
Structural Validation of Expert Systems Using a Formal
Model*

Alun D. Preece, Clifford Grossner, P. Gokul Chander, and T. Radhakrishnan
Computer Science Department, Concordia University

Montr@al, Qu6bec, H3G 1M8, Canada

Abstract

There are two complementary aspects to testing
a software system: functional testing determines
how well the system performs its required op-
erations; structural testing determines that the
components of the system are sufficiently exer-
cised during testing. Functional testing is based
upon a specification of the system requirements;
structural testing is based upon a model of the
structure of the system. For rule-based systems,
a structural model explicates the rule execution
paths (possible causal sequences of rule firings).
In this paper, a formal structural model for OPS5-
like rule bases is developed; this model is de-
signed to overcome weaknesses of previous struc-
tural models. Two software tools are introduced:
Path Hunter uses the structural model to deter-
mine the execution paths in a rule base; Path
Tracer analyzes dynamic rule firings that occur
during functional testing, to determine the extent
to which execution paths identified by the struc-
tural model are exercised at run-time. We present
results obtained from using Path Hunter and Path
Tracer on a complex expert system rule base which
had previously been subjected to functional test-
ing.

Motivation

One of the most important processes in validating a
knowledge-based system is to quantify the level of per-
formance of the system by testing it with a set of test
cases. Finding an adequate set of test cases for this
purpose is a hard task [O’Keefe et al., 1987]. One cri-
terion used in doing this task is the functional testing
criterion: choose a set of test cases representative of
the range of operations that the system is required to
solve [Rushby, 1988]. A second criterion in finding an
adequate set of test cases is the structural testing cri-
terion: choose a set of test cases that exercises the
structural components of the system as exhaustively
as possible [Rushby and Crow, 1990]. For a rule-based

*This work was supported in part by Bell Canada Inc.

system, exhaustive structural testing would involve not
only firing all the rules, but also firing every causal se-
quence of rules. 1 Structural testing for a rule-based
system requires a model which permits the identifica-
tion of all possible dynamic causal rule firing sequences,
called rule execulion paths (or, simply, paths). Func-
tional and structural testing are complementary: an
effective strategy for testing a knowledge-based sys-
tem must ensure that maximal functional performance
and maximal structural coverage for set of test cases is
achieved.

This paper develops an approach to structural test-
ing of rule-based systems, in the context of validating
a complex expert system application. The Blackbox
Expert is a rule-based expert system implemented in
CLIPS, an OPS5-1ike language [Giarratano and Riley,
1989]. It is designed to solve a puzzle called Blackbox,
an abstract diagnosis problem consisting of an opaque
square grid (box) with a number of balls hidden in the
grid squares. The puzzle solver can fire beams into
the box. These beams interact with the balls, allowing
the puzzle solver to determine the contents of the box
based on the entry and exit points of the beams. The
objective of the Blackbox puzzle-solver is to determine
the contents of as many of the grid squares as possible,
while minimizing the number of beams fired.

The Blackbox Expert was developed as a realistic
test-bed application with which to investigate the re-
lation between information availability and expert sys-
tem performance [Grossner el al., 1991]. The baseline
performance of the Blackbox Expert needed quantify-
ing for these investigations. To this end, a team of
humans with expertise at solving Blackbox puzzles de-
veloped a set of seventeen test puzzles using functional
testing criteria. A set of difficulty factors (detailed
in [Grossner et al., 1991]) were used to create easy,
medium, and hard test puzzles. A metric was devel-
oped to evaluate quantitatively the quality of solutions
to the puzzles, and the difficulty criteria were validated
by demonstrating that the quality of human solutions
to the puzzles were significantly different between the

1 Rules r~ and rj form a causal firing sequence if the

result of firing ri helps to cause rj to fire.

12

From: AAAI Technical Report WS-93-05. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

easy and hard cases [Grossner et al., 1991].
In comparison with fifteen humans of varying ex-

pertise in solving the Blackbox puzzle, the Blackbox
Expert performed better than the median person on
15 of the 17 test puzzles. The Blackbox Expert on
average made fewer errors in placing balls than the
humans. In overall performance, the Blackbox Expert
ranked 7th compared to the humans. While this level
of performance was deemed very acceptable by the de-
velopers of the Blackbox Expert, it did not constitute
an entirely satisfactory validation of the system, being
based on functional testing criteria alone. The ques-
tion of how much of the knowledge base of the Black-
box Expert had been validated by the functional test-
ing motivated our investigation into structural testing
techniques.

Rule Base Execution Paths

Exhaustive structural testing for imperative software
requires testing all possible sequences of program state-
ments (execution paths) [Rushby, 1988]. By analogy,
structural testing of rule-based systems involves testing
causal sequences of rule firings (rule execution paths).
Using an appropriate abstraction for a rule execution
path, it is possible to determine all possible dynamic
rule firing sequences. By modeling the structure of a
rule base in terms of the paths it contains, it is possible
to determine the structural coverage achieved by a set
of test cases, and also to create test cases which exer-
cise specific structural components, or paths [Chang et
al., 1990]. To do this, it is necessary to define a model
of a rule execution path which is:~

¯ accurate, in the sense that every rule execution se-
quence which could occur at run-time is described
by a path, and every path describes an execution
sequence that could occur at run-time;

¯ meaningful, in the sense that each path should ac-
count for the effects of all of the logically-related
actions of each rule in the path, as intended by the
system designer;

¯ computable, in the sense that the effort required to
enumerate the paths in a rule base should not be
so large as to make automatic enumeration of paths
infeasible.

To date, only a few attempts have been made to
formalize the notion of a rule execution path--these
are surveyed in [Grossner et al., 1992]. Most of
these approaches are unsatisfactory accordin$ to the
above criteria because they are either informal [Rushby
and Crow, 1990], extremely costly to compute [Kiper,
1992], or restricted to a rule language less expressive
than OPS5-1ike languages [Preece et al., 1992]. These
shortcomings motivated us to develop a new formal ab-
straction for rule base paths. While space limitations

2These criteria are discussed in more detail in [Grossner
et al., 1992].

Figure h Graphical view of an abstract rule.

; Update grid to indicate a ball in a specific
; location is to be considered a certain ball.
(defrule Ball-Certain

?varl <- (BALL_CERTAIN ?sn ?rule-ID ?row ?col)

;h ball is to be made certain
?var2 <- (CERTAIN_BALLS ?cb)
;Get number of certain balls located

=>

(retract ?varl ?var2)
(if (not (iscertain ?row ?col))
;Is the ball already marked as certain?
(assert (CERTAIN_BALLS =(+ ?cb I)))
;Increment # of certain balls
(setcertain ?row ?col)
;Update grid making the ball certain
(if (eq (status ?row ?col) CONFLICT)

;Is There a Conflict?
(assert (RMC_B ?sn ?rule-ID ?row ?col))
;Indicate conflict is to be resolved

)))

Figure 2: Sample Blackbox Expert CLIPS rule.

do not permit a full presentation of the abstraction
here, an informal discussion of its main features fol-
lows. A more formal presentation appears in [Grossner
et al., 1993].

Abstract rules Rules are modeled by considering
only the facts they use and produce, in terms of the
predicates appearing in expressions on their LHS and
RHS. In OPS5-1ike systems, we consider the first field
in each fact to be a predicate, with the remaining
fields being the predicate’s arguments. Figure 1 shows
this information graphically, where P1,...,P, repre-
sent the predicates appearing on the LHS of rule rl,
and Q1,..., Qm represent the predicates appearing on
the RHS of ri. The function antec(ri) supplies the set
of predicates on the LHS of rl; the function conseq(ri)
supplies the set of predicates asserted on the RttS of
ri.

An example rule, Ball-Certain, from the CLIPS rule
base for the Blackbox Puzzle is shown in Figure 2. Ta-
ble 1 lists the predicates and user-defined functions
used by a small sample of the Blackbox Expert. The
user-defined functions represent indirect accesses to
facts in the working memory of the system; thus, each
function has a predicate associated with it, as shown.
Rule Ball-Certain is activated when ample evidence is

13

User Func. Interpretation Predicate
iscertain Check certainty of square (]MAP_CERT
setcertain Set a square certain (]MAP_CERT.B
status Check contents of square (]MAP

Predicate Interpretation
BALL Ball located
BALL-CERTAINA ball is to be made certain
BLANK-(]RID Place an empty in a grid square
CERTAIN-BALLSCount of certain balls located
C(]NFLICT.B Conflict has occurred placing a ball
DISPROVE_E Empty square is disproven
(]MAP Access to contents of a grid square
(]MAP_B Ball location on the grid
(]MAP_C Conflict location on the grid
(]MAP_CERT Certainty of grid location
(]MAP_CEHT.B Ball made certain
(]RIDSIZE Dimension of the grid
P-BALL Place a ball on the grid
RA-12 Certain grid configuration occurs
RMC_B Remove conflict by placing a ball
SHOT-RECORDExit and entry point for a beam

Table 1: Predicates and user-defined functions for
Blackbox.

gathered to support making certain a ball located in
the Blackhox grid. This rule will be firable given the
existence of facts using the predicates BALL_CERTAIN and
CERTAIN_BALLS. When this rule fires, it checks to see if
the grid location is already certain, in which case no
action is needed. Otherwise, the location is made cer-
tain and, if a conflict exists, a fact using the predicate
~C_B is asserted, indicating that the conflict can be
resolved.

Ball-Certain does not follow the form of our ab-
stract rules, because there is an if-then conditional
statement on its RHS, representing two different po-
tential actions: the case that the ball made certain
was successfully placed, and the case where there was
a conflict when the ball was placed. Therefore, the ab-
straction of this rule takes the form of two "split" rules,
Ball-CertainZl and Ball-CertainT,2, for the two alter-
natives in the conditional. As the conditional is predi-
cated upon the user-defined function status, the asso-
ciated predicate for this function ((]MAP) is placed on
LHS of each split rule. Ball-Certain7.1 updates the grid
to indicate that: a ball in a particular location is to be
considered a certain ball, a conflict is discovered, and
the conflict is to be resolved, antec(Ball-CertainZl) ---
{(]MAP, (]MAP_CERT, CERTAIN_BALLS, BALL_CERTAIN}, and
conseq(Ball-Certain*/,l) {(]MAP_CERT.B, RMC_B,
CERTAIN.BALLS}. Ball-CertainT,2 updates the grid to
indicate that a ball in a particular location is to be con-
sidered a certain ball. antec(Ball-CertainZ2) ---- ((]MAP,
GGMAP_CERT, CERTAIN.BALLS, BALL_CERTAIN}, and con-
seq(Ball-Certain’/,2) = {(]MAP_CERT.B, CERTAIN_BALLS}.

Note that there is another conditional state-
ment, using the function iscertain, on the LHS of

Ball-Certain. If the condition is false, the rule as-
serts nothing. In our abstraction, we do not model
such "null" rules.

Sub-problems, tasks, and logical completions
Assuming that a rule base RB is designed to solve
some problem pt, modularity usually exists in RB
due to p1 being decomposable into a number of sub-
problems, SPt [Grossner, 1990]. Two of the subprob-
lems for Blackbox are Beam Selection and Beam Trace.
Each sub-problem will thus be associated with a set of
rules used to solve it; we call such a set of rules the task
for the sub-problem. Each sub-problem has associated
with it a set of end predicates, the assertion of which
constitute at least part of a meaningful solution to the
sub-problem. A meaningful solution to a sub-problem
requires the assertion of facts using a number of end
predicates, and can be specified as a conjunction of
end predicates. Each such conjunction is called a logi-
cal completion (LC) for the sub-problem. For example,
one LC for Beam Trace is: (]MAP_B A BALL.

We say that a set of rules completes a sub-problem
SPt if, together, they assert all of the predicates used
in some LC of SPt. Formally, rule-set R completes SPt
iff there exists an LC = P1 A P2 A... A Pn for SP~ such
that: (VPi,i=Ln)(3rj 6 R, Pi E conseq(rj))

Rule dependency The condition for a rule ri to
depend upon a rule rj is that there must exist a pred-
icate P which is asserted by rj and used by ri. We
would like this notion to be local to a task, so we re-
quire that P must not be an end predicate for any
task T. Formally, rule ri depends upon rule rj--we
write rj -~ ri--iff there exists a predicate P such that
P E (conseq(rj) N antec(ri)), where P is not an end
predicate for any task. A set of sample rules from
the Blackbox Expert’s rule base are shown in Ta-
ble 2. These rules are part of the Beam Trace task.
In the example, RA-12-RightT, l -<: RA-12-PrepT, I and
RA-12-LeftT.1 ~ Rh-12-Prep7,1.

A rule ri in task Tt is enabled by a sct of rules W if
and only if all of the following conditions hold:

* ri depends upon every rj E W;
¯ every predicate in antec(ri) is either an end predicate

for some sub-problem SPu or is asserted by some rule
in W;a

Furthermore, W is a minimal enabling set for ri iff rl
is not enabled by any subset of W. For RA-12-Prep~,l
in Table 2 there are two minimal enabling-sets:
W1 --~ {RA-12-aightT, l}, and W2 ----{RA-12-LeftT, l}.
For Remove-ConflictT, l the minimal enabling-set is
{Place-BallY, l, Ball-Cert ain7,1 }.

3For convenience, we assume that the "outside world"
is modeled as a sub-problem, the end predicates of which
represent the input to the rule-based system.

14

ri antec(r i conseq(ri
RA-12-RightZl {GMAP, {RA-12}

GRIDSIZE,
SHOT-RECORD,
BALL}

RA-12-LeftZI {GMAP, {RA-12}
GRIDSIZE,
SHOT-RECORD,
BALL}

RA-12-PrepZI {aA-a2} {BALL,
BLANK-GRID,
BALL~ERTAIN}

Place-BallZ1 {GMAP, {CONFLICT~,
GMAP_CERT, GMAP~}
P-BALL}

Place-EmptyZ2 {GMAP, {DISPROVE-El
GMAP_CERT,
BLANK-GRID}

Remove-OonflictZl {CONFLICT~, {GMAP..B,
RMC~} BALL}

Table 2: Sample set of rules from Blackbox Expert.

Rule-base execution paths We consider P~, a path
in sub-problem SPt, to be a set of rules with the fol-
lowing properties:

¯ for every rule ri in P~, there exists exactly one subset
of P~ which is a minimal enabling set for ri;

¯ exactly one subset of P~ completes sub-problem SPt,
by asserting logical completion LCt;

¯ every predicate asserted by a rule in P~ is either used
by another rule in P~ or is part of LCs.

The first condition ensures that the path contains only
those rules strictly necessary to enable each rule on the
path to fire; the second condition ensures that each
path completes the task only one way; the third con-
dition ensures that every fact asserted by each rule in
the path is used either within the path or as part of
the LC. The path formed by the rules in Table 2 is
shown in Figure 3. This path represents the combined
actions of six rules. These rules recognize a particu-
lar configuration on the Blackbox grid, indicate that a
ball should be placed on the grid, indicate that the ball
is certain, indicate that a location is to be marked as
empty, resolve a conflict that occurs when the ball is
placed, and disprove that the location should be empty.
The LC asserted by this path is: DISPROVE.E A GIqAP_C
A GMAP_B A BALL A CERTAIN-BALLS A GMAP_CERT_B. The
path contains six dependencies, labeled dl,..., d6.

Note that, where all of the LHS predicates for a rule
ri are end predicates for some SPt, ri in path P~ is
enabled by the empty set of rules. In this case, ri is
called a start rule for path P~. Similarly, where all of
the RHS predicates for a rule ri are end predicates for
some SPt, ri in path P~ is called an end rule for P~.

Using the Path Abstraction
The abstraction for rule execution paths defined in the
previous section forms the basis for a structural model
of a rule base. Two software tools, called Path Hunter
and Path Tracer, have been implemented (in Prolog),
based on the abstraction. Path Hunter analyzes a rule
base, using an associated declarations file containing
specifications of the logical completions, to enumerate
all execution paths. (An independent visualization tool
can be used to view the paths graphically.) Path Tracer
uses the paths obtained by Path Hunter to analyze a
set of trace files generated by the CLIPS inference en-
gine during runs of the rule-based system. Path Tracer
produces data on path coverage according to a num-
ber of different criteria, together with a summary of
any rule firing events which could not be attributed as
belonging to any abstract execution path.

The 442 CLIPS rules of the Blackbox Expert rule
base were analyzed by Path Hunter in about 1.5 hours,
resulting in the enumeration of 516 paths. The small-
est paths consisted of a single rule; the deepest had
a depth of 7 rules; the broadest had a breadth of 7
rules. The mean path depth was 4 rules, and the mean
path breadth was 3.5 rules. Path Hunter modeled the
original 442 rules using 512 abstract rules; in doing
so, it identified 72 equivalence classes, defined as sets
of rules which are identical in abstract form. For ex-
ample, rules Rh-12-RightT,1 and Rh-12-LeftT,1 in Ta-
ble 2 were found to form an equivalence class we called
RA-12-ClassY,1. In all, 342 abstract rules were placed
in the 72 equivalence classes.

The 516 paths were used by Path Tracer to analyze
the trace files obtained from testing Blackbox Expert
with the set of seventeen test puzzles described earlier.
Finding a mapping between the abstract paths and the
paths observed at run time--which we will call concrete
paths--was not trivial. Below, we briefly examine the
most interesting issues in doing this.

Finding rule dependencies A CLIPS trace file
shows a linear sequence of rule firings. Causal se-
quences may be interleaved because of the inference
mechanism used by CLIPS. Finding true depends upon
relations involves two tasks: mapping the concrete rule
firings to abstract rules (necessary to determine which
one of several possible abstract "split" rules corre-
sponds to the rule which fired), and using the iden-
tifiers of asserted facts to trace firing causalities. In
doing the first of these tasks, Path Tracer is some-
times unable to make an unequivocal mapping from
a concrete rule firing to an abstract rule. This is not
a weakness of Path Tracer, since it points to one of
two situations, each of which reveals information about
the behaviour of the rule base which is useful from the
standpoint of system validation:

* a rule fires but not all of its expected assertions are
observed--this indicates that either (at least part of)

15

~ lemove-CoN~%l

Figure 3: An example path from Blackbox Expert.

the action performed by the rule has already been
done by another rule, indicating that (at least part
of) the rule firing is redundant; or

¯ the rule fails to assert some fact that it should as-
sert, according to the specification of the rule-based
system--this indicates a fault in the design of the
rule and, since the rule violates the specification, of
course there can be no corresponding abstract rule.

When Path Tracer finds a concrete firing which it can-
not map unequivocally to an single abstract rule, the
possible mappings are recorded as an equivocal map-
ping. For example, if our example rule Ball-Certain is
observed (in the trace file) to fire at run-time, but
does not assert anything at that time because its first
RHS conditional is false, then Path Tracer cannot tell
whether the firing should correspond to Ball-eertainZ1
or Ball-Certain],2. Path Tracer would allow it to cor-
respond to both "splits", as an equivocal mapping.

Determining path coverage Equivocal mappings
complicate the tracing of execution paths. The issue is
whether we can say that a specific abstract rule can be
considered to have been observed to fire when it partic-
ipates in an equivocal mapping. From the standpoint
of rule base testing, it can be argued that, on one hand,
we do not want the rule to be counted as having fired
unless we can be sure that it did so; on the other hand,
if the rule did fire but failed to assert all that it should,
in some sense the rule was still "tested". To capture
these distinctions, Path Tracer uses three strategies for
assessing path coverage. We illustrate these strategies
using the example path in Figure 3.

Paths are traced by treating each thread indepen-
dently, where a thread is a linear sequence of depen-
dent rules, starting from a start rule and ending with
an end rule. Threads are described by the depends
upon relations within them. The example path has
three threads: (dl, d2), (dl, d3, ds), (dl, d4, d6).
that we observe the following rule firing causalities in
a trace file (where rule/ refers to a specific firing of
CLIPS rule rule in the trace):

Rh-12-Right] causes RA-12-Prep] to fire;
RA-12-Prep] causes Place-Empty/ to fire;
Rh-12-Prep] causes Place-Ball/ to fire;
RA-12-Prep] causes Ball-Certain/ to fire;
Place-Ball] causes Remove-Conflict/ to fire;
Ball-Certain/ causes Remove-Conflict/ to fire.

Assume also that Path Tracer maps the above rules to
the abstract rules as follows (where ~-+ indicates a nor-
mal mapping, and ~L indicates an equivocal mapping):

Rh-12-Right] ~-+ Rh-12-ClassY, l

RA-12-Prep] ~-+ RA-12-PrepZI

Place-Empty/ ~+ Place-EmptyZ2

Place-Ball/ ~-+ Place-BallZl

Ball-Certain] ~ Ball-Certain7,1

Remove-Conflict I ~ Remove-ConflictY.l

Path Tracer assesses path coverage in terms of the
number of causal dependencies observed in the trace
file. Starting with a firing of a start rule, each thread
in the path is counted independently. The three strate-
gies used to trace paths are as follows:

Conservative Count each thread in its entirety if ev-
ery dependency in the thread is observed, and none
of the rule mappings are equivocal; otherwise, do not
count any dependencies in the thread as having been
observed. Using this strategy, only two of the depen-
dencies in the example (dl, d2) are counted, because
the other two threads include an equivocal mapping.

Moderate Starting from the start rule of each thread,
count observed dependencies until the first depen-
dency between two rules involving an equivocal map-
ping, or until the end of the thread. Do not count
the dependencies between rules involving equivocal
mappings. Using this strategy, four of the depen-
dencies in the example (dl, d2, d3, d4) are counted.

Liberal Starting from the start rule of each thread,
count observed dependencies until the first depen-
dency between two rules involving an equivocal map-
ping, or until the end of the thread, including the
first dependency between rules involving an equivo-

16

cal mapping. Using this strategy, all six of the de-
pendencies in the example are counted.

These three strategies allow us to analyze partial cover-
age of paths, and to identify reasons why this happens.
Using these three measures, we obtain much more in-
formation than if we merely considered absolute cov-
erage.

Coverage of equivalence classes The coverage of
equivalence classes appearing in each path is assessed
by looking for a firing of each rule in the class, such that
the firing causes each of the dependencies required for
that class. In the above example, one of the two rules in
RA-12-ClassZI (RA-12-Le:ftZI) has been observed in the
required dependency (RA-12-ClassZl-~ RA-12-PrepZI).
To assess the total coverage of this class for this path,
Path Tracer looks for the dependency RA-12-RightT, l -~
RA-12-PrepZI in the trace file.

Results of Tracing Paths
Overall path coverage The path coverage using
the three strategies is summarized in Table 3. Each
entry in the table shows the percentage of paths cover-
ered to the extent shown; for example, using the con-
servative strategy, 64.2% of paths are covered to some
extent (> 0% coverage). Note that the same num-
ber of paths were observed at > 0% coverage using
the moderate and liberal strategies, indicating that no
equivocal mappings were involved in any dependency
which also involved a start rule.

These results show that many paths and many
threads were never exercised--or were exercised only
partially--during functional testing. Analyzing the
cases revealed two phenomena, explaining why certain
groups of paths never fired:

Incomplete testing Predictably, many paths and
threads were never exercised due to incompleteness
in the test set. This is unsurprising since functional
criteria alone were used to create the test set. Using
the information yielded by Path Tracer, the test set
can be improved; we return to this point later.

Path subsumptlon Perhaps more interestingly, it
was discovered that paths at run-time often "inter-
fered" with other paths, preventing each other from
completing. In some of these cases, this was due to
subsumption or partial subsumption in the rule base.
For example, rule ri would fire before rule rj, where
ri subsumes rj under certain circumstances, and ri
would either inhibit rj from firing, or inhibit rj from
carrying out all its RHS actions (essentially, by per-
forming those actions before rj). We are still ex-
amining instances of this behaviour, to decide which
ones point to faults in the rule base, and which are
harmless.

Path coverage per task The overall path coverage
was broken down to enable an assessment of path cov-

Task Paths 0% > 50% 100%
Beam Trace 479 35.9 29.9 13.8
Beam Selection 31 36.6 63.3 63.3
Beam Choice 3 25.0 75.0 75.0
Initialization 3 33.3 66.6 66.6

Table 4: Coverage of Blackbox Expert paths per task
(conservative strategy).

100% -

75%-

50%-

25%-

Figure 4:
classes.

Equivalence classes

Coverage of Blackbox Expert equivalence

erage in each task associated with the sub-problems
of the Blackbox Expert system, as shown in Table 4.
As can be seen, the Beam Trace task dominates the
rule base4, and absolute coverage for this task alone
is somewhat worse than that for the rule base as a
whole. In contrast, coverage for the smaller tasks is
much better than that for the entire rule base.

Coverage per equivalence class Figure 4 is a his-
togram showing coverage of equivalence classes. As
with the overall path coverage, we see that some of the
classes received little coverage; on the whole, though,
when a class is covered at all, it is most often com-
pletely covered.

Path firing frequency Path Tracer counts the
number of times each abstract start rule fires at run-
time, indicating the number of times each path (or
group of paths with the same start rule) at least begins
to fire. This reveals the paths which are initiated with
the highest frequency during problem-solving. The
start rule firing histogram for Blackbox Expert ap-
pears in Figure 5, clearly indicating that a few groups
of paths are doing the majority of the puzzle-solving
work. The most-fired start rule here is actually an
equivalence class, RS-ll-Class, with 1532 run-time fir-
ings of its member rules. One use of this information
is in tuning the rule base for efficiency, by paying at-
tention to the paths which are initiated most often.

4This demonstrates that Path Hunter is able to handle
large and complex rule base modules.

17

Strategy 0% >0% >50% >60% >70% >80% >90% 100%
Conservative 35.9 64.2 32.4 25.0 20.0 18.6 17.6 17.4
Moderate 28.3 71.7 50.6 44.6 36.5 27.5 19.0 18.4
Liberal 28.3 71.7 52.9 49.6 45.1 42.2 35.0 33.3

Table 3: Percentages of Blackbox Expert paths covered in testing to extent shown.

1500-

1000-

500-

t,
m-m __~ II _

Start rules

Figure 5: Firings of Blackbox Expert path start rules.

Validation of Path Tracer Path Tracer produces
a list of all rule firing events that it cannot explain
as belonging to any abstract path. For the Blackbox
Expert testing trace files, 6% of the total rule firings
were not explained in this sense. Path Tracer has rules
to classify such firings, as follows:

Redundant firings These are rule firings the actions
of which have already been performed by other rules;
therefore, they do not cause any other rule to fire,
and do not participate in any mappings to our de-
pends upon relations.

Equivocal firings These are rule firings that only oc-
cur in threads after an equivocal mapping. None of
the three strategies used by Path Tracer continues
to trace dependencies following an equivocal map-
ping (although the liberal strategy does count the
equivocal mapping itself), because there is no way
to ensure which abstract path the subsequent depen-
dencies actually belong to in these cases. Therefore,
any subsequent rule firings occurring on such threads
are not accounted for by Path Tracer.

All of the "unexplained" rule firings in the Blackbox
Expert trace files were classified as belonging to one
of the above cases, giving us confidence that our ab-
straction and tracing methods are of adequate power
for handling complex CLIPS rule bases.

Conclusion
Path Hunter and Path Tracer as validation tools
Path Hunter and Path Tracer have proven extremely
valuable as validation tools, revealing several kinds of
information which are directly useful in system valida-
tion:

* In automatically creating equivalence classes, Path
Hunter revealed several anomalies, where paths were
clearly incomplete. For example, a class found to
contain three rules covering cases for the grid con-
figurations "top", "bottom" and "right" is anoma-
lous in that the rule for configuration "left" seems
to be missing. Examination of such cases revealed
several subtle coding errors in the rules, preventing
Path Hunter from classifying the rules properly.

* The data from Path Tracer on coverage of paths
made it easy to identify paths, threads, and sets of
paths which were not exercised. This in turn lead to
the discovery of redundant and subsumed rule firings
(such as where one set of rules repeatedly inhibits
another set from firing).

. Anomalies found by Path Tracer when attempting
to map concrete rule firings to the abstract rules
pointed to coding errors in the rules (such as where
a rule fails to assert all the facts it should according
to the system specifications).

The above cases all involve the tools pointing directly
to faults in the rule base; we explore broader issues in
the use of the tools for quality assurance of rule-based
expert systems in [Preece e~ al., 1993].

Structural versus functional testing The work
described herein makes clear the importance of the
structural testing criterion in validating rule based sys-
tems. While a careful functional validation of Black-
box Expert showed that the system performs well com-
pared to humans, subsequent structural analysis using
Path Hunter and Path Tracer showed that a significant
portion of the rule base was never exercised during the
testing. Two types of incompleteness were identified:

¯ paths that were not tested because the (often quite
rare) scenarios which they are designed to deal with
were not present in the test set;

¯ paths that do not fire due to the "interfering" effect
of other paths.

Both these types of incompleteness need to be taken
seriously. Dealing with the first kind requires the addi-
tion of test cases which include the missing scenarios,

18

as determined by the analysis of Path Tracer. Dealing
with the second kind requires careful reconsideration
of the design of the Blackbox Expert system.

In conclusion, we have formalized a structural model
of rule bases, which we have used to implement tools
for analysis of both static and dynamic aspects of rule-
based systems. Our tools have proven valuable both for
finding faults directly, and for improving the coverage
of test sets for validating rule-based expert systems.

References

Chang, C. L.; Combs, J. B.; and Stachowitz, R. A.
1990. A report on the Expert Systems Validation
Associate (EVA). Expert Systems with Applications
1(3):217-230.
Giarratano, J. and Riley, G. 1989. Expert Systems:
Principles and Programming. PWS-Kent, New York.

Grossner, C.; Lyons, J.; and Radhakrishnan, T. 1991.
Validation of an expert system intended for research
in distributed artificial intelligence. In Proceedings of
Second CLIPS Users Group Conference. CLIPS Users
Group.

Grossner, C.; Chander, P. Gokul; and Preece, A.
1992. On the structure of rule based expert systems.
Technical Report DAI-0592-0013, Distributed Arti-
ficial Intelligence Group, Computer Science Dept.,
Concordia University, Montr6al, Canada.

Grossner, C.; Preece, A.; Chander, P. Gokul; Rad-
hakrishnan, T.; and Suen, C. Y. 1993. Exploring
the structure of rule based systems. In Proc. 11th
National Conference on Artificial Intelligence (AAAI
93). To appear.
Grossner, C. 1990. Ill structured problems. Techni-
cal Report DAI-0690-0004, Distributed Artificial In-
telligence Group, Computer Science Dept., Concordia
University, Montr6al, Canada.

Kiper, James D. 1992. Structural testing of rule-based
expert systems. ACM Transactions on Software En-
gineering and Methodology 1(2):168-187.

O’Keefe, Robert M.; Balci, Osman; and Smith,
Eric P. 1987. Validating expert system performance.
IEEE Expert 2(4):81-90.
Preece, Alun D.; Shinghal, Rajjan; and Batarekh,
A~da 1992. Verifying expert systems: a logical frame-
work and a practical tool. Expert Systems with Ap-
plications (US) 5:421-436. Invited paper.

Preece, Alun D.; Chander, P. Gokul; Grossner, Clif-
ford; and Radhakrishnan, T. 1993. Modeling rule base
structure for expert system quality assurance. Sub-
mitted to the IJCAI-93 Workshop on Validation of
Knowledge-Based Systems.
Rushby, John and Crow, Judith 1990. Evaluation of
an expert system for fault detection, isolation, and re-
covery in the manned maneuvering unit. NASA Con-
tractor Report CR-187466, SRI International, Menlo
Park CA. 93 pages.

Rushby, John 1988. Quality measures and assurance
for AI software. NASA Contractor Report CR-4187,
SRI International, Menlo Park CA. 137 pages.

19

