While TEMS does not establish a particular performance cri-
teria, it focuses on providing two kinds of performance in-
formation: the temporal intervals of task executions, and the
quality of the execution or its result. Quality is an intentionally
vaguely-defined term that must be instantiated for a particular
environment and performance criteria. Examples of quality
measures include the precision, belief, or completeness of a
task result. We will assume that guality is a single numeric
term with an absolute scale, although the algebra can be ex-
tended to vector terms. In a computationally intensive Al
system, several quantities—the quality produced by executing

62

a task, the time taken to perform that task, the time when a
task can be started, its deadline, and whether the task is nec-
essary at all—are affected by the execution of other tasks. In
real-time problem solving, alternate task execution methods
may be available that trade-off time for quality. Agents do
not have unlimited access to the environment; what an agent
believes and what is really there may be different.

The model of environmental and task characteristics pro-
posed has three levels: objective, subjective, and generative. The
objective level describes the essential, ‘real’ task structure of a
particular problem-solving situation or instance over time. Itis
roughly equivalent to a formal description of a single problem-
solving situation such as those presented in [Durfee and Lesser,
1991}, without the information about particular agents. The
subjective level describes how agents view and interact with
the problem-solving situation over time (e.g., how much does
an agent know about what is really going on, and how much
does it cost to find out—where the uncertainties are from the
agent’s point of view). The subjective level is essential for eval-
uating control algorithms, because while individual behavior
and system performance can be measured objectively, agents
must make decisions with only subjective information.” Fi-
nally, the generative level describes the statistical characteristics
rcjuired to generate the objective and subjective situations in
a domain.

Objective Level

The objective level describes the essential structure of a particu-
lar problem-solving situation or instance over time. It focuses
on how task interrelationships dynamically affect the qualizy
and duration of each task. The basic model is that task groups
appear in the environment at some frequency, and induce tasks
T to be executed by the agents under study. Task groups are
independent of one another, but tasks within a single task
group have interrelationships. Task groups or tasks may have
deadlines D(T'). The quality of the execution or result of each
task influences the quality of the task group result Q(T) in
a precise way. These quantities can be used to evaluate the
performance of a system.

An individual task that has no subtasks is called a method
M and is the smallest schedulable chunk of work (though
some scheduling algorithms will allow some methods to be
preempted, and some schedulers will schedule at multiple
levels of abstraction). There may be more than one method
to accomplish a task, and each method will take some amount
of time and produce a result of some guality. Quality of an
agcnt’s performance on an individual task is a function of
the timing and choice of agent actions (‘local effects’), and
possibly previous task executions (‘non-local effects’). 3 The
basic purpose of the objective model is to formally specify

%In organizational theoretic terms, subjective perception can be
used to predict agent actions or outpuss, but unperceived, objecrive
environmental characteristics can still affect performance (or out-
come:) [Scott, 1987].

3When local or non-local effects exist between tasks that are
known by more than one agent, we call them coordination relation-
ships[Decker and Lesser, 1991]

how the execution and timing of tasks affect this measure of
quality.

A complete presentation of the mathematical details of an
objective model can be found in our main conference paper
[Decker and Lesser, 1993b]. We will concentrate here on
examples.

Objective Modeling Example

This example grows out of the set of single instance ex-
amples of distributed sensor network (DSN) problems pre-
sented in [Durfee ef al., 1987], which were solved using the
Distributed Vehicle Monitoring Testbed (DVMT)[Lesser and
Corkill, 1983]. The authors of that paper compared the per-
formance of several different coordination algorithms on these
examples, and concluded that no one algorithm was always the
best. This is the classic type of result that the TEMS frame-
work was created to address—we wish to explasn this result,
and better yet, to predict which algorithm will do the best in
cach situation. The level of detail to which you build your
model will depend on the question you wish to answer—we
wish to identify the characteristics of the DSN environment,
or the organization of the agents, that cause one algorithm to
outperform another. Even more importantly (as will be ad-
dressed in Section) we are interested not just in single instance
examples, but the general distribution of episodes in the envi-
ronment to analyze the relative merits of different approaches.

In a DSN problem, the movements of several independent
vehicles will be detected over a period of time by one or more
distinct sensors, where each sensor is associated with an agent.
The performance of agents in such an environment is based
on how long it takes them to create complete vehicle tracks,
including the cost of communication. The organizational
structure of the agents will imply the portions of each vehicle
track that arc sensed by each agent.

In our model of DSN problems, each vehicle track is mod-
cled as a task group. The simplest objective model is that each
task group 7j is associated with a track of length ; and has
the following objective structure, based on a simplified version
of the DVMT[Lesser and Corkill, 1983): (I;) vehicle location
methods (VLM) that represent processing raw signal data at a
single location resulting in a single vehicle location hypothesis;
(l4 = 1) vehicle tracking methods (VT M) that represent short
tracks connecting the results of the VLM at time ¢ with the
results of the VLM at time ¢ + 1; (1) vehicle track comple-
tion method (VCM) that represents merging all the VI Ms
together into a complete vehicle track hypothesis. Non-local
enablement cffects exist as shown in Figure 1—two VLMs
enable each VTM, and all VT Ms enable the lone VCM.

We have used this model to develop expressions for the
expected value of, and confidence intervals on, the time of
termination of a set of agents in any arbitrary DSN environ-
ment that has a static organizational structure and coordina-
tion algorithm [Decker and Lesser, 1993a]. We have also
used this model to analyze a dynamic, one-shot reorganiza-
tion algorithm (and have shown when the extra overhead is
worthwhile versus the static algorithm). In each case we can
predict the effects of adding more agents, changing the relative
cost of communication and computation, and changing how

63

the agents are organized. These results were achieved by di-
rect mathematical analysis of the model and verified through
simulation in TEMS. We will give a summary of these results
later in the paper (Section), after discussing the subjective and
generative levels.

Expanding the Model We will now add some complexity to
the model. The length of a track {; above is a generative level
paramcter. Given a set of these generative parameters, we can
construct the objective model for a specific problem-solving
instance, or episode. Figure 1 shows the general structure
of episodes in our DSN environment model, rather than a
particular episode. To display an actual objective model, let us
assume a simple situation: there are two agents, A and B, and
that there is one vehicle track of len%th 3 sensed once by A
alone (T"), once by both A and B (T%), and once by B alone
(T3). We now proceed to model the standard features that
have appeared in our DVMT work for the past several years.
We will add the characteristic that each agent has two methods
with which to deal with sensed data: a normal VLM and a
‘level-hopping’ (LH) VLM (the level-hopping VLM produces
less quality than the full method but requires less time; see
[Decker et al., 1990; Decker et al., 1993] for this and other
approximate methods). Furthermore, only the agent that
senses the data can execute the associated VLM; but any agent
can execute VT'Ms and VCM s if the appropriate enablement
conditions are met.

Figure 2 displays this particular problem-solving episode.
To the description above, we have added the fact that agent B
has a faulty sensor (the durations of the grayed methods will be
longer than normal); we will explore the implications of this
after we have discussed the subjective level of the framework
in the next section. An assumption made in [Durfee ez a/,
1987] is that redundant work is not generally useful; this is
indicated by using max as the combination function for each
agent’s redundant methods. We could alter this assumption
by simply changing this function (to mean, for example). An-
other characteristic that appeared often in the DVMT literature
is the sharing of results between methods (at a single agent); we
would indicate this by the presence of a sharing relationship
(similar to facilitates) between each pair of normal and level-
hopping VLMs. Sharing of results could be only one-way
between methods.

Now we will add two final features that make this model
more like the DVMT. First, low quality results tend to make
things harder to process at higher levels. For example, the im-
pact of using the level-hopping VLM is not just that its quality
is lower, but also that it affects the quality and durartion of the
VTM it enables (because not enough possible solutions arc
eliminated). To model this, we will use the precedence rela-
tionship instead of enables: not only do the VLM methods
enable the VTM, but they can also hinder its execution if the
enabling results are of low quality. Secondly, the first VLM
execution provides information that slightly shortens the ex-
ecutions of other VLMs in the same vehicle track (because
the sensors have been properly configured with the correct
signal processing algorithm parameters with which to sense
that particular vehicle). A similar facilitation effect occurs at
the tracking level. These effects occur both locally and when

(: method (executable task)
task with quality
accrual function min

subtask relationship

-~- enables relationship

Figure 1: Objective task structure associated with a single vehicle track.

method (executable task)

faulty sensor method

task with quality
accrual function min

subtask relationship

enables relationship

Figure 2: Objective task structure associated with two agents. 7 is the highest level task—rto generate a single vehicle track. It
has three subtasks: a task to generate a track from time 1 to time 2, a task to generate a track from time 2 to time 3, and the task
T",’éi, to join these results into a full track. The subtasks each have a similar structure, again with three subrasks: process the data
attime 1 (Ty 1 /), process the data at time 2 (T ,,), and generate the track from time 1 to time 2 (TVrag)- Many of the low
level tasks have methods that can be executed by either agent, and sometimes each agent has multiple methods (see text).

64

results are shared between agents—in facr, this effect is very
important in motivating the agent behavior where one agent
sends preliminary results to another agent with bad sensor
data to help the receiving agent in disambiguating that data.
Figure 3 repeats the objective task structure from the previous
figure, but omits the methods for clarity. Two new tasks have
been added to model facilitation at the vehicle location and
vehicle track level.# Ty indicates the highest quality initial
work that has been done at the vehicle level, and thus uses the
quality accrual function maximum. Tyt indicates the progress
on the full track; it uses summation as its quality accrual func-
tion. The more tracking methods are executed, the easier
the remaining ones become. The implications of this model
are that in a multi-agent episode, then, the question becomes
when to communicate partial results to another agent: the
later an agent delays communication, the more the potential
impact on the other agent, but the more the other agent must
delay. We examined this question somewhat in [Decker and
Lesser, 1991].

Other effects, such as how early results facilitate later ones,
can also be modeled. At the end of the next section, we will
return to this example and add to it subjective features: what
information is available to agents, when, and at what cost.

Subjective Level

The purpose of a subjective level model of an environment s to
describe what portions of the objective model of the situation
are available to ‘agents’. It answers questions such as “when isa
piece of information available,” “to whom is it available,” and
“what is the cost to the agent of that piece of information”.
This is a description of how agents might interact with their
environment—what options are available to them.

To build such a description we must introduce the concept
of agencyinto the model. Ours is one of the few comprehensive
descriptions of computational task environments, but there
are many formal and informal descriptions of the concept of
agency (see [Gasser, 1991; Hewitt, 1991]). Rather than add
our own description, we notice that these formulations define
the notion of computation at one or more agents, not the
environment that the agents are part of. Most formulations
contain a notion of belief that can be applied to our concept
of “what an agent believes about its environment”. Our view
is that an “agent” is a locus of belief and action (such as
computation).

A subjective mapping of an objective problem solving situ-
ation is a function @ from an agent and objective assertions to
the beliefs of an agent. For example, we could define a map-
ping @ where each agent has a probability p of belicving that
the maximum quality of a method is the objective value, and
a probability 1 — p of believing the maximum quality is twice
the objective value. Any objective assertion has some subjec-
tive mapping, including q (maximum quality of a method),
d (duration of a method), deadlines, and relationships like
subtask or non-local effects.

The belicfs of an agent affect its actions through some

“Note that these tasks were added to make the model more ex-
pressive; they are nor associated with new methods.

65

control mechanism. Since this is the focus of most of our
and others’ research on local scheduling, coordination, and
other control issues, we will not discuss this further . The
agent’s control mechanism uses the agent’s current set of be-
liefs to update three special subsets of these beliefs (alterna-
tively, commitmentsShoham, 1991]) identified as the sets of
information gathering, communication, and method execu-
tion actions to be computed. We provide a meta-structure
for the agent’s state-transition function that is divided into the
following 4 parts: control, information gathering, communi-
cation, and method execution. First the control mechanisms
assert (commit to) information-gathering, communication,
and method execution actions and then these actions are com-
puted one ata time, after which the cycle of meta-states repeats.

Details about the state changes associated with these actions
can be found in [Decker and Lesser, 1993b).

Subjective Modeling Example

Let’s return to the example we began in Section to demon-
strate how adding a subjective level to the model allows us
to represent the effects of faulty sensors in the DVMT. We
will define the default subjective mapping to simply return
the objective value, i.e., agents will believe the true objec-
tive quality and duration of methods and their local and
non-local effects. We then alter this default for the case
of faulty (i.e., noisy) sensors—an agent with a faulty sensor
will not initially realize it (do(faulty-VLM) = 2do(VLM),
but p(A4, do(faulty-VLM)) = do(VLM)).> Other subjec-
tive level artifacts that are seen in [Durfee et 4/, 1987] and
other DVMT work can also be modeled easily in our frame-
work. For example, ‘noise’ can be viewed as VLM methods
that are subjectively believed to have a non-zero maximum
quality (¢(A, qo(noise-VLM)) > 0) but in fact have 0 objec-
tive maximum quality, which the agent does not discover until
after the method is executed. The strength with which initial
dara is sensed can be modeled by lowering the subjectively
perceived value of the maximum quality q for weakly sensed
data. The infamous ‘ghost track’ is a subjectively complete
task group appearing to an agent as an actual vehicle track,
which subjectively accrues quality until the hapless agent exe-
cutes the VCM method, at which point the true (zero) qualicy
becomes known. If the track (subjectively) spans multiple
agents’ sensor regions, the agent can potentially identify the
chimeric track through communication with the other agents,
which may have no belief in such a track (but sometimes more
than one agent suffers the same delusion).

Generative Level
By using the objective and subjective levels of TAMS we can
model any individual situation; adding a generative level to
the model allows us to go beyond that and determine what
the expected performance of an algorithm is over a long pe-
riod of time and many individual problem solving episodes.
Our previous work has created generative models of task in-
terarrival times (exponential distribution), amount of work

3At this point, one should be imagining an agent controller for
this environment that notices when a VLM method takes unusually
long, and realizes that the sensor is faulty and replans accordingly.

task with quality
accrual fuﬁction min

subtask relationship
precedence relationship

facilitates relationship

Figure 3: Non-local effects in the objective task structure. This is an expansion of the previous figure with the methods removed
for clarity. Two new tasks have been added: one to represent the amount of work that has been done on individual tracks (Ty 1),
and one to represent the best work done on the initial data (Tv). These new abstract tasks are used to indicate facilitation effects:
information from the first VL method can be used to speed up other VL methods (by providing constraints on vehicle type, for
example), and the more tracking information is available, the casier tracking becomes as the vehicle’s path is constrained.

in a task cluster (Poisson), task durations (exponential), and
the likelihood of a particular non-local effect between two
tasks (Decker and Lesser, 1993a; Decker and Lesser, 1991;
Garvey and Lesser, 1993]. Generative level statistical param-
eters can also be used by agents in their subjective reasoning,
for example, an agent may make control decisions based on
the knowledge of the expected duration of methods.

A generative level model can be constructed by careful anal-
ysis of the real environment being modeled, or by observing
the statistical properties of real episodes (if that is possible).
Even when certain parameters of the real world are unknown,
they can be made variables in the model and then you can
ask questions about how much they affect the things you care
about. Our approach so far has been to verify our assump-
tions about the environment with simple statistical approaches
(Kleijnen, 1987]. Detailed model verification will be more im-
portant when using our framework to optimize parameters in
a real application, as opposed to learning the general effects
of parameters on a coordination or negotiation algorithm (see

Section).
Analysis Summary

Organizational theorists have long held that the organization
of aset of agents cannot be analyzed separately from the agents’
task environment, that therc is no single best organization
for all environments, and thar different organizations are not
equally effective in a given environment [Galbraith, 1977].
Most of these theorists view the uncertainties present in the
environment as a key characteristic, though they differ in the
mechanisms that link environmental uncertainty to effective
organization. In particular, the transaction cost economics ap-
proach [Moe, 1984] focuses on the relative efficiencies of var-
ious organizations given an uncertain environment, while the
updated versions of the contingency theory approach [Stinch-
combe, 1990] focus on the need for an organization to expand

66

toward the earliest available information that resolves uncertain-
ties in the current environment.

We have used these general concepts, in conjunction with
our modeling framework, to analyze potential organizational
structures for the environment that has been our example in
this paper, i.c., the class of naturally distributed, homoge-
neous, cooperative problem solving environments where tasks
arrive at multiple locations, exemplified by distributed sensor
networks. Our approach was to first construct the task en-
vironment model we have been using as an example in this
paper, and then to develop expressions for the expected of-
Siciencies of static and dynamic organizational structures, in
terms of performance—the cost of communication and time
to complete a given set of tasks. Finally, we validated these
mathematical models by using simulations.

We briefly showed at the end of Section how we can predict
the performance of a system given the objective and subjec-
tive models of a particular episode. This is very useful for
explaining or predicting agent behavior in a particular episode
or scenario, but not over many episodes in a real environment.
To do this, we build probabilistic models of the relevant ob-
jective and subjective parameters (now viewed as random vari-
ables) that are based on generative level parameters. Another
paper, [Decker and Lesser, 1993a), details this process, and
shows how the distributions of objective parameters such as
“the number of VLM methods seen by the maximally loaded

agent” (S’) and “the max number of task groups seen by the
same agent” (V) can be defined from just the generative pa-
rameters D =< A,n,7,0,T >.

For example, the total time until termination for an agent

receiving an initial data set of size S'is the time to do local work,
combine results from other agents, and build the completed
results, plus two communication and information gathering

actions:

T‘nuir =
Sdo(VLM) + (§ = N)do(VTM) +
(a = 1)Ndo(VIM) + Ndo(VCM) +
2do(I) + 2do(C) M

We can use Eq. 1 as a predictor by combining it with the
probabilities for the values of S and N. Again, we refer the

interested reader to [Decker and Lesser, 1993a) for deriva-
tions, verification, and applications of these results. Note that
if the assumptions behind our generative model change (for
instance, if we assume all agents initially line up side-by-side,
instead of in a square, or if vehicles made a loop bcfoie ex-
iting the sensed area) the probability distributions for S and

N might change, but that the form of Eqn. 1 does not. If
the agent’s coordination algorithm changes, then Eqn. 1 will
change (see [Decker and Lesser, 1993a)).

We have looked at both static organzations and dynamic
organizations (in which the responsibilities of agents can be
reassigned based on a developing view of the problem at hand).
Due to the uncertainties explicitly represented in the task envi-
ronment model, there may not be a clear performance tradeoff
between static and dynamic organizational structures. Agents
that have a dynamic organization have the option of meta-level
communication—communicating about the current state of
problem solving as opposed to communicating about solving
the problem itself. In this way, information that resolves un-
certainties about the current environment becomes available
to the agents, allowing the agents to then create the most ef-
ficient organization for the situation. In [Decker and Lesser,
1993a] we present equations similar to Eq. 1 that show the
potential benefits of dynamic reorganization in an arbitrary
environment D, and discuss when the overhead of meta-level
communication is worthwhile.

Conclusions

This paper has presented an overview of TAMS, a framework
for modeling computationally intensive task environments.
TZEMS exists as both a language for stating general hypotheses
or theories and as a system for simulation. The important fea-
tures of TEMS include its layered description of environments
(objective reality, subjective mapping to agent beliefs, gener-
ative description of the other levels across single instances);
its acceptance of any performance criteria (based on temporal
location and gquality of task executions); and its non-agent-
centered point of view that can be used by researchers working
in either formal systems of mental-state-induced behavior or
experimental methodologies. TAMS provides environmental
and behavioral structures and features with which to state and
test theories about the control of agents in complex compu-
tational domains, such as how decisions made in scheduling
one task will affect the utility and performance characteristics
of other tasks.

TAMS is not only a mathematical framework, but also a
simulation language for executing and experimenting with
models directly. The TAMS simulator supports the graphical
display of generated subjective and objective task structures,

67

agent actions, and statistical data collection in CLOS on the
TI Explorer. These features help in both the model-building
stage and the verification stage. The TAMS simulator is being
used not only for research into the organization and coordina-
tion of distributed problem solvers[Decker and Lesser, 1993a;
Decker and Lesser, 1991; Decker and Lesser, 1992}, but also
for research into real-time scheduling of a single agent[Garvey
and Lesser, 1993, scheduling at an agent with parallel pro-
cessing resources available, and soon, learning coordination
algorithm parameters.

TZEMS does not at this time automatically learn models or
automatically verify them. While we have taken initial steps
at designing a methodology for verification (see [Decker and
Lesser, 1993a), this is still an open area of research [Cohen,
1991]. Our future work will include building new models
of different environments that may include physical resource
constraints, such as airport resource scheduling. The exist-
ing framework may have to be extended somewhat to handle
consumable resources. Other extensions we envision include
specifying dynamic objective models that change structure as
the result of agent actions. We also wish to expand our anal-
yses beyond the questions of scheduling and coordination to
questions about negotiation strategies, emergent agent/society
behavior, and organizational self-design.

References

Boddy, Mark and Dean, Thomas 1989. Solving time-
dependent planning problems. In Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence.

Carver, Norman and Lesser, Victor 1991. A new framework
for sensor interpretation: Planning to resolve sources of un-
certainty. In Proceedings of the Ninth National Conference on
Artificial Intelligence. 724-731.

Cohen, Philip R. and Levesque, Hector J. 1990. Intention
is choice with commitment. Artificial Intelligence 42(3).

Cohen, Paul; Greenberg, Michael; Hart, David; and Howe,
Adele 1989. Trial by fire: Understanding the design require-
ments for agents in complex environments. Al Magazine

10(3):33—48. Also COINS-TR-89-61.

Cohen, Paul R. 1991. A survey of the eighth national con-
ference on artificial intelligence: Pulling together or pulling
apart? Al Magazine 12(1):1641.

Decker, Keith S. and Lesser, Victor R. 1991. Analyzing a
quantitative coordination relationship. COINS Technical
Report 91-83, University of Massachusetts. To appear in the
journal Group Decision and Negotiation, 1993,

Decker, Keith S. and Lesser, Victor R. 1992. Generalizing
the partial global planning algorithm. International Journal
of Intelligent and Cooperative Information Systems 1(2).

Decker, Keith S. and Lesser, Victor R. 1993a. An approach
to analyzing the need for meta-level communication. In
Proceedings of the Thirteenth International Joint Conference on
Artificial Intelligence, Chambéry.

Decker, Keith S. and Lesser, Victor R. 1993b. Quantitative
modeling of complex computational task environments. In

Proceedings of the Eleventh National Conference on Artificial
Intelligence, Washington.

Decker, Keith S.; Lesser, Victor R.; and Whitchair, Robert C.
1990. Extending a blackboard architecture for approximate
processing. 7he Journal of Real-Time Systems 2(1/2):47-79.
Decker, Keith S.; Garvey, Alan J.; Humphrey, Marty A.; and
Lesser, Victor R. 1993. A real-time control architecture for
an approximate processing blackboard system. International
Journal of Pattern Recognition and Artificial Intelligence 7(2).
Durfee, E.H. and Lesser, V.R. 1991. Partial global planning:
A coordination framework for distributed hypothesis forma-
tion. [EEE Transactions on Systems, Man, and Cybernetics
21(5):1167-1183.

Durfec, Edmund H.; Lesser, Victor R.; and Corkill,
Daniel D. 1987. Coherent cooperation among commu-
nicating problem solvers. [EEE Transactions on Computers
36(11):1275-1291.

Galbraith, J. 1977. Organizational Design. Addison-Wesley,
Reading, MA.

Garvey, Alan and Lesser, Victor 1993. Design-to-time real-
time scheduling. [JEEE Transactions on Systems, Man, and
Cybernetics 23(6). Special Issue on Scheduling, Planning,
and Control.

Gasser, Les 1991. Social conceptions of knowledge and ac-
tion. Artificial Intelligence 47(1):107-138.

Hewitt, Carl 1991. Open information systems semantics
for distributed artificial intelligence. Artificial Intelligence
47(1):79~-106.

Kleijnen, Jack P C. 1987. Statistical Tools for Simulation
Practitioners. Marcel Dekker, New York.

Lesser, Victor R. and Corkill, Daniel D. 1983, The dis-
tributed vehicle monitoring testbed. Al Magazine 4(3):63-
109.

Moe, Terry M. 1984, The new economics of organization.
American Journal of Political Science 28(4):739~777.

Pollack, Martha E. and Ringuette, Marc 1990. Introducing
Tileworld: Experimentally evaluating agent architectures. In
Proceedings of the Eighth National Conference on Artificial In-
telligence. 183189,

Russell, Stuart J. and Zilberstein, Shlomo 1991. Composing
real-time systems. In Proceedings of the Twelfth International
Joint Conference on Artificial Intelligence, Sydney, Australia.
212-217.

Scotr, W. Richard 1987. Organizations: Rational, Natural,
and Open Systems. Prentice-Hall, Inc., Englewood Cliffs, NJ.
Shoham, Yoav 1991. AGENTO: A simpleagent language and
its interpreter. In Proceedings of the Ninth National Conference
on Artificial Intelligence, Anaheim. 704-709.

Stinchcombe, Arthur L. 1990. Information and Organiza-
tions. University of California Press, Berkeley, CA.

Zlotkin, Gilad and Rosenschein, Jeffrey S. 1990. Blocks, lies,
and postal freight: The nature of deception in negotiation. In
Proceedings of the Tenth International Workshop on Distribused
Al, Texas.

68

