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Abstract

One of the principle issues in multiple
agent systems is how to treat the judgments of
the agents in those systems: should they be
combined or treated separately? If the
judgments are "substantially different" then that
likely signals different models being employed
by the agents. As a result, if the experts’
judgments are disparate, then it is unlikely that
the judgments should be combined.

However, developers of multiple agent
systems have combined substantially different
judgments by averaging. Such a combination is
likely to provide a composite judgment that is
inconsistent with each individual judgment. An
important aspect of verification and validation of
multiple agent systems is the analysis of the
combination of such judgments. Thus, a critical
issue in multiple agent systems is determining
whether or not the judgments of the experts are
similar or disparate. As a result, the purpose of
this paper is to investigate the combination of
probability judgments in multiple agent systems.
Traditional statistics are used to investigate
whether or not different judgments are
substantially different. In addition, a new
approach is developed to determine if
probability distributions of agents are similar
enough to combine or disparate enough to treat
separately. A case study is used to illustrate the
problems of combining multiple agent systems
and to demonstrate the new approach.

1. Introduction

Combining judgments of multiple agents
in probabilistic expert systems (ES) and
influence diagrams (ID) is becoming 

increasingly important issue in systems designed
to capture the judgment of multiple agents.
Unfortunately, the combination of multiple
expert’s judgments is not straightforward.
Consider a system where two experts have
probability judgments of 1 and 0 for the same
event x and 0 and 1 for the same event -x.
Such disparate judgments generally would signal
that the experts have different models of the
world. Alternatively, it may signal that there is
an error in one of the assessments. In either
case, combining these judgements, using
approaches such as averaging, is likely to
simply camouflage the disparate nature of the
judgments. The resulting combination is likely
to be representative of either agent.
Unfortunately, developers of multiple agent
systems have done just that.

Thus, the issue is under what conditions
should multiple agents’ judgments not be
combined in an ES or ID? In particular, the
purpose of this paper is to investigate the
process of determining whether the judgments of
multiple agents are similar enough so that they
can be combined into a single, e.g., average
judgment. In addition, a related issue is what
metrics can be used to determine the extent of
similarity between the two sets of judgments.

1.1 Importance

The combination of agents’ judgments is
an important issue in the development of
multiple agent systems for a number of reasons.
First, the combination of disparate judgments is
likely to result in system behavior that is not
sensible. For example, if there are two schools
of thought as represented by multually exclusive
probability distributions, what does it mean if
the system presents a third average response.
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Thus, from a development perspective it is
important to find out when to combine multiple
agents’ assessments. Second, the combination
of multiple disparate probability judgments is
likely to result in difficulties when the system is
verified and validated. Tests of the data at the
extreme points (e.g., x and -x) will result 
different responses from the human experts.

1.2 Expert Systems, Influence Diagrams and
Multiple Agents

Research on multiple agent systems has
been summarized in, e.g., Bond and Gasser
[1988], Gasser and Hill [1990] and Gasser and
Huhns [1989]. In many situations, multiple
agent systems more closely model actual
processes than single agent systems. In many
real world situations, there are seldom single
decision makers. Instead decision makers seek
out the advice of others. In addition, multiple
agent systems can be used to assist in many
decision problems, such as monitoring different
operations simultaneously, where the use of a
single agent might be at substantial
disadvantage.

Multiple agent systems can either
integrate or choose between the judgments of
multiple experts at basically two different times.
The multiple agents’ judgments are either
aggregated at the time the system is built (e.g.,
Dungan [1983]) or at the time the system is run
(e.g., Ng and Abramson [1991]). The first
approach uses the assessments from multiple
agents to establish a single system. The second
approach provides more flexibility, allowing for
evolving sets of agents.

Generally, the judgment of multiple
agents may be aggregated in any of a number of
ways. Although approaches such as negotiation
between agents have been used, typically
systems have combined the judgments of
multiple agents by averaging the estimates (e.g.,
Dungan [1983] and Ng and Abramson [1991]).

1.3 Probability Distribution Judgments

This paper focuses on probability
judgments of multiple agents. In particular, it
is assumed that agents provide an estimate of a
discrete probability distribution, for use in a
multiple agent system. As is often the situation
in influence diagrams, each expert would
provide a discrete probability distribution across
a number of categories. In the example in the
introduction, experts provided probability
estimates of x and - x of 1 and 0, and 1 and 0,
respectively.

Traditional statistical analysis is used to
investigate the problem. However, limitations
in that approach within the context of multiple
agent systems, suggest the search for an
alternative. As a result, a new approach is
developed to ascertain if probability judgments
are similar enough to combine or disparate
enough to signal the likelihood of different
underlying models, and to provide a metric of
that similarity. The basic problem and approach
is illustrated in the context of a case study
where disparate judgments were averaged.

1.4 Outline of This Paper

This paper proceeds as follows. Section
2 summarizes the case study from which the
data used in this paper is generated. Section 3
provides a basic structure to analyze the
problem of when to aggregate judgments.
Section 4 investigates metrics for determining if
the distribution estimates of two agents are
similar enough to combine. Section 5 briefly
summarizes the paper and analyzes some
extensions.

2. Case Study: Pathf’mder

Pathf’mderl is a multiple agent influence
diagram,2 designed to support medical decision
making. Pathfinder is discussed in detail, in a
number of sources, including Heckerman et al.
[1991]. Ng and Abramson [1991] list the
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multiple agent probability distributions
associated with a small portion of the system.
The distributions for thirteen different symptom
and disease "arcs" are summarized in Table 1.

TABLE 1
Complete Set of Probability Assessments

Arc # Category
1 2 3 4 5 6

1. .990 .010 .000 .000 .000 .000
1.000 .000 .000 .000 .000 .000

2. .990 .010 .000 .000 .000 .000
1.000 .000 .000 .000 .000 .000

3. .985 .015 .000 .000 .000 .000
1.000 .000 .000 .000 .000 .000

4. .985 .015 .000 .000 .000 .000
1.000 .000 .000 .000 .000 .000

5. .990 .010 .000 .000 .000 .000
1.000 .000 .000 .000 .000 .000

6. .990 .010 .000 .000 .000 .000
1.000 .000 .000 .000 .000 .000

7. .000 .010 .400 .500 .090 .000
.000 .200 .600 .200 .000 .000

8. .000 .000 .000 .000 .000 1.000
¯ 000 .000 .600 .200 .200 .000

9. .980 .015 .005 .000 .000 .000
¯ 000 .200 .600 .200 .000 .000

10. .900 .090 .010 .000 .000 .000
1.000 .000 .000 .000 .000 .000

11. .980 .015 .005 .000 .000 .000
.900 .100 .000 .000 .000 .000

12. .900 .090 .010 .000 .000 .000
1.000 .000 .000 .000 .000 .000

13. .000 .010 .400 .500 .090 .000
¯ 000 .800 .200 .000 .000 .000

@ For each "arc" the first line corresponds to expert
#1 and the second line corresponds to expert #2.
Categories - Lacunar SR: 1 = Absent; 2 = Rare; 3
= Few; 4 = Many; 5 = Striking; 6 = Sheets.
Source: Ng and Abramson [1991]

An examination of the probability
distributions in table 1 finds that in some cases
the distributions are very similar, while in other
cases they appear to be quite different. For
example, the distributions for arc 1 appear to be
about the same for both experts, while, the
distributions for arc 9 appear substantially
different for each of the agents. However,
these are qualitative assessments, quantitative
measures of the extent of similarity would be
helpful in determining when the distributions of
the agents are similar and "substantially
different."

The developers faced the problem of
constructing a single system that included
information from two agents in the same
system. The approach used in Pathfinder,
discussed in Ng and Abramson [1991] was to
form an average of the two different estimates
for each of the arcs.

3. General Approach and Implications

The general approach used in this paper,
for determining if individual judgments should
be combined, is modeled using statistical
reasoning (e.g., Freund [1971] and Edgington
[1980]). First, the agent’s probability
assessments can be examined to determine if
they are the same. If the judgments are
identical then it does not matter which is used
or if the judgments are averaged.

Second, if the judgments are not the
same, they can be investigated to determine if
they are "substantially different" or not. If the
judgments are not substantially different, then it
generally would be appropriate to average the
particular judgments.

Third, alternatively, the different
judgments may appear to be "substantially
different." In that situation, it probably would
not be reasonable to combine the distributions
using averaging. Instead, either one or the
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other would likely be used, or additional
evidence would be gathered.

If the judgments are substantially
different, then that might indicate an error. For
example, O’Leary [1990] found that developers
of expert systems had difficulty developing
weights on rules in a manner consistent with
probability theory. Virtually all systems
reviewed in that paper had errors or anomalies
in the probability estimates for the weights on
the rules in an expert system. Thus, substantial
differences may indicate errors in the judgments
or recording of the judgments, etc. for at least
one of the agents.

However, if the judgments appear
"substantially different" and are not in error
then that could indicate that the different
judgments are representative of different models
or assessments of the evidence and knowledge.
In either case, the existence of substantial
differences would suggest additional knowledge
acquisition to more clearly or fully specify the
underlying models or an analysis of the
correctness of the probability distributions.

3.1 "Substantially Different"

Thus far, the term "substantially
different" has been used to describe when the
distributions are disparate enough so that they
should not be combined. At the extremes we
know that "identical" distributions are not
"substantially different." Further, we know that
if one agent indicates x has a probability of 1
and -x has a probability of 0, while the other
agent gives x a probability of 0 and -x a
probability of 1 then those two agents estimates
are completely different, and thus "substantially
different." In section 4, the paper draws on
probability theory and a new approach to give
more specific meaning to "similar" and
"substantially different."
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3.2 Combining Different Distributional
Assessments

There are a number of different
approaches that can be used to combine the
judgments from multiple agents in the same
model. The remainder of this section briefly
reviews different techniques for integrating the
judgments of multiple agents. However, the
primary focus beyond this section is on
determining if the expert assessments are
substantially different.

First, each of the individual judgments
on a set of events could be averaged. However,
as noted in the introduction, where the two
agents had probability of 1 and 0 on x, it may
not be appropriate to integrate multiple agent’s
judgments from different distributions by
averaging. The agents may have two different
models or views. Averaging parameters from
two disparate models can result in a model that
has little meaning. For example, what does it
mean to average the judgments of a conservative
and a liberal?

Second, if agents’ judgments on a rule or
arc are substantially different, then it could
indicate a need to choose between one (or more)
of the models that the expert agents are using.
There are a number of approaches that could be
used. For example, when faced with a choice
between a set of alternatives, consensus could
be used to choose the majority model. As
another example, the existence of a difference,
might indicate the need to require negotiations
among agents representing the different
perspectives. Alternative agents or their
representations might "argue" as to which set of
judgments should be used.

Third, the existence of a difference may
indicate that it is necessary to solicit additional
information to better or further characterize the
model. The differences may result because the
model is ambiguous or underspecified. In that
situation, additional knowledge acquisition or
verification and validation is likely to be



appropriate to further clarify or specify the
model. Ultimately, this could result in a
different set of expert system rules or, in the
case of influence diagrams, nodes or arcs or
both.

Fourth, the existence of a difference in
judgments may indicate a need to integrate
situation-specific information into the system.
If the system is underspecified then specific case
information may be required to generate the
necessary context. From a knowledge
representation perspective, case-based reasoning
might be used to adaptively choose the model
that best meets the needs of the situation.
Further, case-based reasoning might also be
used to create a hybrid model that includes
features from the other approaches.

4. Analysis of Agent Probability Distributions

The purpose of this section is to develop
methods for determining whether or not two
agents’ probability distributions are substantially
different. Two approaches are employed.
First, a traditional statistical analysis, using
correlation coefficients is employed. Second, a
new approach, called cutpoints, is ddeveloped
and discussed.

4.1 Statistical Analysis

Assume that for each of two agents, for
each rule or arc, there is a probability
distribution across a set of n points. We can
use the correlation to measure the extent of
similarity. The statistical significance of the
correlation can be used to determine if the
agents’ distributions are "substantially different"
or "Similar."

In terms of the case, the correlation
coefficients, between the two experts’
distribution estimates are as follows: arcs 1-6
.999; arc 7, .686; arc 8, -.349; arc 9, -.345;
arcs 10-12, .995; and arc 13, -.219. In the case
of arcs 1-6, and 10-12, the arcs’ correlations are
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highly statistically significant, at .03 and .01,
respectively. Thus, we reject the hypothesis
that the distributions are not correlated.

The correlation coefficient for arc 7 was
not statistically significant. The correlation
coefficients for arcs 8, 9 and 13 were negative
and found not statistically significant. Thus, we
cannot reject the hypothesis that there is not a
correlation between the distributions, for arcs 7,
8, 9 and 13.

As a result, it would be reasonable to
combine the distributions on arcs 1-6 and 10-12.
However, the correlation coefficients for arcs 7,
8, 9 and 13 suggest that it would not be
appropriate to combine the agents’ probability
distributions for those arcs.

Unfortunately, the analysis of the
statistical significance of the correlation
coefficient has some limitations in the context of
multiple agent systems. First, in the generation
of most multiple agent systems, the number of
categories n, will be small. However, as n
approaches 3 the measure of statistical
significance approaches 0, since the factor (n-3)
is used in the determination of the statistical
significance (e.g., Freund [1971]). Second, this
test of statistical significance of the correlation
coefficient assumes a bivariate normal
distribution. Unfortunately, that assumption is
not always valid (e.g., Freund [1971]). Third,
the correlation measures relatedness and not
necessarily whether or not the two should
agents’ distributions should be combined. Thus,
an alternative approach is discussed.

4.2 Cutpoints

This section presents a new approach for
analysis of whether agent probability
distributions, for a given rule, are substantially
different. This approach, referred to as
cutpoints, requires no distribution assumption as
was used in the determination of the statistical
significance of the correlation coefficient.



In terms of the discrete probability
distributions on the individual arcs, such as
those listed in table 1, each category will be
referred to as an index number. Some of those
indices have interesting properties that will help
us determine if the distributions of the two
experts are similar enough to, e.g., average.

Define a maximal cutpoint as an index
(in the example ranging from 1 to 6) such that
the difference in the cumulative probability,
between the two distributions, at that index, is
maximal. For example, in the case of arc 7, at
category 3 the distribution for expert 1 has
probability of .410, while that of expert 2 has
probability of .800. The difference of .390 is
larger than that of any other cutpoint, for n =
1, ..., 6. The complete set of maximal
cutpoints, for the case, is given in Table 2.

TABLE 2
Maximal Cutpoints for the Sample of

Probability Assessments

Are # Expert #1 Expert #2

x x’ x x’ Location Amount

1. .990 .010 1.000 .000 1 .010
2. .990 .010 1.000 .000 1 .010
3. .985 .015 1.000 .000 1 .015
4. .985 .015 1.000 .000 1 .015
5. .990 .010 1.000 .000 1 .010
6. .990 .010 1.000 .000 1 .010
7. .410 .590 .800 .200 3 .390
8. .000 1.000 1.000 .000 5 1.000
9. .980 .020 .000 1.000 1 .980
10. .900 .100 1.000 .000 1 .100
11. .980 .020 .900 .100 1 .080
12 .900 .100 1.000 .000 1 .100
13. .010 .990 .800 .200 2 .790

Source: Ng and Abrarnson [1991]
"Location" refers to category at which maximal eutpoint
occurs. "Amount" is the mount is the absolute value of
(Pr(x for expert 1) - Pr(x for expert 

Define a zero cutpoint as an index where
the cumulative probability for one distribution is
zero and the cumulative probability for the other
distribution is nonzero. There may be more
than one zero cutpoint for a distribution. For

example, in the case of arc 8, zero cutpoints
occur at indices 3, 4, and 5.

Define a double zero cutpoint as an
index, such that the cumulative probability for
both distributions at a zero cutpoint is one. In
that case, there is an index where all the
probability for one expert is on one side of the
index and all the probability for the other expert
is on the other side of the index. For example,
as shown for arc 8 there is a double zero
cutpoint at the index 5. There also may be
multiple double zero cut-points.

4.3 Use of Cutpoints

These cutpoint concepts can be useful in
the analysis of the similarity of two probability
distributions on an arc. First, the occurrence of
a double zero cutpoint is probably the most
critical. Zero and double cutpoints define
alternative ways to define the entire distribution,
with two indices, say x and -x. That revised
distribution, with a double zero cutpoint, has
zero probability associated with x and -x for
each of the two experts. This implies the two
experts see certainty of mutually exclusive sets
of events. Thus, rather than just defining level,
there can be implications for structure: A zero
probability between two events indicates no
relationship between events.

Second, the maximal cutpoint provides
insight into the similarity of the distributions of
the two experts. The maximal cutpoint value
provides a measure that allows us to assess the
point of maximal difference between the
experts. One approach would be to suggest that
those distributions with a maximum cutpoint of
.10 or lower (or .05 or .01, as in classic
probability theory) would be viewed as similar,
while those with a cutpoint larger than .10
would be viewed as disparate. This approach
indicates that arcs 7, 8, 9 and 13 would be
viewed as disparate at the .10 level. In this
case the results are the same as the use of the
correlation coefficient analysis.
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Third, maximal cutpoints are useful in
describing the index number behavior. In
particular, the maximal cutpoints for a set of
arcs provides a distribution of cutpoints. In the
example, "1" is a maximal cutpoint ten times,
"2," "3," and "5," (arcs 7, 8 and 13) are each
cut-points one time. As a result, we might assert
that the comparison of the probabilities
distributions for arcs 7, 8 and 13 behave
differently than the comparison of the other
arcs. This could suggest that the distributions
of the two agents for those arcs are sufficiently
different than the other distributions.

4.4 Summary

This section has presented a portfolio of
methods for determining the existence of
similarity or a significant difference between
probability distribution estimates of multiple
agents. In each case it was found that arcs 7, 8,
9 and 13 were disparate enough that they
probably should not be combined.

The existence of such differences can be
critical to the success of the system.
Particularly for those systems designed to assist
in making decisions with "life and death"
consequences. Potentially camouflaging
processes by averaging distributions may result
in ignoring an important underlying process of
critical importance.

5. Summary, Extensions and Contributions

This section briefly summarizes the
paper, reviews some potential extensions and
discusses some of the contributions of the paper.

5.1 Summary

This paper has investigated the issue of
when probability assessments of multiple experts
in the generation of ES and ID are similar or
disparate. The correlation coefficient was used
as a measure of similarity. In addition, a
cutpoint approach was developed and

demonstrated. It was found that the example
system appears to combine disparate probability
distributions.

Although the focus of this paper was on
determining whether or not expert probability
assessments are similar, the paper briefly
discussed the alternatives that can be executed if
the assessments appear to be substantially
different. For example, an assessment may be
in error; consensus may be used to determine
which solution is appropriate; case-based
reasoning might be used to determine a set of
contingencies in which one or another model
would be appropriate; or negotiations may be
necessary to choose which set of assessments
should be used.

5.2 Extensions

This paper can be extended in a number
of ways. First, although the probability
distributions were used in an influence diagram,
this analysis is not limited to that context.

Second, in some cases we may be able to
determine that the sets of expert probability
distribution assessments come from specific
distributions, e.g., poisson. In such a case,
rather than using traditional statistical
approaches to generate estimates of statistical
significance, we could generate specific
distribution-based, distributions of test statistics.

Third, nonparametric approaches could
be used to evaluate the statistical significance.
For example, computer intensive statistics
(Noreen [1986]) could be used to generate 
distribution of test statistics in order to assess
the statistical significance of a particular
correlation coefficient.

.

Footnotes

This paper does not criticize the systems
referenced here. In fact, each of these
systems is a path breaking system for a
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number of reasons. Instead, this paper
examines these systems in order to
determine what kinds of problems can occur
in the process of integrating multiple agent
systems. In addition, these systems are
used to provide data for the analysis used in
the paper.

.
Influence diagrams capture knowledge in a
graphic arrangement of nodes (events) and
relationships between events (arcs). Arcs
can include probability distribution
information about the relationship between
events.
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Designing Testable, Heterogeneous Software Environments
Christopher Landauer, Kirstie Bellman
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Over the last 8 years, we have developed techniques for designing, testing,
and evaluating several new computer technologies, including knowledge-based
systems (KBSs). However, even as we speak, the technologies that we need 
contend with are changing; rarely do these new technologies come alone.
Instead, we are in an era where the problems we are working on demand large
software environments with toolsets and libraries composed of often very
different types of components. We see fuzzy controllers combined with
knowledge-bases and neural nets and all of these combined with standard
graphic programs, user interfaces, computer algorithms, spreadsheet programs,
editors, database management systems etc.

In this paper we introduce a methodology for constructing large heterogeneous
software environments in such a way as to make them ’’testable’’ and
maintainable. The paper is divided into two parts: first, we introduce our
approach to engineering software environments, and then our approach to

verification and validation of KBSs. Then we show how the V\&V methods can be
applied directly to the KBSs that hold the ’’wrappings’’, and use them to
analyze a simple example.

The ’’wrapping’’ methodology builds flexible environments by encapsulating
both programs and data (ALL computational resources in a system) with the
explicit knowledge of what type of resource they are, what they do, and with
knowledge of their various styles of use. These wrappings provide standard

interfaces to software resources, and provide knowledge about the resource, so
that other tools in the environment can interact appropriately with the
wrapped resource, either to provide it with information or to use its
information effectively. These descriptions include not only the usual
protocol and input requirements for applying a software resource (what we call
’’assembly’’), but also metaknowledge about the appropriate context for
applying a resource and for adapting a resource to different problems (which
is what we call ’’integration’’). The conceptual architecture we have
developed has two main components: the wrappings, which are knowledge-based
interfaces supporting the use of resources, and the Study Manager, which is a

program that processes the wrappings to coordinate the problem study
activities.

A major principle of our approach is to wrap everything (Everything!): All

tools, data and other software resources are wrapped e.g., data files, user
screens and other user interface elements, plans and scripts, databases,
computational analysis tools, simulation programs, models and other external
programs and data. Even the programs that interpret the wrappings of other
software are wrapped so we can study the wrapping processors with the same
system. Any part of a complex software environment is considered to be a
software resource, and everything gets explicit descriptions.

The wrapping approach is essentially a knowledge-based approach to dealing
with the problems of engineering large, heterogeneous software and modelling
environments. We use explicit knowledge about the software resources in order
to select, integrate, and adapt them to the needs of the user. At the moment,
this knowledge is gathered a priori from whatever knowledge sources exist: the
resource developers, experts (on that model, on that domain, on that numerical
algorithm and so forth), documentation, texts, etc.. Eventually we can
envision systems which are actually smart enough to be able to generate some
of the knowledge we use in the wrappings about a resource. For example, even
now we could construct programs that would analyze the equations in a given
software program for non-linearity and simultaneity and add that information
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to the wrappings for a software resource. However, regardless of how the
knowledge is obtained, we are left in this approach with a number of rules and
opinions for the use and adaptation of a software resource. The question then

arises, ’’How do we check the correctness of this metaknowledge?’’ and even
more so, ’’How do we check the consistency of this knowledge with the

knowledge in the other wrappings being processed in this system?’’ In this
part of the paper, we briefly review the verification and validation methods
we have developed for testing KBSs and discuss how these methods can be
directly applied to the databases that hold the ’’wrappings’’

We summarize the few aspects of the wrapping approach that are used in the
V\&V discussion. Problems are ’’posed’’, by the system or the user, and the
Study Manager organizes the resources to solve the problem. The current state
of knowledge is maintained as a list of context values, maintained in this

implementation as pairs, with context component parameters and values. Many
problems are information request problems, asking for the value for a
particular context component. The context and requirement conditions are
expressed in terms of value conditions on these context component names, and
the products are described as context component names whose values are set by

a resource.

We performed an example analysis on one of our small application projects, by
interpreting the Wrapping KB (WKB) entries as rules. The application consists

of a small number of programs, set up by user menu selections, and coordinated
by means of a few sample scripts. We start by describing the basic entities
in the application, then describe the WKB formats for this application and
show some example entries. There are a few problems that can be posed,
including ’’network\_study’’, and auxiliary problems like
’’need\ execution\_style’’ that help collect information required to solve 
problem. The resources include application programs (a few large analysis
programs written in Fortran, a simulation package written in C, and a user
interface and intelligent editor to one of the analysis programs, written in
C++) and data files (typically input files for the application programs).
These programs are often used together, and for the small number of scenarios
we prepared for this application, the coordination was done with explicit
scripts. Finally, the very simple user interface was a very limited menu
interpreter. Each of the other programs has its own user interface, and all
of them were made available.

We decided to get a quick assessment of the dynamic properties of this KB by
using the CLIPS inference engine. CLIPS has advantages in wide availability,
low cost, and reliability over other expert system shells, and is the only
expert system shell we know with a validated inference engine. It thus
affords an easily used tool for testing certain properties of rulebases. The
differences between CLIPS and other inference engines is trivial compared to
the advantage of having a focus for the analysis of a rulebase. The
translation (done by hand) into CLIPS resulted in 75 rules.

The main point of doing the example V\&V analysis of the wrappings was to show
that we can usefully find anomalies in the KBs, even at a very early stage of
development. Despite the fact that we used a different inference engine, a
different language, and an incomplete translation scheme, the exercise caught
many errors in the KB. Each of the translation or analysis steps found
different errors, and even different kinds of errors. It is our experience
that any kind of formal analysis at all can find errors, and the more
different kinds of analysis are tried, the better able they are to detect

errors.

The correlation computations took about 4 seconds to run on a SUN SparcStation
2, and about 45 seconds on a SUN 3/60 (with i0 seconds or so to compile using
gcc), so the time required for these calculations is trivial. Writing the
program to compute the correlations, and editing the files used by that
program, was a matter of a couple of hours in an afternoon, so the time

required to prepare for this analysis was also quite small.
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Although we only emphasize in this paper the structural analyses that may be
applied to the wrappings, we believe that the wrapping approach will advance

software engineering in several ways: (i) it provides explicit descriptions
(and documentation) about each software resource, including what is in essence

both a specification for that resource and practical advice on its acceptable
and appropriate use; (2) it can provide traceability during dynamic testing,
and an easy way to insert probes; (3) it allows standard structural testing 
the wrappings, when these are stored together as a database; (4) it allows the
possibility of incorporating on-line software checkers. The hope is that
eventually we will have computer systems in which the means to test and
evaluate the system are not peripheral, but rather an integral part of the

software system.
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