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I present an overview of some ongoing research on IVHS-related problems at the
University of Michigan Artificial Intelligence Laboratory. Our work covers three princi-
pal areas: (1) individual route planning under time-dependent uncertainty,
(2) decentralized computation of network equilibria using market-price mechanisms,
and (3) dynamic traffic modeling for routing and situation assessment.

1. Introduction

In this extended abstract, I present an
overview of IVHS-related research recently
initiated at the University of Michigan
Artificial Intelligence Laboratory. Our ulti-
mate goals in this effort are to further the
technology underlying decision support for
both individual drivers and traffic man-
agement centers within a variety of decision
contexts, including routing, scheduling, and
control of signals. Part of this technology
involves new modeling tools for describing
transportation networks and traffic flow,
and reasoning mechanisms to support fore-
casting and situation assessment.

Of particular research interest are problems
that involve significant uncertainty, dy-
namic information-gathering over time
from heterogeneous sources, and dis-
tributed decision-making processes. The
remainder of this abstract describes prelim-
inary efforts in each of these areas. In some
of this work, we make significant use of ex-
isting techniques from Al, albeit with im-
portant extensions. In the following presen-
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tation, we describe the extensions to current
methods, as well as some new techniques
for distributed problem solving applicable
to a wide variety of decentralized decision-
making tasks.

2. Route Planning wunder Time-
Dependent Uncertainty

Consider a transportation network with
nodes denoting locations and edges denot-
ing possible transportation operations be-
tween the locations connected. If travel
times are static (that is, the duration of a
trip from a to b does not depend on depar-
ture time), then we can compute the fastest
route from any given origin to all possible
destinations using Dijkstra’s well-known
shortest-path algorithm, where the costs on
each link are the travel times. This algo-
rithm has a worst-case complexity of

O(N?), where N is the number of nodes in
the network. If the travel times are stochas-
tic but independent (that is, the distribution
of travel times for one link does not depend
on the actual travel time on others), then the
route with the fastest expected total travel
time can be found similarly with Dijkstra’s



algorithm, where the costs on each link
correspond to expected travel times.

Unfortunately, this shortest-path algorithm
is not valid when the travel times are time-
dependent. This sort of situation should be
expected in realistic highway networks,
where traffic patterns vary throughout the
day, as well as in other transportation net-
works (e.g., bus routes), where transfer
times depend on fixed schedules. For the
deterministic case, however, it has been
shown (Kaufman & Smith, 1993) that the
standard shortest-path algorithm is indeed
sound as long as the network satisfies the
following reasonable consistency condition.
Let s and t be departure times such that
s<t, and let c¢;(x) denote the time-depen-
dent cost (travel time) of traveling from lo-
cation i to location j at time x. The network
is consistent iff

foralli, j. s+c;(s) <t +c;().

This condition seems quite reasonable for
time-dependent transportation networks. It
merely says that although leaving later can
perhaps reduce the duration of the trip, it
cannot decrease the ultimate arrival time.
Given this condition, the principle of opti-
mality underlying Dijkstra’s algorithm ap-
plies, and the shortest-path problem can be
solved relatively efficiently.

A stochastic version of this condition, with
the times replaced by expectations, would
similarly validate the use of the standard
algorithm with expectations. However, this
version would not be reasonable, as
demonstrated by some simple examples
(Hall, 1986). (Moreover, the expectation
version of the shortest-path algorithm
would not produce correct results for these
examples.) As an alternative, I propose the
following condition. Let c;(x) denote the

time-dependent travel time (a random vari-

38

able) from location 7 to location j given de-
parture at time x. Let us say the network is
stochastically consistent iff for all i, j, and z,

Pr(s +c;(s) <2) 2 Pr(t +¢;(t) < 2).

In other words, the probability of arriving
by any given time cannot be increased by
leaving later. This appears to be the most
natural (and most benign) generalization of
the deterministic consistency condition
above. It is based on the concept of stochas-
tic dominance, a common way to extend an
ordering relation to random variables.

This condition justifies a modified version
of the shortest-path algorithm, where in-
stead of maintaining the shortest path
found to all intermediate nodes (in the un-
certain case, a probability distribution of
travel times), we maintain all undominated
paths. If one path to a node dominates an-
other (in the sense of stochastic ordering),
then the stochastic consistency condition
ensures that the latter cannot be part of an
overall shortest path. This generalized use
of the optimum principle can lead to sub-
stantial savings if the network contains
many dominated paths, as we would ex-
pect.

Although I believe this algorithm to possess
advantages over existing methods for com-
puting fastest path in stochastic time-de-
pendent networks (e.g., (Hall, 1986)), defini-
tive statements await the result of formal
and empirical analysis, which has just be-
gun. This approach should also be applica-
ble to problems with non-additive (but
monotonic) costs, generalizing the scope of
existing search-based optimization algo-
rithms in OR and Al For example, with a
heuristic estimate of remaining distance,
this algorithm is a stochastic version of A*.



3. Network Equilibrium Problems

Network equilibrium analysis is an increas-
ingly popular framework for studying the
allocation of traffic flows on transportation
networks. Equilibria are typically calculated
via optimization algorithms (e.g., varia-
tional inequality formulations), which re-
quire a centralized or global analysis. Since
the ultimate decision-making in traffic ap-
plications is generally decentralized, we
seek computational methods mirroring the
distributed structure of the decision-sup-
port environment.

We have studied network equilibrium
problems as a special type of distributed re-
source-allocation task. Our general ap-
proach, called “market-oriented program-
ming” (Wellman, 1992)., works by casting a
problem as a computational economy and
deriving its competitive equilibrium. We
formulate the given problem as a general-
equilibrium system, with agents corre-
sponding to the decision-making entities,
and goods corresponding to relevant re-
sources and outcome attributes. The agents
interact exclusively via consumption and
production of goods, and communicate
solely by submitting bids to auctions for
each of the commodities. The protocol im-
plements a variant of tatonnement, con-
verging on equilibrium prices given some
restrictions on the form of preferences and
technologies.

To test the application of computational
markets to transportation network tasks, we
have explored a distributed version of the
multicommodity flow problem. In a multi-
commodity flow problem, the task is to al-
locate a given set of cargo movements over
a given transportation network. The trans-
portation network is a collection of loca-
tions, with links (directed edges) identify-

ing feasible transportation operations.
Associated with each link is a specification
of the cost of moving cargo along it. A
movement requirement associates an
amount of cargo with an origin-destination
pair. The planning problem is to determine
the amount to transport on each link in or-
der to move all the cargo at minimum cost.
In the distributed version, we require that
flow allocation decisions are made sepa-
rately for each movement requirement. The
following figure depicts a simple trans-
portation network (from (Harker, 1988)).

We have investigated three market configu-
rations for solving multicommodity flow
problems. In model S, the economy consists
of a set of shipper agents (consumers), one
for each movement requirement. The ship-
pers bid for links serving their origin-desti-
nation pair, splitting cost proportionately
on shared links. In model SC (S plus
carriers), we augment the economy with
carrier agents (producers), one for each link
on the network. The carriers “own” the
links, and sell transportation services in
return for basic resources (fuel, vehicles,
etc.), so as to maximize profit. The eco-
nomic structure of model SC is depicted
below for the simple transportation
network shown above.
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Finally, in model SCA, we add arbitrageur
agents (producers), whose role is to
examine isolated network fragments and
try to derive profits from any transient price
imbalances.

G2,

All models converge to an equilibrium. In
model S, we produce the user equilibrium,
which is socially suboptimal due to an ex-
ternality (an interaction outside the market
system) among the agents’ preferences. SC
eliminates the externality by delegating the
shared links to profit-maximizing carriers,
and hence results in a global optimum (the
system equilibrium). SCA retains this global
optimum, but with a higher degree of de-
centralization since the shippers no longer
need to perform path analysis. The main
conclusions from this exercise are (1) the
computational market can derive useful re-
sults for a nontrivial transportation prob-
lem, (2) different market configurations
lead to qualitatively different results and
computational behaviors, and (3) these dif-
ferences can be predicted and analyzed us-
ing standard concepts from economics.

4. Dynamic Traffic Interpretation

Finally, we are exploring the use of modern
uncertain reasoning techniques from Al for
transportation tasks such as dynamic traffic
interpretation. We represent our state of in-
formation in probabilistic networks, graphi-
cal representations of random variables and
their interdependencies (Pearl, 1988). The
technical advantage of probabilistic net-
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works is that they exploit independence
relations among the variables for computa-
tion, without imposing any uniform inde-
pendence restrictions. We have begun pre-
liminary explorations of the problem of
representing routing problems under un-
certainty in such graphical decision models,
and of appropriate structures for intertem-
poral traffic modeling.

The distinguishing characteristic of dy-
namic traffic interpretation is that we re-
ceive partial and noisy information about a
dynamically evolving traffic situation.
Observed information may include vehicle
sightings, estimated instantaneous loads,
gross traffic reports, incident (e.g., accident)
notifications, etc. Prior knowledge may in-
clude map information, common traffic pat-
terns, etc. The goal is to derive high-level
interpretations of the overall situation, in-
cluding assessments of the overall loads,
prediction of short-term future loads, loca-
tions of bottlenecks, and identification of
prototypical phenomena (e.g., gridlock, ac-
cidents, etc.). The particular descriptors of
interest will depend dynamically on the
control options available (e.g., access con-
trol, route guidance, or even commanded
diversions) and the nature of information
input.

One of the major technical challenges here
is how to dynamically modify the model
structure over time as information increases
and traffic evolves, given general knowl-
edge about the behavior of traffic and the
impact of important traffic events. This
problem of knowledge-based model construc-
tion is an active area of research in the un-
certain reasoning community (Wellman,
Breese, & Goldman, 1992).



5. Summary

In summary, we are investigating the appli-
cation of Al techniques to a variety of
transportation and IVHS-related problems.
There is no single “Al technique” to be de-
ployed here; rather we are using these ap-
plication problems to stress and extend the
available technology in a variety of ways.
The particular methodologies I have cited
in this abstract are:

heuristic search,
market-oriented programming, and
e probabilistic networks.

Each of these (as well as many others) can
make a contribution to IVHS applications,
but each will require significant customiza-
tion and extension to produce useful results
in this domain.
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