
Application of Metric Measures: From Conventional
Software to Expert Systems

Zhisong Chen and Ching Y. Suen
Centre for Pattern Recognition and Machine Intelligence

Concordia University
1455 de Maisonneuve Blvd. West

Montr6al, Qu6bec H3G 1M8
Canada

czs~cenparmi.concordia.ca

Abstract
The importance of metric measures has been rec-
ognized in almost every scientific and engineering
discipline, including software engineering where
much progress in this application has been made.
In this paper, metric measures are studied for
their application to expert systems, for which lit-
tle work has been done. The characteristics and
organization of metric measures are discussed and
presented. Due to the analogy between conven-
tional software and expert system, a comparative
study is also conducted. A new expert system
metric is proposed. Test results indicate that this
new measure compares favorably with others.

Introduction
While much progress has been made in quantitative
metric measurements of conventional software (CS),
little work has been done in this area for expert systems
(ESs). Measurement plays a crucial role in the devel-
opment of every discipline and the metrics used are
essential in each scientific and engineering field. Met-
rics can also play a role in the evolution of knowledge
engineering from an art to an engineering and scien-
tific discipline. Expert system is one of the most im-
portant applications of knowledge engineering and has
been widely used in a variety of domains. However,
the lack of formal measurements in ESs has prevented
our control over them and increased the risk of apply-
ing them. In this paper, we will examine some expert
system metric measures based on the analysis of con-
ventional software metrics. A new complexity metric
- RC has been developed, which has the best perfor-
mance. Some problems related to such applications
will also be discussed.

object in terms of its properties or attributes [Fenton,
1991; Harrison, 1992]. Basically, the measure which re-
flects such a assignment can be described as the map-
ping 9v from ,9 to Af, where 8 represents the set of
objects to be measured or some other measures, and
Af is the set of objects in a formal system. For example,
in the case of software engineering (SE), S is often the
set of source codes or control flows, ~" represents the
different kinds of mapping functions (measurements)
from ~ to numerical set N’, such as the number of lines
of codes, program volume, effort and level [Halstead,
1977], and cyclomatic complexity [McCabe, 1976].

Measures can be roughly classified as direct mea-
sures and indirect measures [Fenton, 1991]. As the
names imply, the direct measures (such as number
of variables, number of distinct operators and oper-
ants) could be obtained by applying some measuring
mechanisms to the objects directly, while the indirect
measures (such as product complexity, maintainability,
testability) involve at least one of the other measures
obtained previously. There exist various mappings for
direct and indirect measures, which reflect the differ-
ent measuring strategies based on different intentions
and requirements. In general, metrics can be regarded
as the concrete representations of the individual mea-
sures, which can be identified by the associated metric
names. They could be applied to quantitatively char-
acterize the different attributes of products (such as
program size, number of predicates, number of exe-
cution paths) and the development process (such
time, programming correctness). Metrics can also be
divided into two classes, static and dynamic melrics.
Static metrics focus on the static characteristics of the
products or processes while dynamic metrics concern
the dynamic behavior. In this paper, our study is fo-
cussed on product-related and static metrics only.

Measurements

Measurement is usually described as a process or ac-
tivity in which a symbol or number is assigned to an

ES versus CS
ESs differ from conventional software (CS) in applica-
tion domain, development process, system structure,

37

From: AAAI Technical Report WS-93-05. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

[~ ESs CS
rules conventional statements
rule dependency data reference
rulebase source code
inference engine source code
forward/backward chaining sequential execution
reasoning calculation
shells programming languages
complex application domain clearly defined domain
expert-level performance data processing

Table 1: Comparisons between ESs and CS

execution order, and other aspects. However, they
also contain some conventional portions, such as the
arithmetic operations, function or procedure calls and
the employed variables. Table 1 gives a comparison
between rule-based ESs and CS on some of these char-
acteristics .

As a result, the development of measuring tech-
niques and methods for ESs falls into two approaches:

1) Develop new approaches to measure the attributes
that are inherent or particular to ESs

2) Adapt or extend the established techniques and
methods in SE to measure the common features that
exist both in conventional software and ESs.
Using the above as a general guideline, the design

of the expert system metrics will entail an analysis of
the problems and the proper implementation of the
measurements.

Expert System Metrics
Due to the analogy between ESs and CS, let’s first
briefly review the measurements used in SE.

Conventional Software Metrics
In SE, much effort has already been spent in quantify-
ing the different quality-related attributes of software
products, where the measured objects S are the set of
source codes and control flows, and the mapping flmc-
tions ~ are different proposed measuring approaches.
Considerable progress has been made in the past years.
Metrics have been suggested and used as an effective
way to predict and measure the characteristics of soft-
ware products in their entire life-cycle, and the Met-
rics Guided Methodology has been proposed by Ra-
mamoorthy [Ramamoorthy et aL, 1985]. The use of
metrics to evaluate the complexity of software prod-
ucts is quite common in the maintenance phase. Ac-
tually, many empirical studies have already been con-
ducted using such techniques [Li and Cheung, 1987;
Elshoff, 1984; Harrison et al., 1982].

Some of the typical metrics used in SE are: (1)
volume-based "software science" [Halstead, 1977], in
which the measurement of the program volume, ef-
fort and level is based on counting the operators and

operands; (2) control flow-based cyclomatic complexity
metric [McCabe, 1976], which is defined as the number
of decision points plus one to indicate the number of
basic paths in the control flow; (3) digraph-based scope
and ratio metrics [Harrison and Magel, 1981], which re-
flect the "influence" upon each selected node by other
nodes and "relatedness" among the nodes; and (4) hy-
brid metric [Li and Cheung, 1987], which combines the
scope idea with "software science" to avoid the short-
comings of single-factor measurement. Empirical stud-
ies support the notion that hybrid complexity measure-
ments, which take into account different factors of the
software product, could give more reliable and valid re-
sults for general cases [Li and Cheung, 1987; Tai, 1984;
Harrison et al., 1982].

Layer Structure of Metrics

In section 2, direct and indirect measures are described.
Software Metrics (conventional software metrics and
expert system metrics) for these measures can be fur-
ther refined. Given S represents the set of the objects,
Af is the numerical set, then the layer structure is pro-
posed as follows, which aims to organize them in a
more illustrative way:

1. Layer $1: the set of direct metric measures which
involve only one attribute (such as number of lines
of codes) of the objects to be measured, that is:

S1-- {F[F : So , Af}

where, So is the set of the attributes of S.

2. Layer S, (n _> 2): the set of metric measures which
involves at least one metric from layer n - 1, that is:

where, k,~_ 1 ¢ 0.

With the defined structure above, some metrics used
in SE can be categorized as shown in Table 2, which is
one possible classification of the conventional software
metrics. Similar metric layers can also be developed
for expert system metrics.

It can be seen that the quality metrics such as main-
tainability usually belong to the higher layers, whereas
the first layer metrics consist of the number of lines of
codes, number of operators, number of operands, etc,
which form the fundamental measures. The most im-
portant benefit of such layer organization is that some
concepts and techniques of information hiding can be
applied to design and evaluate the different layer met-
rics.

38

Product Quality

Maintainability
Understandability, Testability, Modifiability
Reliability, Efficiency, Usability
Complexity, Effort, Cost, Volume, Accuracy,
Correctness
Number of lines, number of variables,
number of operands, number of operators

Layer n

Layer 4
Layer 3

Layer 2

Layer 1

Table 2: Layer Structure of Metrics

Characteristics of Metric Measurement

The formulation of metric measurements is affected by
the following aspects:

¯ Objectives. The reason for defining metrics is to get
some feedbacks from the measures, hence to control
the system. The metrics without useful feedbacks
are meaningless. However, having different objec-
tives, some of them may be contradictory to each
others and require different types of feedbacks, may
lead to different measurement approaches, even for
the same metric. For example, there exist many
complexity metrics for the CS; McCabe’s control
flow-based cyclomatic complexity [McCabe, 1976]
aimed at identifying the basic control paths in the
program for "walking through", the data flow and
massive computation are not the concern. On the
other hand, Henry et al defined the complexity met-
ric [Henry and Kafura, 1981] in terms of information
flow to reflect the occurrence of changes, which was
declared to be important. Based on the claim that a
larger program has a higher maintenance cost [Harri-
son et al., 1982], the complexity measure could sim-
ply be defined as the number of source lines of codes
if the only concern is maintenance cost.

¯ Scale. There exist four kind of scales for metric mea-
surements: nominal scales, ordinal scales, interval
scales and ratio scales [Harrison et al., 1982]. It
is more practical to have the ordinal scale for the
higher layer (above first layer) metrics, which pro-
vides just the comparisons between different objects.
For example, when comparing the understandability
of two programs A and B, it is feasible to give the
result that A is more difficult than B. The reason is
that higher layer metric measures depend on many
factors including human aspects about which little is
known. It is hard, sometimes impossible, to exactly
measure these factors. However, relative compar-
isons can be made based on some existing attributes
of the objects. But this kinds of result has only lim-
ited use because some further operations cannot be
performed on them [Zuse and Bollmann, 1989].

¯ Operations. Owing to the different natures of vari-
ous metrics, it is not always meaningful to have some
operations on these metrics, such as the addition of

different metrics and statistical calculations. For the
former, it should be done in an admissible way, at
least it has an intuitive persuasion. Some metrics
may have different multi-vMues depending on differ-
ent points of views, so simply adding several mea-
sures together to obtain a single value for such met-
rics cannot reflect their real values adequately. For
the statistical calculations, even on the same mea-
sure, we should still be cautious in applying them,
because of restrictions imposed on them [Zuse and
Bollmann, 1989].

¯ Application. Metric measures only give quantita-
tive values for some properties of the objects. They
help to analyze the problems but cannot solve them.
To further apply such metric measures may in-
volve many other aspects such as the characteristics
(object features, maintainer’s experience, available
tools, analysis of the relationship between the metric
measures and the problems, etc) of the environment
in which such metrics are used and more work needs
to be done.

¯ Precision vs. Expense. There is a trade-off between
the precision of the measure and the expense re-
quired to obtain such a measure. It is obvious that
the more precise the metrics are, the more expensive
it usually is to get such metrics, since more informa-
tion and processing are involved. For higher layer
metrics, they are defined in terms of several other
measures, so the measure of such higher layer met-
rics will involve some low layer metric measures as
well. If we consider too many factors, hence too
many lower layer metrics, for a higher layer metric,
then the cost will be high. On the other hand, if
too few factors are considered, it is too coarse to be
meaningful and useful.

So, even metrics are useful, there exist some condi-
tions for them to be effective. Decision on the above
factors must be made before the actual measurement

Metrics for ESs

Having seen many metrics for CS, one wonders whether
they can also be applied to ESs? Harrison concluded
three steps for the formulation of conventional software
metrics: (1) definitions of the properties; (2) method
for weighting the interesting properties; (3) method
for summarizing the resulting information [Harrison,
1992]. A similar but different body of metric measure-
ment can also be developed for the formal evaluation of
ESs [Suen et al., 1990]. Traditional software measur-
ing techniques may be applied to the inference engine
[Barrett, 1990; Kiper, 1989], because of its similarities
in function to conventional software; that is, both are
the implementations of some algorithms for the pur-
pose of control. But these measures cannot be applied
to the knowledge-base directly, because of its differ-
ent nature. For example, the rulebase which repre-
sents the knowledge-base of an expert system is made

39

up of many individual rules, each of which expressed
as if < antecedents- list > then < consequent >
acts like a decision node which is quite different from
a conventional statement. There is a strong interrela-
tion among the rules called dependency, which is the
matching between the antecedents and consequents of
different rules. These dependencies decide and consti-
tute the dynamic search paths, sometimes the number
of paths may be enormous. In a conventional program,
the relationship among the statements is mainly built
by the data (variables) references using logical relation-
ship, which usually do not produce a large number of
control paths. Also, in ESs, the execution order of rules
will not be decided by the physical order of rules listed
in the rulebase. It is mainly decided by the input data
(facts) and the inference engine or metarules. How-
ever, the order in the conventional programs is only
determined by the input data and the statements list-
ing. The control and data are mixed in the source
code, whereas in ESs, there is a separation between
the rulebase and the inference engine.

Already, some work on measuring ESs has be-
gun. For example, Plant presented a rigorous method-
ology that used a set of formal specifications to-
ward the implementation of knowledge-based sys-
tems [Plant, 1991b]. The quality improvement through
this methodology was shown by the effects of this
methodology on some quality factors such as correct-
ness, reliability, efficiency, integrity, testability, usabil-
ity, maintainability, which can be evaluated by the
metrics [Plant, 1991a]. Kiper attempted to extend Mc-
Cabe’s cyclomatic metric to measure the basic search
paths contained in rulebases [Kiper, 1989]. Buchanan
suggested the complexity metric of a solution space to
be the measurement of the average width and depth of
the rulebase [Buchanan, 1987]. Mehrotra defined and
used a "distance metric" to group the rulebase so as to
increase the expert system’s comprehensibility, main-
tainability and reliability [Mehrotra, 1991]; Preece sug-
gested that attention should also be paid to the dif-
ferences in data-to-rule ratio [Preece, 1990]. And in
the UK, the Gateway project which aims at develop-
ing a coherent set of metrics for knowledge-base, is in
progress [Behrendt et al., 1991].

To date, several metrics have been proposed to mea-
sure rulebases, such as:
¯ object volume [Kaisler, 1986],

¯ number of rules [Suen et al., 1990],

¯ number of antecedents and consequents in a rule
[Kaisler, 1986],

¯ breadth of the knowledge-base [Suen et al., 1990],

¯ depth of the search space [Such et al., 1990],

¯ complexity of individual rules [Miller, 1990],

¯ vocabulary of the knowledge-base [Buchanan, 1987].

The problem lies in the validity of these measure-
ments; some of them may be highly inter-related and

measure the same factors of the rulebase. Also we can
see that all the above metrics lie in the first and second
layers, this means that the current research is still at
its initial state -- the study of the lower layer metrics
and more research has to be done in this area.

Rulebase Complexity

The complexity of rule-based ESs or rulebases plays
an important role in their evaluation. Since little ef-
fort has been devoted to measuring it, we will study
this subject and propose a new rulebase complexity
measure - RC metric which will be described in the
following sections.

Model of Complexity

Now the question is to recognize the essence of the
complexity of rulebases. First, in order to avoid the
confusion which may occur due to the various impli-
cations for the complexity, we present the following
definition for the rulebase complexity metric:

"The measure of the degree of the difficulty
in understanding and managing the knowledge
structure1 represented by the rulebase."

The above indicates that our purpose in the mea-
surement mainly concerns with understanding and
managing the rulebase. It is related to maintainability
which is defined over the complexity and some other
factors. The objects S to be measured is the set of
rulebases, and, like the conventional complexity mea-
sure, the measure function ~" can be constructed at the
second layer.

Complexity measure may be affected by (a) exter-
nal component which produces the complexity and (b)
internal component which reflects the complexity of ob-
jects in certain forms to be measured. For rulebases,
this form appears to be the rulebase size and the de-
pendency among the rules. The external component
relates to the experts who provide the expertise and
knowledge, the knowledge engineers who acquire and
organize the knowledge and some other environment
factors. While it seems that the above external com-
ponent is situation-dependent and difficult to measure,
actually our focus is on the measurement of the inter-
nal component.

Formulation of RC Metric

As discussed above, "dependency" and "size" seem to
be two major components contributing to the formu-
lation of the rulebase complexity. By intuition, it also
follows that a person attempting to understand a rule-
base will be mentally affected by the size of the rule-
base and all the search paths formed by the rule de-

1Here, we are mainly concerned with the difficulty
caused by the knowledge-base’s syntactic structure, the
semantic influence is expected to be studied in the near
future.

4O

pendency. Based on this, our new complexity metric
RC is defined in terms of the following direct measures.

¯ Content ~"

¯ Connectivity p

¯ Size v

The first component is designed to measure the con-
tents of the rules, which form the different match pat-
terns among the rules and give the "potential chain-
ing"; the second part attempts to evaluate the "relat-
edness" among the rules, which constitutes the rule
chains and search paths. The last factor reflects the
effect of the size on the complexity.

Hence, by summarizing the above the three direct
measures, the quantitative RC metric on the rulebase
R is defined as:

kI k2RC(R) [WI,(1.0-)+W2,(1.0-
kl + 2_.,i=~1 p(ri) 2 + 7r

1.0 + k3)]n (1)+ W3 * (1.0 k3.{.v

where

P = Set of connected rules.

ri EP

kl, k2, k3 - scale factors

n = constant

W1, W2, Wa = weights

The weights have been set in such a way that
WI + W~ + W3 = 1 and they indicate the different
contributions of the three components relating to p, r,
and v.

The rationales for expressing RC as formula (1) are
summarized as follows:

¯ The complexity may be of a higher order than linear
in terms of p, 7r, and v.

¯ As p, 7r and v increase, the RC measurement also
increases.

¯ Reasonable results can be obtained when formula (1)
is applied to some sample rulebases.

¯ Empirical studies and experiments may be used to
deduce this kind of measurements.

Further analysis of formula 1 indicates that the RC
metric has some interesting properties2 which are listed
below:

Suppose R represents a rulebase.

(a) 0 _< RC(R) <

2It can be derived from formula 1 based on: W1 = W2 =
W3= ’~, kl =k2=100, ka=50, n=l.

Rulebases Purposes

R1 Animal Identification
R2 Trip Route Advisor
R3 Tree Classification
R4 Undergraduate Course Advisor
R5 Software Selection
R6 Tape Product Selection
R7 Automobile Purchase Advisor
R8 Hospital Management
R9 Software Preliminary Evaluation

Ri0 Selection of Law Universities
Rll Steel Wire Rope Diagnostics
R12 Automobile Diagnostics
R13 Children Health State Advisor
R14 Allergy Self-Help
R15 Career Choices
R16 Computer Purchasing
R17 Diagnosis of Abdominal Pain
R18 On-Line Automobile Selection
RI9 Rock Identification
R20 Car Diagnostics
R21 Phone Line Fault Detection

Table 3: Testing Data Used in the Empirical Studies

(b) Adding a new node (rule) or edge (connection)
to R without reducing the search paths will increase
RC(R) except that the added node is isolated.

(c) For any subset (9 C R, RC(@) < RC(R). That
is, the complexity of each sub-rulebase is less than
or equal to that of the global rulebase.

(d) RC(R) = 0 denotes that R contains only isolated
nodes in which each node acts as a separate sub-
graph.

(e) 0.0254 < RC(R) < 0.667 if 1~ forms only one
search path.

¯ (f) RC(R) > 0.0340 if there are more than two paths
in R.

Some Results

The 21 rulebases presented in Table 3 are used as the
testing data to compute three metrics: number of rules
(Nt~), Buchanan’s solution space complexity (BSSC)
and the new RC metric. The measuring results are
shown in Figure 4.

A preliminary analysis of the results indicates the
following:

¯ RC measure has quite good correlation with NR. and
BSSC which have been considered as indicators of
rulebase complexity. This correlation is an inher-
ent property of RC measurement, determined by our
consideration in its formulation. Therefore, it shows
that RC can indeed act as an indicator of the rule-
base complexity. Imperfect correlation, which makes

41

Rulebases NR BSSC RC
RI 10 2.59 0.300
R2 12 3.0 0.441
R3 14 3.4 0.276
R4 16 4.3 0.338
R5 16 4.6 0.402
Rs 23 9.8 0.352
R7 25 6.5 0.457
R8 38 16.2 0.507
~9 44 15.4 0.494
R10 47 11.0 0.407
Rll 53 28.1 0.486
R12 62 34.5 0.570
R13 74 43.7 0.572
R14 83 50.8 0.528
R15 91 79.7 0.663
R16 112 81.4 0.627
R17 114 76.0 0.517
R18 117 88.2 0.701
R19 123 89.7 0.643
R20 127 72.2 0.617
R21 131 90.3 0.654

Table 4: Measuring Results for NR, BSSC and RC
Metrics

our measurement more reasonable from the view-
point of rulebase complexity, can be attributed to
the following reasons:

¯ In some applications, the rulebases, especially those
with a large number of rules such as the R1T with
114 rules in our testing data, can be degraded into
different subsets of rules without any connection to
each other. As a result, their complexity is de-
creased because of this separation, and it may not
look as high as the number of rules may indicate.
One extreme situation is that all rules in a large
rulebase are isolated from each other, that is, each
rule forms a separate subset without connecting to
the others. Therefore the overall complexity is in
fact very low3, however, simply counting the number
of rules without consideration of their internal rela-
tions among rules could give the wrong information
and lead to contradictory decision. Our measure-
ment reflects this intuitive feature, for example, the
RC measurement for the rulebase R17 in the testing
data is only 0.517 which is lower than those of the
rulebases Rls, R15, R14, R13, R12 which contain less
rules. So, from this point of view, RC as a com-
plexity indicator appears to be more accurate than
simply the number of rules.

¯ The number of variables contained in the matching
patterns in each rule is also an important aspect

3In our measurement, we will count it as zero.

which should not be ignored when comparing differ-
ent rulebases. However, BSSC reflects the size of the
abstract solution space only; it does not account for
the contents of the rulebases. It only concerns with
the rule chains formed by the rulebases, and regards
the complexities of P --* B and P(Y, X) ---* B(X,
as the same even though the latter case usually im-
plies a more complicated matching. This is one
of the reasons that for some rulebases with a high
Buchanan’s solution space complexity, RC measure
is not so high. This indicates that the RC mea-
surement can preform better than the solution space
complexity.

Evaluating Expert System Metrics

In order to validate the existing metrics and formu-
late new metric definitions, it is essential to establish
some basic properties against which the measure could
be evaluated. Besides the general requirements for the
metric measurements such as meaningful, reasonable,
reliable and cost-effective, we present the following de-
sired properties for evaluating the metric behavior.

Suppose in the following discussions, the capital let-
ters denote different rulebases, 0(7~) represents the
metric 0 measured on rulebase T~, then we have:

Property 1: 3P 3T~. (0(79) ~ 0(T~)).

This property requires the metric to be able to scale
and compare the rulebases.

Property 2: VP VT~. (P C T~ --+ 0(T~,) < 0(7~)).

This property means that the measure on a sub-
rulebase shall be smaller than that of the rulebase
as a whole.

Property 3: For a nonnegative constant c, there are
only finite number of rulebases with the measure c.

Property 4: 3P 3T~. (P/= Q A 0(7)) = 0(7~)).

Here, the/= sign denotes the unequal dependency
structures of different rulebases.

This property indicates that rulebases with different
structures may have the same measure.

Property 5: 3P 3T~. (P <> Q A O(P) = 0(7~)).

The "<>" sign means the unequal functions of dif-
ferent rulebases.

This property indicates that rulebases with different
functions may have the same measure.

Property 6:379 3~. (79 = Q A 0(79) ¢ 0(T~)).

The " --" sign means the rulebases with the same
function.

This property indicates that rulebases having the
same behavior may not have the same measure.

Property 7:379 3T~. (0(79) = 0(7~) A 3Q. (0(79
o(n u Q)))

JIProperty 1 I 2[3] 4I 5I 6] 7 I 8[9 [10 I 11 [I
Number
RC 1 1 1 1 1 1 1 1 1 1 1
NR 1 1 1 1 1 1 0 1 0 0 0
BSSC 1 0 o 1 1 1 1 1 1 1 o
KC 1 0 0 1 1 1 1 1 1 1 o
ADSS 1 0 0 1 1 1 1 1 1 1 0
ABSS 1 0 0 1 1 1 1 1 1 1 0
NAC 1 1 1 1 1 1 0 1 0 0 1

Table 5: Evaluation of Different Metrics

This property means that the conjunction of rule-
bases may have different effects.

Property 8: If P is a renaming of T~, that is, if there
exists a sequence T~= P1, P2,. , P, =79, Pi is ob-
tained by replacing all the instances of an identifier
x in Pi-1 by y where y doesn’t appear in 79i-1, then
for the metric 0, which is based on the syntactic
structures of rulebases, 0(79) = 0(Ze).

This property points out that in general renaming
will not change the measure.

Property 9:37~ 37~. (0(79) + 0(T~) > 0(79

This property asserts that in some cases, the con-
junction of rulebases decreases the measure.

Property 10:379 3T~. (0(79) + O(T~) < 0(79

This property asserts that in some cases, the con-
junction of rulebases increases the measures.

Property lh aP 3T~. (79 ¢# 7~ A 0(79) ~£ O(T~))

The "¢~" sign means the equal dependency graphs
of the rulebases.

This property indicates that for some rulebases, even
they have the same dependency structures, the types
of dependencies contained in them may be different.
So the metric measures for them should be different,
i.e., the metric measures should be sensitive to these
differences.

Based on the properties introduced above, we have
compared several metrics: our proposed complexity
metric (RC), Buchanan’s solution space complexity
measure (BSSC), number of rules (NR), Kiper’s
plexity measure (KC), average depth of search space
(ADSS), average breadth of search space (ABSS),
number of antecedents and consequents (NAC). The re-
sult is listed in Table 5, where the " 1 " sign denotes the
metric with the property while the " 0 " sign indicates
the metric without the property.

From the above, we can see that the performances
of the four metrics: BSSC, KC, ADSS and ABSS are
the same, this is because they were all based on the ab-
stract search space and the search paths in the space.
So, they, as the measures, have the same effect. Also,
NK and NAC metrics perform quit similarly in the
measurements. They are the measures of the size. All

IRC
BSSC, KC, ADSS, ABSS
NR, NAC

Good Performance
Moderate Performance
Weak Performance

Table 6: Some Metric Groups According to Their Per-
formance

the above measures lack the insight into the rule inter-
relation 4. This is why the RC metric performs best
in all these measures. It takes into account the space,
the size and the matching patterns, and it proves again
that the hybrid metric usually gives more reliable and
adequate results. According to the performance of
these metrics, they can be ranked as shown in Table 6.

Summary

We have studied and discussed several problems con-
cerning metric measurements on expert systems, which
are still in their infant state. Several proposed metrics
have been examined. As a concrete example, a new
complexity measure -- RC metric is proposed, which
shows some promise.

So far, our metric study is still focusing on the low
layer (less than 3) metrics. Building a system of met-
rics ranging from the first layer to the top one is the
goal of our study. We believe this kind of study and
research is expected to contribute to the assurance of
the qualities of the products developed in the knowl-
edge engineering environment.

Acknowledgment
This research was supported by Bell Canada. The en-
couragement of Messrs. J.N. Drouin and F. Coallier is
much appreciated.

References

Barrett, Britt W. 1990. A software quality spec-
ification methodology for knowledge-based systems.
In Culbert, Chris, editor 1990, AAAI-90 Workshop
on Knowledge Based Systems Verification, Validation
and Testing. AAAI. Unpublished Workshop Notes.
Behrendt, W.; Lambert, S. C.; Ringland, G. A.;
Hughes, P.; and Poulter, K. 1991. Gateway: Met-
rics for knowledge based systems. In Liebowitz, Jay,
editor 1991, Proceedings of the World Congress on Ex-
pert Systems, volume 2, New York. Pergamon Press.
1056-1067.

Buchanan, Bruce G. 1987. Artificial intelligence as an
experimental science. Technical Report KSL 87-03,
Knowledge Systems Laboratory, Stanford University,
Stanford, CA.

4This is also the reason why the number of antecedents
and consequents performs a little better than the number
of rules.

43

Elshoff, James L. 1984. Characteristics of program
complexity measurement. In Proc. of the Int. Con-
ference on Software Engineering. 288-293.
Fenton, Norman E. 1991. Software Metrics: A Rigor-
ous Approach. Chapman & Hall, 2-6 Boundary Row
London SE1 8HN.
Halstead, M.H. 1977. Elements of Software Science.
North-Holland, New York.
Harrison, Warren and Magel, Kenneth 1981. A graph-
theoretic complexity measure. In A CM Computer Sci-
ence Conf., St. Louis.
Harrison, Warren; Magel, Kenneth; and Ray-
mond Kluczny, Arlan Dekoch 1982. Applying soft-
ware complexity metrics to program maintenance.
Computer 15:65-79.

Harrison, Warren 1992. Software measurement and
metrics. Encyclopedia of Computer Science and Tech-
nology 26(Supplement 11):363-372.
Henry, Sallie and Kafura, Dennis 1981. Software
structure metrics based on information flow. IEEE
Trans. on Software Engineering SE-7(5):510-518.

Kaisler, Stephen H. 1986. Expert system metrics. In
Proc. 1986 IEEE International Conference on Sys-
tems, Man, and Cybernetics, volume 1. IEEE. 114-
120.
Kiper, James D. 1989. Structural testing of rule-based
expert systems. In IJCAI-89 Workshop on Verifica-
tion, Validation and Testing of Knowledge-Based Sys-
tems. IJCAI.
Li, H. F. and Cheung, W.K. 1987. An empirical study
of software metrics. IEEE Trans. on Software Engi-
neering SE-13(6):697-708.

McCabe, Thomas J. 1976. A complexity measure-
ment. IEEE Trans. on Software Engineering SE-
2(4):308-320.
Mehrotra, Mala 1991. Rule grouping: A software
engineering approach towards verification of expert
system. NASA Contract Report 4372, Vigyan Inc.,
NASA Langley, Hampton VA.
Miller, Lance A. 1990. Dynamic testing of knowledge
bases using the heuristic testing approach. Expert
Systems with Applications (US) 1(3):249-269.
Plant, R. T. 1991a. Factors in software quality for
knowledge-based systems. Information and Software
Technology (UK) 33(7):527-536.
Plant, R. T. 1991b. Rigorous approach to the de-
velopment of knowledge-based systems. Knowledge
Based Systems 4(4):186-196.
Preece, Alun D. 1990. The role of specifications in
expert system evaluation. In Culbert, Chris, editor
1990, AAAI-90 Workshop on Knowledge Based Sys-
tems Verification, Validation and Testing. AAAI. Un-
published Workshop Notes.
Ramamoorthy, C. V.; Tsai, Wei-Tek; Yamaura, Tsu-
neo; and Blide, Anupam 1985. Metrics guided

methodology. In Proc. of IEEE Computer Society’s
Ninth International Computer Software ~J Applica-
tion Conference, Chicago. 111-120.

Suen, Ching Y.; Grogono, Peter D.; Shinghal, Rajjan;
and Coallier, Francois 1990. Verifying, validating, and
measuring the performance of expert systems. Expert
Systems with Applications (US) 1(2):93-102.
Tat, Kui-Ching 1984. A program complexity metric
based on data flow information in control graphs. In
Processing of 7th International Conference on Soft-
ware Engineering, Orlando. 239-248.

Zuse, Horst and Bollmann, Peter 1989. Software met-
rics: Using measurement theory to describe the prop-
erties and scales of static software complexity metrics.
SIGPLAN Notices 24(8):510-518.

44

