From: AAAI Technical Report WS-93-05. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

The Meta-Knowledge Level: A Methodology for Validation
Robert T. Plant

Department of Computer Information Systems
University of Miami
Coral Gables
Florida 33124

ABSTRACT

The aim of this paper is to show that when a development life cycle of representation
refinement is utilized, that follows the principles of Newell’s Knowledge-Level, then the system
will become self validating. This is illustrated through a rigorous development methodologythat
utilizes formal techniques in the specification of the domain knowledge, the cognitive aspects
and the representation. The paper introduces the concept of the Meta Knowledge-Level, a
variant of Newell’s Knowledge-Level that facilitates the construction of a meta knowledge
model. This provides the knowledge engineer with a dynamic perspective of the system which
can be used in conjunctionwith the static aspects found in the intermediate representation, an
implementation independent representation that is created through the use of a knowledge
filter.

1. Introduction

The focus of research and development in the area of methodologies for knowledge-based systems has
primarily been upon the functionality, formal aspects and refinement of this form of software system [Plant.93]
[Miller.90]. This has been subsequently reflected in the research area of validation and verification for knowledge-
based systems, where the primary focus has been upon the static structures of the systems. In this paper we will
attempt to move away from this static perspective towards an alternative philosophy of system design, one that
relies not only upon the use of formality and refinement but one that utilizes a variant of Newell’s Knowledge-
Level [Newell.82] to influence the design, this being the Meta-Knowledge Level. The paper will present an
overview of this approach and indicate how this meta knowledge can be obtained and used to assist in the design
and validation processes.

2. Background

The creation of knowledge-based systems and their subsequent verification can be considered from two
aspects: the static and the dynamic aspects of the system. The development methods are focused upon the use
of increasingly formal aspects of system development, such that the proof obligation for systems can be ultimately
determined and met. These development mechanisms are at or approaching the TRILLIUM, Level 2 capability
with certain aspects moving towards Level 3 capability [Preece.93]. This move towards formal functionality in
system design has, as Bellman notes, moved the validation research to move in a parallel direction:

"The bulk of rule-based methods concern the systematic analysis of the static structure and
dynamic behavior of a rule-base, using analysis based on certain correctness criteria”
[Bellman.91]

Examples of such static structure validation mechanisms are those utilized in the EVA tool set [Chang.90]:

8 Structure Checker
® Logic Checker

® Omission Checker
a Control Checker
® Rule Refiner

The primary intent of such checkers is to identify inconsistencies and incompleteness states, which Morell has
defined in the following way:

"A system is inconsistent if it asserts something that is not true of the modeled domain"
[Morell.89]

"A system is incomplete if it lacks deductive capability” [Morell.89]

However, the question thus arises as to what are we to verify our knowledge-based systems against, given the
difficulty of obtaining a complete/total specification for the domain. One approach around this is to create a
partial or composite specification of the desired system functions that are known. Morell notes:;

"Ingeneral there are many desirable properties that need to be specified that can be used as
incomplete or semi-specifications. This knowledge about the knowledge base is called meta-
knowledge and is a vital necessity for verification. [Morell.89]

and this is reflected by Bellman who suggests that the static and dynamic analysis of systems is:

"Based upon ad-hoc models of rule-based inference, or more generally, on ad-hoc meta-
knowledge about the rule-base or the rule-inference process” [Bellman.91]

An example set of meta-knowledge categories that a knowledge engineer may utilize are of the form:

m Accuracy

m Applicability

m Assessment

m Consistency

® Completeness
® Disambiguation
m Justification

m Life Span

= Purpose

m Source

m Reliability [Morrell.89]

These categories of meta knowledge can then be utilized in the verification and validation of all aspects of system
development - specification, elicitation, representation, implementation, and maintenance. We will later in the
paper consider examples of these meta knowledge categories in different aspects of development verification.

A further aspect to the utilization of meta knowledge is the knowledge engineers ability to obtain this
meta knowledge, as Bellman notes:

"Thisknowledge is even harder to elicit from a domain expert than ordinary knowledge... it is
often omitted from original rule base descriptionsand provided later by independentevaluators”
[Bellman.91]

Thus, we can see that the meta knowledge is often collected (if at all) from many ad-hoc sources in an
unorganized manner and subsequently needs validation and verification techniques of its own, to ensure
correctness. The remainder of this paper will consider how meta knowledge could be elicited and organized into
explicit models, a need originally suggested by Bellman and Walter at the AAAT’88workshop on validation and
verification [Bellman.88].

3. A Meta-Knowledge Level KBS Development Methodology

3.1 Introduction

Alan Newell showed the relationship between the notion of levels in terms of Computer Science. He
described a level to consist of:

"A medium that is to be processed, components that provide primitive processing, laws of
composition that permit components to be assembled into systems, and laws of behavior that
determine how the system behavior depends on the component behavior and the structure of
the system.” [Newell.82]

A level is defined in two ways: i) "Autonomously without reference to any other level” [Newell.82]
& ii) "Eachlevel can be reduced to the level below. Each aspect of a level - Medium, Components, Laws of
Composition, and Behavior, can be defined in terms of systems at the next level. [Newell.82]

This thus provides us with a framework through which we can show how a series of specifications can fit together
in a sequence that then act as a series of Knowledge-Levels.

3.2. The Specification of Knowledge-based Systems

The natural point from which to develop any software system is the creation of a specification. The
specification should ideally detail every aspect of the system in unambiguous terms that all interested parties can
consider. The creation of such a specification for knowledge-based systems is however a far from easy task for
any but the most trivial of systems. In light of this problem, knowledge engineers have often been forced to
proceed with only a minimal specification or no specification at all. This is a less than ideal situationand a source
from which many subsequent developmental problems emanate. In order to overcome the problem of weak
specifications in knowledge-based system development we advocate the use of two techniques: Prototyping &
Composite-Specifications through formal methods.

The first of these techniques: Prototyping, is utilized to achieve the creation of a base-line document:
the Initial Specification. Following Miller [Miller,90] this phase utilizes prototyping to create an initial
specification and this phase does not end until all parties {customer, developer, user} agree that they finally
understand what the system is intended to do, and in particular how it is supposed to do it, what Miller terms
"The Operational Concept" [Miller,90].

The prototype process is primarily intended to establish the boundaries of the solution space. 1t is very
important that the prototyping is used only to this end, as it is extremely detrimental to consider the more
complex development issues at this stage e.g., representation, interface etc. As these decisions would be made
on incomplete knowledge of the domain and environment.

Embedded within the initial specification development process is an aspect of Cognitive Engineering

known as Cognitive Task Analysis [Roth,89], where: "Cognitive Task Analysis is used to derive a description of
the cognitive demands imposed by a task and the sources of good and poor task performance” [Woods,87].

89

The aim of cognitive task analysis can then be seen as an attempt by the knowledge engineer to:

*Definewhat makes the domain problem hard, what errors domain practitioners typically make
and how an intelligent machine can be used to reduce or mitigate those errors or performance
bottlenecks"[Roth,89]

The use of cognitive engineering techniques, is not however limited to the creation of the initial specification.
Wielinga, Breuker and others, have created a development methodology KADS [Breuker,87] [Hesketh,90] that
also attempts to model expertise, such that it can be utilized in a knowledge-based software development project.

We shall utilize other cognitive engineering practices later in the methodologyto assist in the assessment
of validation and verification, quality assurance, in the selection of a representation as well as developing the
system interfaces.

The creation of an initial specification provides the knowledge engineer with the first specification in
the creation of the composite-specification of the system. A composite-specificationbeing a set of specifications,
each of which focuses upon an aspect of the development process: domain specification, representation
specification etc. The composite of which enables an approximation of a total specification for the system to be
made. Figure I illustrates the six areas where specifications can be derived in a knowledge-based system, to
varying degrees of formality.

Composite-
Specification

I
[| [[I

Problem Domain Representation Cognitive Meta
Description Specification Specification Engineering Knowledge
Specification Model
i
Control
Architecture
Specification

Figure I: A Composite-Specification

From Figure I we can see that there are two distinct types of specification present: The dynamic
specifications and the static specifications. Dynamic specifications refer to aspects of the system that are under
constant change or for which the interaction of the components are undetermined due to their combinatorial
complexity. Static specifications refer to those aspects that do not change, but rather remain consistent over a
period of time. Thus, there are four static specifications:

The Specification of the Domain Knowledge

We can easily model this aspect as the knowledge elicited from the domain expert(s) and knowledge
source(s) is finite and that though the use of transformational processes this can be specified formally in a
language such as "Z"[Spivey,90]. From a specification in a language such as this, we obtain several advantages.
Firstly, the Z notation in which it is written is clear, concise, unambiguous and allows for both a technical and
non technical readership. Secondly, the use a formal notation has significant maintenance benefits, such as
allowing knowledge engineers to keep a correct document of the domain information in an implementation
independent form, allowing the implementation language to vary if necessary.

90

The Specification of the Representation

The aim of this specification is to allow the knowledge engineer an opportunity to consider and identify
those aspects of the knowledge representation language to be used and specify them in a formal manner. The
selection of a representationis a difficult consideration, that we shall discuss further in the next section, however
once a representational form has been selected then it is imperative that this be specified fully in terms of its
denotational semantics and its syntax. For without these, it is extremely difficult to reason about a domain
description/representation with any certainty. Included in this specification is the Specification of the Control
Architecture to be used in the system.

Specification of the Cognitive Engineering Aspects

The cognitive engineering aspects of the system definition are those that involve:
m Specification of the man-machine interface
m Cognitive Task Analysis
m Knowledge-Encoding
s Competence modeling
m Performance modeling

The man-machine interface can be subjected to formal specification techniques, as demonstrated by Sufrin et
al [Sufrin,90], who use the Z notation to specify an interface, and Jacob who formally specifies a man-machine
interface [Jacob,83). The Z notation is again a superior form of specification to the pseudo-code, or natural
language descriptions that are usually used.

As mentioned, Cognitive Engineering has an impact upon many aspects of system development, from
the initial specification, through acquisition, elicitation, quality assurance to validation and verification. We shall
consider each of these aspects later.

In addition to the static specifications, there are those aspects that are dynamic in nature.

Specification of the Problem Description.

A principal aspect of the systems dynamic aspect is the specification of the problem description. The
nature of the techniques for formally specifying systems are however limited to static aspects of a system and
do not facilitate full specifications of the dynamic aspects and thus we are unable to fully define the system in
its entirety hence this necessitated the utilization of prototyping in the creation of the initial specification in
addition to the utilization of the composite-specification technique and the design tenets identified earlier.

Meta Knowledge Model (Specification)

In the development of a knowledge-based system the knowledge engineer is obligated to not only elicit
the static domain specific knowledge, but to incur the overhead of eliciting the dynamic meta knowledge
associated with the domain knowledge. This knowledge is inclined to change over time and thus there is a need
to utilize a separate specification of this knowledge, this is the role of the meta knowledge model. This model
should utilize as strong a degree of formality as is possible, again the use of a notation such as Z or VDM is
advocated [Jones.80] as this will enable the relationships between the static domain knowledge and the meta
knowledge be identified and assist in showing their correctness, completeness and consistency.

|—:| Prototypes
Initial Specification

Baseline Requirements Spec.

Knowledge elicitation

Knowledge Filter

Elicited Knowledge Representation

Meta
Knowledge —
Model
Knowledge Acquisition I
Intermediate Knowledge Representation
]
Formal |'— Domain
Methods Specification
Cognitive
Engineering
Specification

L—- Representation
Specification

Concrete Representation

Code Creation
[

Static Analysis

Figure II: Design of Knowledge-Based Component

Thus, we have identified the need for specificationsin the creation of knowledge-based systems. We now
discuss how these specifications can be brought together through the use of a rigorous development methodology
and how these specifications can be equated to Knowledge-Levels. The methodology as a whole can be
introduced by considering Figure II above. These stages will now be examined in greater detail.

As we have already seen, the initial specification is a document that can act as a baseline for the
remainder of the systems development. Each of the resultant phases can be compared to the objectives and
system specifications laid down in this document.

92

3.3 The Knowledge Elicitation Process

The unique nature of knowledge-based systems is that they utilize domain specific information that is
“expert"in nature. This has several implications, The information may in itself be unique, scarce or uncommon,
however it is the way that the expert employees that information that makes the informationvaluable. Thus, one
of the most important tasks befalling the knowledge engineer is to ensure that he elicits as much structural,
control and relational knowledge from the expert source as possible. This thus forms the basis of the knowledge
elicitation task and the knowledge-based system developmentprocess itself. Aslater in the process the knowledge
engineer will have to consider specifying the static domain knowledge {facts, rules, heuristics etc.,} and select
a representation in which to manipulate this knowledge, which entails consideration of such factors as structural,
control and hierarchical knowledge types. Thus the knowledge engineers task in knowledge elicitation can be seen
as falling into two categories:-

m Elicitation of static knowledge
m Elicitation of dynamic knowledge

The knowledge engineer has several different approaches to the knowledge elicitation process, [Roth,89]
[Welbank,83], for example:

m Verbal transfer of knowledge e.g., Interviewing - structured, focused and unstructured.
m Reporting techniques: e.g., On-line, Off-line and Hybrid.

m Psychological techniques: e.g., Repertory grid, critical incident, Inference structure, Goal
decomposition & Distinguishing evidence.

= Knowledge engineer investigates literature.

The choice of elicitation technique will depend heavily upon the domain under consideration, the type of
knowledge to be extracted and the point the elicitation has reached. For example, the elicitation may commence
with the knowledge engineer performing a series of unstructured interviews to extract high level conceptual
knowledge. This may then be followed by structured interviews where the relationship of the domain, its structure
and more detailed information are obtained. This may then be followed by a series of focused interviews to fill
in the low level information of a fine grain size. Several frameworks for the analysis of these techniques have
been proposed [Dhalival,90] [Burton,87], including Cognitive Mapping and Knowledge Encoding, two aspects of
Woods’s cognitive engineering paradigm [Woods,88] [Roth,89].

The resultant of the elicitation process, depending upon the technique employed, will be, what we have
termed the elicited representation. This will, for example be a transcript in the case of an interview or an on-line
report. The aim of this stage in the life cycle is to provide a permanent record of the knowledge, in the form in
which it was extracted. This will enable the knowledge engineer to follow a knowledge trail later in the process
if necessary (e.g., maintenance phase).

The process of eliciting the different knowledge types, perhaps from different sources, with differing
Knowledge-Levels, using different techniques at different periods of time means that there will be a set of elicited
representations which together form a historical database of elicited knowledge.

3.3.1 The Knowledge Filter

In this section we will attempt to illustrate how the concept of the specifications as levels is realized in
practice. In order to do this we introduce the software development process we term the Knowledge Filter, which
is itself a series of subprocesses, each of which take the elicited representation and process it in order to distil
a resultant output that reflects the sub-process function. For example, we utilize the sub-process of conversational
coherence to obtain an understanding of the alignment within the elicited representation [Ragan.83].

93

The aim of these sub-processes is to act as a series of knowledge filters, each of which enable a different
perspective of the elicited representation to be obtained. These can then be utilized in the subsequent system
development.

The knowledge filter process can be used to illustrate the notion of specifications as levels. As we have
noted, Newell identified four components that define a Knowledge-Level, which can be summarized as follows:

® A medium to be processed

u Components that provide primitive processing

m Laws of composition that permit components to be assembled into systems

u Laws of behavior that determine how the system behavior depends upon a component behavior

and the structure of the system
Plus the two constraints:

= The system can be defined autonomously without reference to any other level
m Each level can be reduced to the level below. Each aspect of a level - Medium, Components, Laws
of Composition, and Behavior, can be defined in terms of systems at the next level.

Thus, in relation to the knowledge filter described above, we can see that the elicited representation acts as the
medium to be processed. The sub processes of the knowledge filter act as the components that provide the
primitive processing. The analysis of the information resulting from the primitive processing results in the meta
knowledge model and the intermediate representation, both of which can be defined formally, these act as the
laws of composition which permit the components to be assembled into systems. The meta knowledge model and
the intermediate representation are also bound through formal descriptions of their behavior e.g., what can and
can not be added to them, and thus these form Newell’s laws of behavior. Further each of the representations
can be considered in isolation or rigorously transformed into the next representation, thus obeying Newell’s
constraints.

We can see therefore, that these form one tier of a methodology which when added to the other tiers
provides a description of a complete Knowledge-Level development environment.

3.3.2 The Meta Knowledge Model

As we have discussed in the previous section, the knowledge filter acts to isolate the different aspects
of information contained within the elicited representation. A resultant of this is the Meta Knowledge Model.
The concept of which is illustrated in Figure III:

94

Knowledge Elicitation

Knowledge
Elicited Representation Filter

Protocol Analysis

Conversational Coherence

Conceptual Analysis

Erotetic Logic

Question/Answer Theory

Meta
Knowledge Task Analysis
Model

Figure III. Meta Knowledge Filter and Feedback Loop

This shows how the meta knowledge identified during the knowledge filtration process is represented in the Meta
Knowledge Model in a formal manner. This knowledge is then fed back into the elicitation process to enable
the knowledge engineer to obtain the granularity and scope of knowledge required in conjunction with further
meta knowledge. Once the elicitation process has reached a steady state the meta knowledge model is used in
conjunction with the intermediate representation to feed into the next level, whereby a more formal domain
specification, cognitive engineering specification and representation specification are constructed. The advantage
of using the meta knowledge model is that the knowledge engineer is no longer only creating a system based
upon static domain information but information from the Meta-Knowledge Level.

3.3.3. The Intermediate Representation

The second output of the knowledge filtration process is the production of the intermediate
representation. The primary function of which is to provide a mechanism that is rigorous enough to allow several
demanding analyses to take place upon it. One of these ultimately produces a formal specification of the domain
knowledge and another acts as the basis for the selection of the high level "classical"representation such as a
production system, which ultimately will be used to represent the domain knowledge held in the formal
specification.

As stated the aim of this phase is to produce from the elicited knowledge a more rigorous, intermediate
representation [Scott,91]. This representation will be structured in form, syntax and semantics, such that the
knowledge acquisition necessary to transform the elicited representation will identify the inconsistencies,
incompleteness and any incorrectness in the elicited representation. The knowledge engineer will use this
intermediaterepresentationto draw together the knowledge from the varying elicited forms: transcripts, repertory
grids, questionnaires etc. Intermediate representations are of the form: decision tables, AND/OR graphs,
decision trees ; each of which encourage completeness, correctness & consistency; allow for refinement and
reduction while having clean yet concise structures.

95

3.4. Domain Specifications

The creation of the dynamic meta knowledge model and the static intermediate representation allows
the knowledge engineer to have a dual perspective in the remainder of the system development. The aim of the
intermediate representation is to provide a more rigorous form than the elicited representation with which to
reason about the domain, while the meta knowledge representation contributes by allowing the knowledge
engineer to understand and be more sensitive to the dynamic aspects of the systems development e.g., the use
of meta knowledge allows us to enhance our understanding of the systems explanation capability, as defined in
our cognitive engineering specification.

The meta knowledge model and the intermediate representation are used in the creation of three
specifications at the next Knowledge-Level: the domain specification, the cognitive engineering specification and
the representation specification. The first of these specifications, the domainspecification is intended to provide
a specification that focuses exclusively upon the domain knowledge, the static knowledge of rules, facts, and
heuristics. The aim of this specification is to allow a knowledge-based system to have a repository from which
the domain can be considered in isolation. This has several advantages, for example in the course of maintenance
or subsequent system updates the domain specification will be the unique location for the domain knowledge
to be added, deleted or modified. The knowledge engineer will be able to maintain the correctness, completeness
and consistency of the system as far as possible. These changes can then be traced throughout the remainder
of the development process. The formalized procedures for updating the domain specification can also be
specified for added rigor.

The domain specification therefore will have to have mathematics as its basis and this lead to the
adoption of the "Z"notation, a formal specification language. Specifications in "Z" consist of formal text and
natural language text. The former provides a precise specification while the latter is used to introduce and explain
the formal parts. Specifications are developed via small pieces of mathematics that are built up using the schema
language to allow specifications to be structured. This leads to formal specifications that are more readable than
a specification presented in mathematics alone.

It is also advantageousto have a domain specification from the perspective of knowledge engineer-user-
domain expert communication, as the specification can act as a medium for communication. Thus, it can be seen
that the use of a formal language in the development of a knowledge base is very advantageous.

3.5. The Cognitive Engineering Specification

The cognitive engineering specification, as we have already noted, is composed of many aspects,
including: cognitive task analysis, knowledge-encoding, competence and performance modelling. The combined
effect of utilizing these cognitive components is very powerful, and can be considered as a chief factor in
maintaining the semantic correctness of the system as a whole, filling the gaps in the decision making process.
This can be seen as aspects of differing phases feed into each other. For example, the knowledge contained in
the domain specification can be considered in light of the knowledge-encodingtechniques and this has an impact
upon the choice of representation in the representation specification, which in turn will determine the systems
ability to manipulate domain knowledge.

The cognitive engineering specification also provides two models:

a The Competence Model: that provides a model of the required competence expected from the model
in the domain. [Roth,89]

m The Performance Model: that describes the knowledge and strategies that characterize good and poor
performance in the domain. [Roth,89]

The adoption of the cognitive engineering specification in these two roles can then act as the basis of a quality
assurance mechanism, for competence and performance.

96

3.6. The Representation Specification

The next step in the development methodology is to identify which (if any) classical or hybrid
representation is the most suitable form, around which to base the representation specification, where the
classical representations are "frames", "production systems", "semantic networks" etc. In order to find the most
suitable form, several influencing factors have to be taken into account:

= Information obtained from performing knowledge acquisition upon the intermediate representation.
m Information pertaining to representation selection that can be obtained from considering the
composition of the domain specification.

m Information resulting from the cognitive engineering processes.

Each of these information sources provide valuable insights on which representation would provide the best basis
for the domain under consideration. The analysis of the intermediate representation will allow a coarse analysis
of the underlying domain structure to be obtained. This is refined by considering the composition of the domain
specification in terms of its knowledge and data types, their inter-relationships, and structures. This is then
enhanced by the cognitive mapping drawn from the cognitive engineering processes.

In order for a suitable match, the characteristics looked for in the intermediate representation, the
domain specification, and the cognitive models have to be re-engineered in the examination of the representation
schemes themselves (rules, frames, etc). Once this is achieved the match can then be made. The chosen
representation is formally specified in terms of its semantics and syntax, this forms the representation
specification [Craig,91}.

3.7. The Concrete Specification

Having created the domain, cognitive and representation specifications, we are now at a point at which
these specifications can be combined into a form that will allow us to move towards implementation. This stage
is known as the concrete specification.

The creation of the concrete specification is in stages, firstly the domain knowledge is transformed from
its "Z" specification into the form advocated by the representation specification, and secondly a formal
specification of the control architecture that is associated with the representation is created.

It should be noted that this is not the implementation as the representation is a hybrid between a high
level version of what is to be implemented and a formal specification in the style suggested by the syntax and
semantics of the representation specification (e.g., pseudo code). The aim being to produce an implementation
independent representation of the system. This will allow the knowledge engineer to have a simplified version
(minus the complex syntax) with which to reason about the implementation later in the systems life cycle e.g.,
maintenance.

3.8. Coding

Having created the concrete specification this is then used as the basis of the system implementation.
The interface issues being resolved by referral to the cognitive engineering and man-machine interface
specifications.

The implementation of the system should be the most straight forward of all the stages, due to the high
degree of structuring and refinement that has been performed upon the system in the previous phases.

The mechanism through which the system is implemented is left open to the knowledge engineer as this
is considered a trivial exercise once the specifications have been developed.

97

3.9. Validation and Verification

The methodology we have presented does not have an explicit validation and verification stage, as the
approach has aimed at presenting a philosophy of total quality development. We can qualify this by equating
verification to the Knowledge-Level. Verification has been defined by IEEE (no. 729-1983) as:

"The process of determining whether or not the products of a given phase of software
development meet all the requirements established during the previous phase.”

This we can equate to Newell’s second Knowledge-Level constraint (cited earlier in the paper), where by each
Knowledge-Level can be shown to be reduced to the level below. Thus, by following a refinement process such
as we have advocated, the verification of the system will naturally follow.

3.10. Testing and Integration

Having completed the development of the knowledge-based component the developer can now consider
the integration of the system into any other system. An aim of this methodology is to minimize the amount of
overhead involved in the process of embedding the knowledge-based component. This is the reason for the use
of system wide development standards, historical databases, metrics, formal methods and an adherence to
integration throughout the system/process life-cycle.

4, Institutionalization

An aspect of development that we have not yet addressed is that of institutionalization. This has been
identified by Liebowitz [Liebowitz,91] and others as being the critical factor affecting system acceptance, usage,
and ultimate success. The process of institutionalizationcan be broken down into three fundamental aspects:
implementation, transitioning and maintenance, all three of which have historically been weak when considered
with respect to the case of expert system development. Liebowitz identifies four areas vital to the
institutionalizationprocess: i) An awareness of expert systems for managers, ii) User training strategies, iii) User
support service strategies, iv) maintenance. All of these areas incorporate what Badiru [Badiru,88] terms Triple
C - Communication, Co-Operation & Co-Ordination,important management aspects to the creation of an expert
system. Thus, we see the process of institutionalization as the connecting link between the management and
technical perspectives of system development [Plant.93b].

The institutionalization of system development can be considered as the holistic approach to
development, where all levels of personnel, from users to managers are involved in the development process,
what Leonard-Barton terms "integrative innovation" [Leonard-Barton,87]. The model we have proposed here
attempts to overcome these problems of institutionalization through the participation of management and
instilling an awareness of the technology involved to them. Further, the model aims to actively involve the
user/client in all aspects of the development. This is vital to the institutionalizationprocess in that the technology
transfer is greatly eased. This is apparent in many ways; the user becomes more understandingof the technology
involved, the developer is relieved of the total obligation for system correctness as this is now shared with other
members of the development team, and the probability of system success is increased if there is a continual
involvement and thus continual feedback from all members and levels of the organization. Liebowitz has also
identified other influencing factors that effect the institutionalizationprocess, including the following:

m System Migration

= Standards

m Configuration Management

u Testing

m User Support Services

®m Maintenance

m User Training

98

We will now briefly touch upon some of these areas as they relate to our model. However, for a fuller treatment
the reader is referred to Liebowitz [Liebowitz,91].

The ability for the developers to perform system migrations is greatly eased by having a set of
specifications from which to work. This facilitates the changes in platform that may occur over the systems life
cycle. These specifications and the adoption of a rigorous development strategy also allow for close adherence
to standards and subsequent changes in those standards.

It has been our aim to maximize the systems correctness, however a by-product of the representation
refinement approach is to allow for, and support maintenance. By partitioning the specifications into their
functional areas, the knowledge engineer can integrate any maintenance needs into the existing specifications in
such a way as to assess the impact this will have upon the existing specification - thus maintaining integrity and
correctness. As stated by Liebowitz "maintenanceis a key issue in institutionalizingexpert systems"[Liebowitz,91],
and hence we have placed a heavy emphasis in designing our methodology to support this function.

S. Summary & Conclusions

This paper has attempted to illustrate several points. Firstly, that when a development lifecycle of
representation refinement is utilized, that follows the principles of Newell’s Knowledge-Level, then the system
will become self validating.

The second issue addressed was the use of a meta Knowledge-Level that allowed for the construction
of a meta knowledge model. This model allows for a dynamic perspective of the system to be obtained in
conjunction with the static aspects found in the intermediate representation. The use of the knowledge filter to
produce a better meta knowledge model and intermediate representation was introduced along with the meta
knowledge feedback loop to induce the elicitation of further meta knowledge.

The paper therefore is intended to show that the ability to validate knowledge based systems is not one
that can be seen only from the static testing of the knowledge base but must emanate from a holistic Knowledge-
Level development method.

In conclusion the paper has shown a methodology for the creation of knowledge-based systems that has
attempted to utilize the rigor of software engineering and cognitive engineering towards the obtainment of a
better understandingof the knowledge engineering process. The use of formalized techniquesin conjunctionwith
a rigorous Knowledge-Level development style will enable better degrees of software quality to be obtained. The
future of knowledge based software development methodologies lies in the utilization of formal methods in
conjunction with software metrics. The use of metrics is vital for us to obtain a better understanding of our
methodologies, transformationprocesses and development techniques. Through the use of metrics we will be able
to better establish the correct or most appropriate representation to use for a given domain segment, or assist
the knowledge engineer to better understand the interface issues. Thus, the next stage in the research is to
develop a model that utilized these techniques to better understand the Knowledge-Level development process.

References

Badiru, A.B,, (1988), Successful Initiation of Expert Systems Projects”, IEEE Transactions on Engineering
Management, Vol. 35, No. 3, IEEE, August 1988.

Bellman, K., & Landauer, C. (1991), Testing and Evaluating Knowledge-based Systems, AAAI workshop on
Validation and Verification, August 1991, Boston MA.

Breuker, J. & Wielinga, B., (1987), Use of Models in the Interpretation of Verbal Data. In, Knowledge

Acquisition for Expert Systems: A Practical Handbook, Kidd, A.L. (Ed), New York Plenum

Burton, A.M., Shadbolt, N.R., Hedgecock, AP, & Rugg, G. (1987), A Formal Evaluation of Knowledge
Elicitation techniques for Expert Systems: domain 1., In, Research and Development in Expert Systems IV, Editor:
D.S. Moralee., BCS Series, Cambridge University Press. Cambridge, England.

Craig, LD., (1991), Formal Specification of Advanced AI Architectures, Chichester, England, Ellis Horwood.

Culbert, C, (1990), Verification and Validation of Knowledge-Based Systems, Special Issue: Expert Systems with
Applications, Vol. 1., No. 3. Permagon Press, New York.

Dhaliwal, J.S, & Benbasat, 1. (1990), A Framework for the Comparative Evaluation of Knowledge Acquisition
Tools and Techniques. Knowledge Acquisition, 2, 145-166.

Hesketh, P., Barett, T. (1990). An Introductionto the KADS methodology. Esprit Project P1098, Deliverable
M1, EEC ESPRIT Project, Brussels, Belgium.

Jacob, RJ.K. (1983), Using Formal Specifications in the Design of a Human-Computer Interface.
Communications of the ACM, April 1983, Vol. 26, No. 4.

Jones, C. (1980), Software Development a Rigorous Approach, Prentice Hall.

Leomard-Barton, D. (1987), The Case for Integrative Innovation: An Expert System at Digital, Sloan
Management Review, MIT, Cambridge, MA.

Liebowitz, J. (1991), Institutionalizing Expert Systems: A Handbook for Managers, Englewood Cliffs, Prentice Hall
Liebowitz, J. (1986), Useful Approach for Evaluating Expert Systems, Journal of Expert Systems. 3(2):86-96.

Miller, L. (1990), A Realistic Industrial Strength Life Cycle Model for Knowledge-Based System Development
and Testing. AAAI Workshop Notes: Validation and Verification, August 31st, Boston Mass.

Morell, LJ., (1989), Use of Metaknowledge in the Verification of Knowledge-Based Systems, NASA Contractor
Report 181821, Langley research Center, Virginia.

Newell, A. (1982), The Knowledge-Level, Artificial Intelligence 18, pp 87-127, North Holland.

O’Leary, D.E. (1987), Validation of Expert Systems- with Applications to Auditing and Accounting Expert
Systems. Decision Sciences, Vol 18. pp 468-486.

O’Leary, D.E. (1993), Collected Papers 1989-92:AAAI Workshops on Validation & Verification. (In Preparation)

Plant, R.T. (1993), A Rigorous Development Methodology for Knowledge-Based Systems. Communications of
the ACM (To Appear)

Preece, A.D., Grogono, P, & Shinghal, R. (1993), Assessing the Capability of Knowledge-Based System
Developers, IEEE CAIA Workshop on Validation and Verification, Orlando, Fl, March 2nd 1993.

Ragan, S.L. Aligment and Conversational Coherence, In, Conversational Coherence: Form, Structure, and
Strategy. Edited by Robert T. Craig & Karen Tracy, Sage.

Roth, EM, & Woods, D.D., (1989), Cognitive Task Analysis: An Approach to Knowledge Acquisition for
Intelligent System Design., In: Topics in Expert System Design, G. Guida & C. Tasso (Editors), pp 233-264,
Elsevier Science Publishers.

Royce, W.W. (1970), Managing the development of large software systems. Proc. WESTCON, Ca. USA.
Rushby, J. (1988), Quality Measures and Assurance for Al Software. NASA Contractor Report 4187.

Scott, C. (1991), A Practical Guide to Knowledge Acquisition. Reading MA, Addison Wesley.

Spivey, JM. (1990), The Z Notation. Prentice Hall

Sufrin, B.A. & He, J. (1990), Specification, Analysis and Refinement of Interactive Processes. In, Formal Methods
in Human-Computer Interaction. Editors, Harrison, M., & Thimbleby, H. pp 153-200., Cambridge University
Press.

Welbank, M. (1983), A Review of Knowledge Acquisition Techniques for Expert Systems. British Telecom
Research Labs. Martlesham Consultancy Services.

Woods, D.D., & Hollnagel, E. (1987), Mapping Cognitive Demands in Complex Problem Solving Worlds.
International Journal of Man-Machine Studies, 26, 257-275.

Woods,D.D, & Roth, E.M., (1988), Cognitive Systems Engineering. In M.Helander (Ed.), Handbook of Human-
Computer Interaction. New York: North Holland.

101

