
The VIVA Method: A Life-Cycle Independent
Approach to KBS Validation

Steven A. Wells
AIE Department, Lloyd’s Register

29, Wellesley Road, Croydon CRO 2A J, England

steve@aie.lreg.co.uk

Abstract

This paper describes the VIVA method; a life-
cycle independent method for the validation of
Knowledge-Based Systems (KBS). The method 
based upon the VIVA validation framework, a set
of products by which a KBS development can be
described. By assessing properties of these prod-
ucts, and properties of the links between the prod-
ucts, a framework for validation throughout the
KBS life-cycle is defined.

Introduction

The VIVA1 Technical Annex (VIVA 92) identifies
the needs for a Knowledge-Based System validation
method which covers the whole of the development life-
cycle. These needs arise from identified problems with
software-based validation, which can be summarised as
follows:

¯ It is not possible to determine the validity of a sys-
tem from the software alone.

¯ It is not possible to ensure that an implemented
system will be valid unless validation is carried out
throughout the life-cycle.

A validation method, designed to be integratable with
existing KBS development approaches and which ad-
dresses these and other issues, is being developed in the
VIVA project. This paper presents a brief overview of
the method as it currently stands, and describes fu-
ture work plans. Lloyd’s Register will build on the
VIVA method to allow the assessment of both KBS,
and systems containing KBS components. This will
significantly increase Lloyd’s Register’s scope for soft-
ware assessment in the future.

I The Research reported here is being carried out in the
course of the VIVA Project. The project is partially funded
by the ESPRIT Programme of the Commission of Euro-
pean Communities as project 6125. The partners in this
project are University of Aberdeen (UK), Computer Re-
sources International (DK), CISI Inginerie (FR), European
Space Agency (NL), Lloyd’s Register (UK), Logica 
and the University of Savoie (FR)

The Derivation of Requirements for a
Validation Method

In order to determine requirements for a validation
method covering the whole of the KBS life-cycle, an
analysis of current KBS development methods was car-
ried out early in the VIVA project. The development
methods studied included VITAL (Kontio and Rouge
91), CommonKADS (Aamodt et al 92, de Hoog et al
92, Taylor et a192), KOD (Vogel 90) and the European
Space Agency (ESA) KBS development guidelines (Al-
lard 92). A number of differences were found, which
are presented below.

Ordering.
There is no unique ordering of development phases be-
tween life-cycles. It was not always the case that life-
cycle phase X came before life-cycle phase Y. For in-
stance, the Knowledge Model development phase is de-
fined in VITAL to occur after the Requirements phase,
but in CommonKADS, it may come before or after.

Transformation.
There is no strict transformation between products ill
development phases. The Knowledge Model, for in-
stance, would not necessarily be transformed en masse
into another product in any life-cycle. The inferencing
may be transformed into part of the Functional Spec-
ification, but the Domain Knowledge may be directly
coded. This would be the case if the domain knowledge
consisted of an is_a hierarchy, and the implementation
environment provided support for direct coding of hi-
erarchies, as in, for instance, KEE.

Non- Standardisation.
The above diffferences are compounded by the lack of
standardisation in KBS life-cycles. The "same" de-
velopment methodology differs between organisations,
and even between projects. There are a great many
"KADS" approaches, for instance.

In order to define a suitable framework for the VIVA
method, it thus became necessary to take a product-
based view of the KBS life-cycle. By defining a mini-
mum set of products which could be used to describe

102
l

From: AAAI Technical Report WS-93-05. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



existing and future, KBS development approaches, the
applicability of the VIVA method to any arbitrary de-
velopment method should be ensured.

The VIVA Validation Framework
The VIVA method consists of two parts, shown below.

¯ A set of products by which to describe a KBS appli-
cation.

¯ A set of steps describing how the products can be
used to validate a KBS application.

This paper concentrates on aspects of the products
known as the VIVA Validation Framework (Wells 92).
The products are describes in Table I. This framework
defines the contents and features of the products and
their constituent sub-products. The products in the set
possess two types of properties, which form the basis
of the VIVA method:

¯ Properties of Products.

¯ Properties of Inter- and Intra-Product links.

KBS will be validated by assessing such properties us-
ing methods and tools developed on the VIVA project.

Products in the KBS Life-Cycle
Situation. A description of the environment into
which the KBS will fit. An example would be an
organisation model.
Requirements. Functional and non-functional
requirements of the system.
Knowledge Model. A Knowledge Level model.
Usually a description of an expert’s, or system’s,
reasoning capabilities.
b’hmctional Specification. A specification of the
functional capabilities of a system.
Design. A specification of the architecture,
interfaces, data structures and algorithms to be
used in the code.
Code. The implemented software, including
documentation.

Table h The VIVA Validation Framework

As the VIVA method will be applicable to any devel-
opment life-cycle, it is not possible to fully describe all
possible properties and techniques. What the method
will provide will be a framework which can be adapted
to the specific attributes of a life-cycle or development.
This framework will allow the user of the method to de-
scribe the products, sub-products and links of an appli-
cation to a level of detail which will allow the complete
description to be user-completed. Figure I illustrates
the level of support the method will provide.

The products and sub-products in the Validation
Framework are related to each other in one of two ways,
structural or transformational.

Structural links are usually, but not solely, internal
to a particular product. Examples could be a cross-
reference in a requirements document, or a calling re-
lation between functions.

Transformational links are those links where a
"source" product at one end of a link is used to gener-
ate the "target" product at the other. These are usu-
ally, but not exclusively, external, or between product
links. Examples are the transformation of inference
function designs into their implementation in code, or
the transformational of a particular individual require-
ment into its corresponding functional specification.

In practice, there is not a clear-cut distinction be-
tween structural and transformational links. Once
transformed, a link often becomes structural. An ex-
ample is the link between a design and its implementa-
tion in code. During maintenance, analysis is carried
out at the design level, and then mapped on to the
code. Thus, the design-code link has become struc-
turah

l iii
,i!i

lilt ]!i
$::::::::::::::::::::::::::::::::::::::::::::::::::::::ii:

Figure 1: Level of Support of the VIVA Method

Figure 2 shows a subset of the links between three
of the products, namely, the Knowledge Model, the
Design and the Code. The links are further defined in
(Wells el a192), and some are further explained below.

The structural links within the Knowledge Model
show the links between domain models and knowledge
roles, and between basic tasks and primitive infer@nces.

The transformational link between the Knowledge
Model, in this case a CommonKADS Knowledge
model, and the Logical design, is the link between the
top-level task in the task knowledge of the Knowledge
Model, and the top-level control function in the logical
design.

103



The transformational link between the domain
knowledge of the Knowledge Model and the Knowledge
Base illustrates the direct coding of domain knowledge.

The transformational link between the inferencing
design and the inference in the code represents the im-
plementation of an inference function design.

The VIVA method views a development as consist-
ing of a (sub-)set of the products and sub-products
in the Validation Framework and the structural and
transformational links between them.

Ke~, Transformetlonel Links
Structural Unks

Figure 2: Examples of Link Types

In validating a KBS application using the VIVA
method, the products and sub-products of the Valida-
tion Framework which will be constructed in the ap-
plication are identified, along with the structural and
transformational links between them. The properties
of these products and links define the set of Valida-
tion Opportunities for the application. By defining the
structure of the VIVA method in this manner, it al-
lows the method to be used in both post-hoe (Validity
Assessment) and developmental (Validity Assurance)
validation.

The Derivation of Validation
Specifications

The validation opportunities for a development will
be a (potentially large) set of properties. These must
be transformed into a validation specification, against
which the development can be assessed. There are
many different types of validation opportunities.

The properties of products can be general properties,
applicable to any product or sub-product. Examples
of general properties of a product are correctness and
completeness. An example of a specific property is
inference re-use. (The property of an inference being
in a re-usable library or not).

Links also have certain general properties, which are
defined merely by identifying such a link. These in-
elude:

¯ existence; the existence of the link in the current
development,

¯ connection; the existence of the entities at each end
of a link and

¯ typing; the correctness of the type of link.

Other properties are specific to one type of link, for
instance, for structural links:

¯ referencing; whether entities at each end of the link
correctly reference themselves, and each other.

For transformational links:

¯ correctness; correctness of the transformation, for in-
stance, provably correct.

¯ completeness and relevance; whether or not all, and
only, the information required in the transformed
entity has been preserved.

Other properties are specific to the particular link in
question, for instance:

¯ (in a CommonKADS Knowledge Model) task-
inference link correctness; whether or not primitive
tasks and the inferences they refer to have the same
name, or

¯ (in an implemented Knowledge Base) rulebase-
domain model reference existence; whether or not
all rules reference defined concepts.

Other properties of both products and links may be
defined from the needs of a particular application. As
an example, an application which had a critical need
for maintainability may specify a property of speed of
determining correctness on the links between design
and code.

The properties of products and links are of two
types, formalisable and non-formalisable (Laurent 92).
Formalisable properties are those which can be stated
in an unambiguous way and which can be said to
present or absent. An example is

No rule shall be self-contradictory.

104



This can be expressed formally, and the presence
or absence determined. There is no debate about the
meaning of the result of the test. However, other prop-
erties are not formalisable in this manner. An example
would be:

The interface shall be acceptable to users.

It is possible to pseudo-formalise (Laurent 92) non-
formalisable properties. The previous example could
be pseudo-formalised as:

If 100 users are asked, over 80~ shall
report that the interface is acceptable.

The truth, or otherwise, of this specification could
be tested, but this does not guarantee the truth, or
otherwise, of the original property. It is believed, in
this case, that 80% is a good threshold, but there is
no direct, unambiguous, mapping from the property
to the specification.

In practice, some formalisable specifications are un-
testable, due, for instance, to problems of size or com-
binatorial explosion. Such specifications are thus also
expressed pseudo-formally. As an example, it is not
usually feasible to carry out 100% testing, so a range
of relevant tests would be generated. A tool such as
SYCOJET (Vignollet 92) could be used for this pur-
pose. Another example of a formal property which
perhaps could not be formally assessed is the property
that a system will correctly react to all invalid inputs.

0

1

°

Figure 3: Derivation of Validation Specifications

Thus, in order to define a validation specification,
validation opportunities are transformed into a set of

formal and pseudo-formal specifications as depicted in
Figure 3.

The VIVA method starts by identifying the de-
velopment products, and through the application of
a number of steps, yields a validation specification.
This specification consists of formal and pseudo-formal
validation specifications. Future development of the
method will identify the tools and techniques to carry
out the assessment of the specification against the de-
velopment.

Future Work

The definition of the VIVA method is on-going, and
will continue throughout the remainder of the project,
which finishes in late 1995. Future work will focus on
the following topics:

Products, Links and Properties.

The properties of the products and links will be fur-
ther defined. Work is currently underway to determine
what tool support will be required to assess the range
of validation properties identified so far. This work will
focus on both existing tools and new tool requirements.
The work on properties will be extended to provide
guidance on the particular properties which need to
be assessed for a particular application. For instance,
which properties should be assessed in a safety-critical
domain? In an application with critical maintenance
needs?, etc.

Alignment with Standards and Software
Engineering Practice.

The method will align itself alongside existing Software
Engineering standards and will be integrated with ex-
isting assessment methods (e.g. (Denvir and Neil 92))
to allow KBS and embedded KBS assessments to be
performed. If this is successful, it will also provide jus-
tification for the approach taken. Software Engineer-
ing practices which increase confidence in applications,
such as Hazard Analysis, will also be included.

Method Guidelines.

At some level of detail, as shown in Figure 1, the user
of the method will need to define sub-products aim
properties particular to the application being assessed.
The guidelines will provide support for this activity,
and some examples are shown below:

¯ Validation Opportunity Identification and Specifica-
tion. e.g. Is the set of products in the development
sufficient?, Which properties can be formalised?

* The Relation between project features and specifica-
tions, i.e. Given that a project has high criticality
and limited resources, which of the possible valida-
tion opportunities should be in the validation speci-
fication? Which properties should be formalised?

105



* Available techniques and tools. The guidelines will
show which techniques and tools are available, and
the cost of their use. Thus the guidelines will an-
swer such questions as; Which tools and techniques
should be used, and in which order?

Conclusions
This paper presented the current status and some of
the future work plans of the VIVA method, a life-cycle
independent approach to KBS validation. Although
the method is in its infancy, it appears that the goal
of the method, to provide life-cycle independent KBS
validation throughout the complete development cy-
cle, is acheivable. As the method progresses, it will
be integrated into conventional software assessment
strategies, allowing the assessment of systems contain-
ing KBS components.

Acknowledgement

The author would like to thank the Committee of
Lloyd’s Register for permission to publish this paper.
The views expressed in this paper are those of the au-
thor, and not necessarily the views of Lloyd’s Register.

References
Aamodt A., Bredeweg B., Breuker J., Duursma C.,
Lockenhoff C., Orsvarn K., Top J., Valente A., van de
Velde W., 1991. The CommonKADS Library, KADS-
II/TI.3/VuB/TR/005/l.O

Allard, F. 1992. Software Quality and Artifi-
cial Intelligence, Knowledge-Based Systems: Rec-
ommendations for the Development Life-Cycle,
WGS/FA/92.55
Vignollet, L., 1992. SYCOJET: Une Approche Pour
la Construction Automalique des Jeux de Tests Pour
les Systemes a Base de Connaissanees, These de
i’Universite de Savoie- LIA, Chambery, Mars 1993

Bright, C., Martil, R., Williams, D. and Rajan, T.,
1992. The KADS-II Framework for Project Manage-
ment, In Proceedings of SGES 1st KBS Methodolo-
gies Workshop

Denvir, T., and Nell M., 1992. Lloyd’s Register Model
for Software Dependability Assessment, VI.I, Lloyd’s
Register of Shipping, August 1992

de Hoog R., Martil R., Wielinga B., Taylor R., Bright
C., 1992. The Common KADS Model Set, KADS-
IlIWPI-IIIRRIUvAIOlSI3.2
Kontio, J., and Rouge, A., 1991. VITAL Life-Cycle
Guide, VITAL Deliverable DDII 1

Laurent, J-P., 1992. First Entries for the VIVA Glos-
sary, VIVA Deliverable TN-610

Taylor R., Bright C., Menezes W., Groth J., 1992.
Principles of the LCM, KADS-II/T2.1/TR/TRMC
/010/1.0, Volume l

VIVA, 1992. (The VIVA Consortium), VIVA Techni-
cal Annex, V4.O

Vogel, C., 1992. Manual KOD, CISI Inginerie

Wells, S. A., 1992. Internal Report 3.1: The VIVA
Validation Framework, VIVA Deliverable TN-302.1.0-
WP3-LR

Wells, S. A., Allard, F., Ayel, M., Millington, P.,
Nielsen, L. B., and Thierry, A., 1992. Internal Re-
port 3.2: Guidelines for a KBS Validation Method,
VIVA Deliverable TN-308.1.0-WP3-LR

106




