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Abstract because every time specification, design or code

Although a host of testing methods have been pro-
posed for expert systems, little work has been done
to compare effectiveness of these methods. This
paper presents an analysis of various parameters
that govern the effectiveness of output based par-
tition testing strategies for heuristic classification
expert systems.

Introduction
Expert systems are programs that mimic some aspects
of human expertise to solve ill-structured problems. In
this paper we explore the effectiveness of partition test-
ing methods for a class of expert systems based on
heuristic classification (Clancey 1985).

The motivation for studying partition testing for ex-
pert systems is based on the following observations.

¯ Although a number of testing methods (Myers 1979)
(Suwa, Scott, & Shortliffe 1982) (Nguyen et 
1987) (Ould & Unwin 1987) (Tsai & Zualkernan
1990) (Gupta 1991) (Tsai, Zualkernan, & Kirani
1992a) have been proposed for testing expert sys-
tems, recent studies (Zualkernan, Tsai, & Kirani
1992) (Tsai, Sirani, & Zualkernan 1992b) (Tsai, 
rani, & Zualkernan 1993) suggest that conventional
testing methods such as random and partition test-
ing are much more effective at catching failures than
consistency and completeness checking methods.

¯ Although effective, random testing requires a large
number of test cases (Beizer 1990). Since the gener-
ation and evaluation of test cases for expert system
is very expensive (Zualkernan, Tsai, & Kirani 1992),
we need to look for better partition strategies.

¯ Testing plays a crucial role in the life-cycle of ex-
pert systems which is exploratory (Hayes-R, oth et
al. 1983) or spiral (Boehm 1987) (Zualkernan 1991)
in nature. We need to consider partition testing as
a vehicle for both confidence establishing and failure
exposing capabilities.

¯ To be effective, partition testing methods have to
perform considerably better than random testing

changes due to spiral nature of the development pro-
cess, the partition may be recalculated thus incur-
ring considerable additional cost. Alternatively, par-
tition testing methods could be made less sensitive
to such changes.

Previous Work

Partition testing has been compared with random test-
ing for conventional software (Duran & Ntafos 1984)
(Hamlet ~ Taylor 1990) (Loo, Tsai, ~ Tsai 1989)
(Weyuker &; Jeng 1991). Much of this work is relevant
to testing of expert systems. Duran and Ntafos (Duran
& Ntafos 1984) found the counter intuitive result that
random testing performed almost as well as partition
testing. This result was confirmed by further experi-
mentation by (Hamlet & Taylor 1990). These studies
show that partition testing can be better or worst than
random testing depending on how the inputs produc-
ing failures 1 are concentrated within partitions. This
implies that partition testing may be most effective
when partition definitions are failure-based (Hamlet 
Taylor 1990).

In applying these previous results to partition test-
ing for expert systems, we have to look at their as-
sumptions. Three types of assumptions about the par-
titions are relevant: overlap, size and defect distribu-
tion. Most previous work assumes that the partitions
do not overlap. Some previous work (Duran & Ntafos
1984) (Hamlet & Taylor 1990) (Weyuker & Jeng 1991)
assumes that the partition sizes are the same. Others
(Loo, Tsai, & Tsai 1989) assume that partitions sizes
can be different. Most prior work assumes that the par-
titions are homogeneous. A partition is homogeneous
if most elements either fail or succeed.

Most previous work have used what we term as the
conservative partitioning strategy (CPS) in which only

1In this paper we adopt the IEEE standard terminology
of error, fault and failure. Errors represent human mistakes
which can result in faults in a system. A fault may cause
a system to fail on multiple inputs, but each failure can
potentially lead to the discovery of a new fault.
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one element is picked from each partition. CPS strat-
egy is reasonable if one assumes homogeneous parti-
tions. For non-homogeneous partitions, some (Loo,
Tsai, & Tsai 1989) have proposed to use a constant
number for sampling.

The most common comparison criteria used for com-
paring testing strategies is the probability of catching
at least one failure (Hamlet & Taylor 1990) (Weyuker

Jeng 1991). A testing strategy with a higher prob-
ability of detecting a failure is preferred. Others have
argued, that while probability of detecting at least one
failure may be a good measure for confidence establish-
ing, a better measure for failure detection may be the
expected number of failures caught (Duran & Ntafos
1984) (Loo, Tsai, & Tsai 1989) and the expected num-
ber of faulty partitions (Loo, Tsai, & Tsai 1989).

Heuristic Classification Expert Systems
Clancey (clancey 1985) analyzed a number of expert
systems and found that they all passed through the
recognized phases of data abstraction, heuristic map-
ping into hierarchy of pre-enumerated solutions and
refinement within this hierarchy. He called this type of
reasoning heuristic classification and showed that ear-
lier expert systems such as MYCIN seem to use heuristic
classification.

For this paper, the important property of expert
systems using heuristic classification (referred to as
HCE systems from here on) is the existence of a pre-
enumerated hierarchy of solution classes.

Partition Testing For HCE Systems
For partition testing, we make the following observa-
tions about the nature of partitions induced on the
output space of an HCE system.

¯ Given a class hierarchy, we can choose to use parti-
tions at any level of the classification tree.

¯ Partitions based on the class hierarchy are naturally
induced by the development process. One does not
need to recompute the partitions every time just for
doing partition testing.

¯ There is no a priori reason to believe that the parti-
tions induced by the class hierarchy are of the same
size.

¯ There is no a priori reason to believe that the faults
are uniformly distributed in a partition.

¯ There is no a priori reason to believe that the par-
titions are homogeneous.

¯ There is no a priori reason to believe that there
should be a correlation between the failure rate and
the size of a partition.

Most previous work has shown that under a vari-
ety of conditions the CPS strategy does not do signif-
icantly better than random testing (Duran & Ntafos

1984) (Hamlet & Taylor 1990). Hence, some have sug-
gested that we exploit information about the nature of
the failures in each partition in order to construct bet-
ter strategies to detect actual failures. This approach
seems feasible for constructing partition strategies for
HCE. Since we are using the class hierarchy as the nat-
ural partitioning of the output space, different bound-
aries of partitions will exist depending on the level of
the classification tree.

Formalization
In this section we present the notation to express our
ideas more formally.

n The total number of the test cases in a test suite.

k The total number of partitions.

mi The size of a partition i.

ni The total number of the test elements sampled
from a partition i. ~=1 ni = n.

Pi The probability that an element is picked from par-
tition i. Pi =

~-.’ i= 1 Tr~i

0 The failure rate for the whole domain.
01 The failure rate for partition i. 0 = ~"~=1 pi0i.

Based on the notation, we can describe various
classes of partition strategies as follows:

exhaustive In exhaustive strategy each element in
kthe domain is sampled, k = ~i=1 mi and (ni 

mi -- 1).
random In random testing sampling is proportional

to the size of each partition (nioomi).

conservative partition (CPS) In conservative par-
tition strategy only some constant elements are sam-
pled from each partition (hi = c where c is a con-
stant).

failure based partition (FPS) In this optimistic
partition strategy some estimate of failure rate is
used and the sampling in each partition is propor-
tional to the number of failures in it (hi = cmiO~
where c is a constant).

The criteria of determine ’goodness’ of a testing
strategy are given as follows (Loo, Tsai, & Tsai 1989):

Pp The probability of finding at least one failure for
partition testing, Pp = 1 - 1~=1(1 - 0i)n’ .

Pr The probability of finding at least one failure for
random testing, Pr = 1 - (1 - 0)’*.

EFp The expected number of failures when using par-

= ~i=1 n~0i.tition testing, EFp

EFr The expected number of failures when using ran-
kdom testing, EFt = nO = n ~i=1 piOi.

EDp The expected number of faulty partitions for
partition testing, EDp = ~"~=1 (1 - (1 -0i)n’).
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EDr The expected number of faulty partitions for
random testing, ZDr = ~=1(1 - (1 Oi)nP’).

Duran (Duran & Ntafos 1984), Hamlet (Hamlet 
Taylor 1990), and Weyuker (Weyuker & Jeng 1991)
use Pr and Pp to compare partition testing and ran-
dom testing methods. Loo (Loo, Tsai, & Tsai 1989)
use EFp, EFt, EDp, EDr. In order to determine the
effectiveness of a partition strategy for HCE expert sys-

tems, we will use three composite metrics: ~ = ~ ,
~ Each metric compares a partition

fl= ’7= Pr"
strategy against a random testing strategy. A good
partition strategy maximizes a, fl and 7.

Experiment

The performance of FPS and CPS strategies depends
on failure rate and partition size distributions.

fml

M
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1
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Figure 1:Probability distribution functions for
partition size (mi) and failure rate (04)

Qualitatively, we can think of three types of fail-
ure rate distributions: mostly faulty partitions, uni-
formly faulty partitions and mostly non-faulty parti-
tions. When the development starts, we may expect
most of the partitions to have high failure rates. Grad-
ually, the rate may become uniform across partitions.
Before we deliver the system, we may expect most par-
titions to be fault free. Similarly, partition size distri-
bution can be divided into categories of mostly large,
uniform sized, and mostly small partitions.

To simulate various situations related to failure rate
distribution, we used the three probability density
functions (P.d.f) shown in Figure 1 (d), (e), and 
We picked the simplest functions, f00, f01, and f02,
to represent the conditions of mostly faulty, uniformly
faulty, and mostly non-faulty partitions. In Figure 1
(a), (b), and (c), fro0, f,,i, f,m werechosen to de-
scribe situations with mostly large-size, uniform-size,
and mostly small-size partitions.

The statistical properties of these probability distri-
bution functions are described in Table 1, where m de-
note the number of elements in a partition and 0 is the

P.d,f.

m f. 0(m) 
fml(m)= 1M-1

f.,2(m) 
0 foo(O) = 2(1 - 0)

fo (o) = 
fo2(0) = 

Mean

Era0 = 3

Eml = M+I2

Era2 =
1

Eeo = "~
__ lEol -

Eo2 =

Variance

= 18
2 (M-l)~

0.rnl --’ 12

= is

¯ 0.oo - ~
0.2 _ i
oi--~

¯ 0.#2 -- T~

Table 1: Properties of P. d. f’s for 01 and m;

failure rate of a partition and the maximum partition
size is M.

Method
For each partition strategy we carried out monte-carlo
simulations (Payne 1982) for the total 9 combinations
of failure rate and partition size distributions. Each
situation is represented by sij where i denotes the P.d.f
used for partition size and j the P.d.f used for failure
rate; e.g., sl0 represents a situation where f,~l and foo
are used.

For CPS, in each situation, we varied k from 1 to
100 and c from 1 to 50 for 11 different values: 1, 5, 10,
15, 20, 25, 30, 35, 40, 45 and 50. For each combination
of k and c, 1000 experiments were conducted. In each
experiment, we randomly generated an mi based on
fmi and a 0j based on foj and calculated the values
of a, fi and 7. For each k, we calculated the means
and variances for the three parameters. We arbitrarily
assumed M (see Figure 1) to be 200. We carried out
9 x 100 x 11 x 1000 = 9.9 x 106 experiments.

For FPS, the same procedure was repeated, except
that c was varied from 1 to 10. We conducted 9 x 100 x
10 x 1000 = 9 x 106 experiments for FPS.

Results

CPS Strategy Figures 2, 3 and 4 shows how ~, fl
and 7 vary with respect to k and c. We make the
following observations.

1. ~ ~ 1 for any number of partitions (see Figure 2).

2. Although fl ~ 1 (see Figure 3) for the case with
mostly small partitions (s0j), CPS does offer some
advantage in exposing partitions with failures, fl
seems to be better for uniform partitions (slj) than
for mostly large partitions (s2j). Within the uni-
form sized partitions, the most advantage is gained
in partitions with mostly high failure rate (si2), fol-
lowed by uniform (Sll) and mostly low failure rates
(sl0). The same is true for various types of par-
titions within mostly large partitions. The advan-
tage gained by CPS over random testing varies from
about 2% to 11%.

3. 7 is maximized for low values of k and c and the
advantage for CPS disappears for about k = 23 or
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e > 5 (see Figure 4). The maximum advantage
va~es from about 4% to 7.4%. The behavior of 3’
also seems to be grouped according to the failure
distribution. For high failure situations (si2) the ad-
vantage is the lowest (about 4%) and this advantage
disappears most quickly (at k ~ 10) as k increases.
7 for CPS seems to favor situations where the par-
titions are mostly non-faulty (si0).

FPS Strategies Figure 5, 6, and 7 show the behav-
ior of a,/3, and 7 with respect to k and c. We make
the following obervations:

* Overall Behavior:

1. As k and c increase, a quickly rises and then be-
comes almost asymptotic with respect to both c
and k (see Figure 5). In all situations, c~ > 1.
seems to be the highest for situations with mostly
non-faulty partitions and the lowest for mostly
faulty partitions.

2. Under most values of c,/3 is less than 1 (see Figure
6).

3. 7 has a low maximum value as c = 1 across situa-
tions and quickly approaches 1 as k and c increase
(see Figure 7).

¯ Results for a Fixed c (e = 2):

1. The FPS strategy offer an advantage from 8% to
45% over random testing in detecting more fail-
ures.

2. The advantage for FPS strategy grows initially
and becomes asymptotic as k increases.

3. The situations with mostly non-faulty partitions,
seem to mostly offer the highest advantage for a.
The least advantage is gained in situations with
high failure rates.

4. /3 becomes asymptotic for increasing k but is al-
ways less than 1 for all situations.

¯ Results With Respect to a Variable c:

1. Situations with mostly non-faulty partitions
within a particular size distribution have the high-
est a across c and those with mostly faulty parti-
tions have the lowest a across c.

2. Within a particular failure distribution, uniform
sized partitions seem to have the highest but con-
stant ~.

3. Within a particular failure distribution, most ad-
vantage is gained by initially increasing c for par-
titions that have mostly small sized distribution.

4. As e becomes large, the differences between a due
to partition size distribution tend to disappear.

5. With increasing c, /3 either increases or becomes
constant in all situations except for s00.

6. Situations with mostly non-faulty partitions tend
to retain their advantage over the other situations.
across c for the same type of failure distribution.

7. From mostly non-faulty partitions to uniformly
faulty partitions, to mostly faulty partitions, the
maximum 7 gets smaller with respect to c.

8. As c increases, the advantage of FPS to detect
at least one failure disappears. Further, the ad-
vantage disappears more quickly for mostly faulty
partition.

Summary We summarize the results as follows:

¯ FPS strategies detect more failures than random
testing under a variety of situations. However, if
we increase the number of partitions (k) or the sam-
pling constant (c), the marginal gain becomes very
small.

¯ FPS strategies detect less faulty partitions than ran-
dom testing under a variety of situations for reason-
able values of c and k.

¯ FPS strategies have little advantage over random
testing for detecting at least one failure. This ad-
vantage quickly disappears as c and k are increased.

Discussion and Implications
We carried out the analysis for conservative and fail-
ure based partition strategies. Conservative partition
strategies do not perform better than random testing in
detecting more failures but do perform slightIy better
in uncovering faulty partitions. Failure-based partition
strategies tend to do better (up to 47%) than random
testing in detecting failures but do worse (by 12%) than
random testing in detecting faulty partitions. For ac-
ceptance testing, both partition strategies tend to do
slightly better than random testing.

While CPS and FPS strategies have been used by
expert system developers, an understanding of their
limitations and tradeoffs is essential. For example, con-
sider the test case selection strategy for evaluation of
MYCIN (Yu et al. 1984). This strategy is an example
of a slight categories of CPS; at least one test case was
selected from each of the four variations of meningitis.

From our experiments, for k = 4, (see Figure 4) 
only 4 cases were picked, the use of this ’diverse ori-
gins’ strategy would have only increased 7 by from 2%
to 7%. Hence we are able to assign quantitative mea-
sures to qualitative notions such as the use of ’diverse
origins.’ We can also say that the use of this strategy
would not have exposed any more failures than ran-
dom testing. Similarly, under the best conditions, it
would have exposed a maximum of 1.1 x 4 failures. If
an estimate of number of expected failures had been
available, a use of FPS strategy (with c = 2)in the
same case would have resulted in a ~ 1.2. In this sit-
uation no significant advantage would have been ob-
tained because FPS would be expected to detect at
best 0.2 x 8 = 1.6 ~ 2 more failures than random test-
ing.

The above analysis based on the expriments con-
ducted in this paper shows that the use of the ’diverse



origins’ strategy used to test MYCIN’S was really not
better than random testing. Our experiments suggest
that the use of such a strategy could have been benefi-
cial if a failure based partition strategy were used but
only for a larger number of partitions.

We have shown how our experiments can be used
to make informed decisions about the use of parti-
tion testing strategies. Overall, the results are sober-
ing. The partition testing strategies, even if based on
perfect information about failure distribution do not
perform miraclously better than random testing. The
largest gain for detecting number of failures is about
47%. Surprisingly, the use of failure based partition
testing in most reasonable circumstances reduces the
expected number of partitions caught when compared
with random testing.

More than anything, these experiments point out
the importance of basing validation and verification
of expert systems on a sounder and quantitative basis
because intuition can often be misleading.

Conclusions
In this paper, we have presented a formal and empirical
analysis of output based partition strategies for heuris-
tic classification expert system. A preliminary analysis
based on ideal distributions of failure rate and size dis-
tribution indicates statistically significant differences
in the output metrics such as number of failures ex-
posed, number of faulty partitions uncovered and the
probability of detecting at least one failure.

If we can derive reasonable estimates of the relative
sizes and the failure rates for a particular classification
tree, it is possible to derive an optimal k or depth of the
tree that maximizes a,/3 and 7. Since it is possible to
derive multiple classification hierarchies for the same
problem, information about maximizing a,/3 and 7 can
also be used to design the output classification tree for
testability.

A quantitative analysis of the expert system testing
methods will not only help us understand their real
limitations but will also help us design better testing
methods in the future.
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