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Abstract

A conceptual module capable of scene interpreta-
tion for incident detection has been implemented us-
ing a relational network approach and a concept of
dynamic grouping to ease the complexity involved in
computing multiple object behaviours. This system
has been tested on several roundabout scenarios and
has given good results using simulated perfect data.
Using more realistic data necessitated the handling of
multiple hypotheses on the object classes. This was
easily handled using the method developed and even
though this increased the complexity of the system,
on-line response was maintained.

1 Introduction

This paper describes some of the results achieved
over the four years duration of the ESPRIT II P.2152
VIEWS1 project and attempts to evaluate these
against both end-user’s expectations and more "tech-
nical" criteria. The results and evaluation presented
will be on what was termed the conceptual module in
the project, namely the transformation from numer-
ical to symbolic data and the reasoning done with
the latter in order to recognise so-called incidents in
a road-traffic scenario. We shall start with a quick
overview of the project and then describe our ap-

proach to solving the conceptual part of the system,
ased on a relational network approach. Given this

we will present the results of our work.

2 The VIEWS Project

The VIEWS project is an ESPRIT II project in-
volving six partners and lasting four years which were
completed last March. Its goal was to build surveil-
lance systems for wide-area scenes, with one of the

1 VIEWS stands for Visual Inspection and Evaluation of
Wide-area Scenes

demonstrators being targeted to road traffic incident
detection (two other demonstrators focused on air-
port applications). The chosen road traffic scenario
was of a roundabout characterised by having several
entry and exit lanes and, in addition, a tram track
crossing it. A representation of the scene can be seen
in figure 1. It should be noted that in the project we
limited ourselves to a single fixed camera, whose field
of view did not cover the whole roundabout.

Figure 1: Map of the scene

As stated previously, the objective of the VIEWS
project was to produce complete surveillance sys-
tems. As such the overall architecture can be seen
in figure 2. We can see that there are three main
components :

¯ Perception Module -- This module takes in
images coming from a standard video camera. It
then detects motion, tracks coherently moving
blobs and then a 3D model matcher attempts to
identify the object (i.e. the class of the object).
The output of this module is essentially, for each
frame, a list of objects, their class, position in
the scene and image, and orientation.
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¯ Conceptual Module -- This module takes as
input the numerical data provided by the per-
ception component, transforms these into sym-
bolic events and reasons with these in order to
perform behaviour recognition for both single
and multiple objects.

¯ Control Module--The role of this component
is to ensure that we have an active vision system,
with the above two components working towards
the same goal. It is currently used to provide a
focus of attention mechanism.

Additionally there are the spatial database that
stores a representation of the scene that has been
decomposed into various regions; and the behaviours
database that contains the definitions of the be-
haviours to be recognised.

It is the conceptual module that we worked on and
that is the main subject of evaluation. In order to do
so we will now discuss in some detail our approach
for behaviour and incident detection. Further details
can be found in [1, 2].

3 The Conceptual Module

The conceptual modules takes as input the essen-
tially numerical output from the perception compo-
nent. This data is organised by frame and contains
information on each object in the scene, their posi-
tion in both the scene and the image, their orienta-
tion, their velocity and their class (i.e. the type of
object, for example saloon) and a belief value asso-
ciated with the latter. Given this data the following
approach was adopted :

Frames
l

Events
l

Individual behaviours
t

Interactive situations
(group behaviours)

Our method, based on ideas from Lansky’s GEM
framework [3], to accomplish each of the above steps
is now described.

3.1 Event Computation

The process here uses the raw output from the
perception component and computes events in a pro-
cedural manner. The events that are calculated are
those that were needed to compute our behaviours

(and hence incidents.) but nevertheless seem to 
reasonably complete for most purposes. These events
can be considered to be of three types :

Kinematical events : these are events that
are related to a change in the velocity vector,
either in direction or in speed. Computation is
straightforward by comparing an object’s veloc-
ity in the current and previous frames. Typical
events computed are START, STOP, ACCELER-
ATE~ DECELERATE, TURN-RIGHT, TURN-LEFT.

Spatial events : these are events computed
relative to the spatial layout. The scene con-
sidered has been decomposed into significant re-
gions (see figure 1) which are stored in a spatial
database (part of the dynamic database in fig-
ure 2) in terms of regions and line segments that
separate regions. For each object the position of
the last two frames are extracted and if the latter
crosses a boundary segment the events ENTER-
REGION and EXIT-REGION are reeognised. We
should also note here that regions can and are
grouped into meaningful larger regions (such as
GIVE-WAY-ZONE) which leads to other events.
We will see later the importance of these larger
regions.

Relational events : these are events associ-
ated with a given object relative to other ob-
jects. They are however considered as individ-
ual events in so far as the other object is just
considered as a part of the outside world. Two
sorts of relational events are computed based on
different methods. These are :

- Kinematical
For example the FOLLOW event model is

- Analogical
This uses the path drawn out by an ob-
ject as it moves thanks to a tessalation of
the spatial layout into cells. The FOLLOW-
PATH event is thus recognised when an ob-
ject moves in the path of another object
(i.e. where it was previously in time).

These are the events that are calculated for each
object for each frame. It should be noted here that
we only sample the perception component output ev-
ery 10th frame -- given that the video output rate is
25 fps, this corresponds to approximately every 1/2
second. This is more than satisfactory for urban road
traffic scenarios. Now that events are recognised we
can proceed to single object behaviour recognition.
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3.2 Behaviour Recognition

These behaviours could be considered to be long-
term compound events since behaviours are com-
posed of a set of events related together by tempo-
ral operators. The semantic values attached to be-
haviours are intervals of time. Behaviours can also
be constructed from other behaviours. For exam-
ple, in order to recognise the GIVEWAY behaviour,
i.e. an object stopping in a giveway zone, we must
have reeognised the STOPPED behaviour during the
behaviour IN-GIVEWAY-ZONE. The former behaviour
is thus built up from other behaviours while the lat-
ter two are built up from events.

Behaviours are then specified using a specially
developed language which allows us to specify be-
haviours in terms of events and behaviours related by
a set of temporal operators similar to those defined
by Allen [4]. Behaviours specified in this "friendly"

language are then compiled down into a relational
network representation -- the basic representation
framework on which our reasoning is done. Our ap-
proach is then based on the propagation of temporal
intervals through these networks. These are attached
to a given object (or group as we will see later on)
and represents all the behavioural models that are
associated with an object. We will see later on that
individual object networks can be interconnected.

Figure 3: Nodes of the network
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To give an idea of our approach, consider figure 3.
Two sorts of nodes can be seen. There are proces-
sor nodes which correspond to the temporal opera-
tors and value nodes which are used to store values.
Temporal values (intervals) are propagated along the
arcs. Each processor has a defined set of terminals
with particular rules, while each value node may be
connected to as many other nodes as necessary. Now
whenever a value transits through a connection of
the nodes (i.e. when an event is recognised), it 
instantaneously propagated to the other ones. Es-
sentially these values are temporal intervals, but in
some cases (i.e. for attributed events such as ENTER-
REGION) pairs of values are propagated. This does
not affect the fundamental mechanism.

Internal rules are defined for each type of proces-
sor node. They define :

¯ Its triggering modes, i.e. which sets of its termi-
nals will trigger the computation.

¯ For each mode, the result of the composition of
inputs.

¯ For each mode, the terminal which will propa-
gate the result.

It is important to note that no distinction is made
between input and output nodes. Value propagation
can be in any direction. This is then a means for han-
dling incompleteness. For example, if we know that
BEHAVIOUR 1 is the result of the composition of BE-
HAVIOUR 2 and BEHAVIOUR 3, and that BEHAVIOUR
3 and BEHAVIOUR 1 have occurred, we can deduce
the occurrence of BEHAVIOUR 2 despite the absence
of data concerning it.

3.3 Interactive Situations

Up to now we have only considered events or be-
haviours associated with single objects. Though it is
possible that some incidents are only concerned with
a single object, the majority involve several interact-
ing ones. As can well be imagined, the complexity
increases accordingly as we could then try and re-
late (combine) all possible objects in the scene into
groups2. For example, for n objects in the scene, a

¯ n n *brute force approach would consider )-~i-2 C~ &ffer-
ent groups. For n=8, this would enta~ 247 possi-
bilities. Furthermore the scenes considered are con-
tinuously evolving so we need a method to do "in-

telligent" grouping dynamically. In order to do this
we now introduce our notion of dynamic grouping
which limits the computation required, thus mak-
ing the problem tractable. We have considered three
types of grouping. These are :

~The notion of grouping originated from GEM. However it
only considers ~tatic grouping.

¯ Centered around an object,

¯ Based on the relational events,

¯ Based on the spatial layout.

The latter two have been particularly useful in
defining three types of groups necessary for our pur-
poses. These are :

¯ Binary groups

Built with the event FOLLOW. Each time an
object follows another one, they are grouped to-
gether into a binary group¯

¯ Queue groups

Built from the previous type of groups¯ When
two binary groups shares an element, they form
a queue group. By definition then, a queue is
made up of at least three objects.

¯ Giveway groups

Some of the regions of the spatial layout are la-
belled as GIVE-WAY REGIONS -- regions where
objects should give way, while other regions are
labelled as PRIORITY REGIONS in which objects
are given way to. Together these two regions de-
fine a group, but this group is only created when
there are objects in both regions.
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Given the existence of these grouping methods,
we can now define and implement group behaviour
models in much the same way as for single object
behaviours. Moreover these groups can generate new
events. For example, the simple fact of creating a
new QuEuE group can be considered as a QUEUING
event.

Element I

Figure 4: Connection of networks

Group behaviours are defined by relating the be-
haviours of different objects together. Practically
this means connecting together the individual net-
works of objects in a same group (figure 4). A simple
example is the BLOCKING behaviour-- i.e. when an-
other object stops in front of an object, forcing it to
stop. Obviously such a behaviour cannot be attached
to either object independently as we have to consider
both object’s behaviours and hence we connect their
networks together. Propagation and hence interac-
tive situation (multiple object behaviour) recognition
is then accomplished as for behaviours.

"Intelligent" dynamic grouping and our relational
network approach thus gives us an efficient way of
recognising interactive situations. These situations
are then filtered to recognise incidents that are of
interest to the end-user.

4 Results

Event calculation and single object behaviour
recognition are reasonably straightforward, however
computing multiple object behaviours is a problem
that can rapidly become intractable since we could
potentially attempt to combine all objects together.
We overcame this problem by dynamically grouping
objects that were likely to interact with each other,
thus limiting the computation and hence complexity
involved.

Our brief of incident detection has been accom-
plished in that our system is capable of recognising
multiple object behaviours that are specified as inci-
dents by the end-user. The scenarios that we have
treated contain on average fifteen objects and quite

often these overlap thus resulting in partial occlu-
sions. This resulted in some problems for the classi-
fication part of the system, with one approach being
the use of Bayesian belief networks to improve the
clustering and stability of the blobs.

The system currently runs about four times slower
than real-time, but up to now little effort has been
made on code optimisation. In fact we have associ-
ated separate Lisp processes to each object to show
that our methodology is natural parallelisable, even
though there is no corresponding speed up given that
the workstation remains a single CPU machine.

Finally, to give some idea of how the end results
are presented, a typical screen is reproduced (fig-
ure 5). This consists of a map of the scene in which
we can observe the moving objects. Events are de-
tected one or two updates (about 1/2 second) af-
ter they occur. The dynamic groups are graphically
displayed on the map, linking the objects together.
When an incident is detected, the zone in which it
occurred is highlighted and the incident is briefly de-
scribed in the "incidents" window. Note that it is
always possible to return to a previous incident to
obtain a detailed explanation or to replay it.

5 Evaluation

Evaluation of our results can take two forms, both
of which are equally important. From the end-user’s
point of view, what is important is that the system
accomplishes a certain role that was initially speci-
fied by the end-users -- they are not interested in
how this was achieved. On the other hand, in order
to provide the scientific community with some evalu~
ation, there are several technical benchmarks against
which our results can be measured. Some examples
of these are the ability to handle incompleteness and
uncertainty; and the ease with which the system can
be used on different types of scenarios. This is what
will be discussed in this section.

5.1 "End-User" Evaluation

Our brief from the "end-user" was to recognise
incidents where these were defined to be

" ...a significant change in normal be-
haviour..."

This definition can still be misconstrued, but fur-
ther discussion with road-traffic organisations on the
scenario being treated led to the following types of
incidents being detected :
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Figure 5: Aspect of a VIEWS screen

¯ Refusal of priority

¯ Queue forming

¯ Queue breaking up

¯ Object leaving a queue

One way to evaluate our system is to sit an end-
user in front of the video, to see what incidents he
recognises and then to compare his results with those
achieved by our system. The results were as follows :

¯ Using the per/ect simulated data, we had what
couldbe termed a 100% + success rate in that all
the end-user’s incidents were recognised, and ad-
ditional incidents were identified by the system.
These were incidents that were not immediately
obvious (though correct) since they occurred 
the background of the scenario. Sometimes the
results were computed too fast compared to the
needs of the scene being interpreted. For exam-
ple for queue detection, queue break ups were
sometimes detected too quickly, as the queue re-
formed more or less immediately afterwards.

¯ Using realistic data, we had an 80% success rate
compared to the one achieved using the simu-
lated data. Some tuning of parameters improved
the results.

What conclusions can be drawn ? Our results are
very satisfactory, but are subject to tuning of the
thresholds when events are computed. Obvious inci-
dents are always detected, but more obscure or bor-
derline ones are highly threshold dependent. Ideally
some "learning" method should be incorporated. An
example of this is for queue detection. In one of the
scenarios we treated, we detect a queue and then a
queue breaking up, more or less directly followed by
a queue forming once again (with the same objects).
Obviously in this case our mechanism was over sen-
sitive.

5.2 "Technical" evaluation

Given that we had a limited number of scenarios,
it was impossible to perform a true technical evalu-
ation during the project. Nevertheless we can com-
ment on some particular techniques :
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¯ Handling of uncertainty -- one of the problems
in VIEWS was that of classification in the per-
ception component (i.e. being able to correctly
identify the class of an object). A result of this
was that the perception component tracked each
object with all possible models and left it up to
the conceptual module to determine which was
the most likely class. This handling of multiple
class hypotheses was easily handled using the
formalism we developed.

¯ Handling of incompleteness-- the data used did
not necessitate the need to handle incomplete-
ness, other than to handle partial occlusions.
This was done using a predictive module based
on an analogical representation of space. Other
forms of incompleteness could be handled given
that our approach is based on relational net-
works, since propagation within these networks
can occur in either direction.

¯ Robustness of behavioural models -- it is be-
lieved that our models are robust, but these have
only been tested on a limited number of scenar-
ios of the same type.

¯ Ease with which to define new behaviours --
our formalism provided us with a basic language
with which new behaviours could easily be de-
fined by relating events and/or pre-existent be-
haviours together with temporal operators.

¯ Ease with which to move from one scenario
of the same type to another- it is be-
lieved that this should be reasonably straight-
forward. A point to note however is that some
events/behaviours are based on the spatial de-
composition and so the latter has to be taken
into account also.

¯ Ease with which to move from one scenario of a
different type to another-- the same behaviours
can be used (we intend to build up a library
of behaviours), but some tuning of thresholds
may be required (for example aeroplanes and
road vehicles do not move at the same speed).
Of course new behaviours can easily be defined.
Our system was also successfully applied to one
of the airport scenarios.

6 Conclusion and Future Work

Unlike the perception component where evalua-
tion can be made m different weather conditions,
different lighting conditions, etc., evaluation of the
conceptual component is much more qualitative and
is to a large extent dependent on how good the re-
suits of the perception component are. Nevertheless
we have presented our initial evaluation of the sys-
tem developed and are encouraged by the results. We
should note, however, that in some cases errors (or

an 80% success rate) can be unacceptable -- for ex-
ample if it was applied as a preventive system, then
all potential incidents must be detected.

What remains to be done is a complete integra-
tion of the perceptual and conceptual modules and
to make full use of the control component.

Finally we should note that there seems to be lit-
tle work of a similar nature being done, the main
alternative approach that we have encountered be-
ing that of Nagel [5] at Karlsruhe University. His
work is however limited to single object behaviour
recognition and examples given involve simpler, less
complex scenarios. Other work that we are aware
of considers traffic flows and thus does not reason
about individual object behaviours and for this rea-
son much of the complexity we faced does not arise.
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