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Abstract

This paper reports on the use of tools that statically ana-
lyze rule-bases in order to detect logical errors, such as
redundancy, inconsistency, and incompleteness. The
analysis uses a variant of the KB-Reducer algorithm
(Ginsberg 1991). In contrast to accounts of similar tools,
which seldom describe tools as used in the field, the expe-
rience described in this paper is derived from using tools
to analyze a large suite of knowledge bases in production
use at Boeing. The tools serve to augment the ongoing
process of knowledge base maintenance. Common causes
of errors detected are reported. This paper shows that
making such tools practical is non-trivial but rewarding.

Introduction

As observed in Preece and Shinghal, 1992, tools for
finding anomalies in knowledge bases (KBs) have shown
sufficient potential in KB verification and validation, to
motivate researchers to build a series of tools over the
past decade. Although Preece’s paper provides some
data on the practical aspects of using such tools on KBs
intended for production use, it also notes the general lack
of such data. The goal of this paper is to provide addi-
tional experiential data for the benefit of potential tool
builders and users.

This paper describes experiences encountered using an
anomaly detecting tool called KBR3, in maintaining a
suite of knowledge bases that comprise a production ap-
plication called Engineering Standards Distribution
System (ESDS). ESDS currently has 50 KBs in produc-
tion which accumulatively contain tens of thousands of
rules. Results of 7 KBs are covered. An overview of the
ESDS project can be found in Dalai, 1993. An overview
of the motivation for adopting a maintenance strategy
which includes the KBR3 tool is described in Dahl and
Williamson, 1992.

The rest of this paper is organized as follows. An
overview of KBR3’s basic functionality is given, fol-
lowed by a description of error types detected by KBR3.
Then the causes underlying some of these errors are re-
viewed. This is followed by issues involved in reporting
errors, limitations of KBR3, and plans for future en-
hancement.

KBR3 Tool Overview

The KBR3 tool is based on the KB-Reducer algorithm
originally developed by Ginsberg (see Ginsberg, 1991).
For KBR3, the basic algorithm was enhanced to handle
rule bases containing equations. This enhanced algo-
rithm is formally described in Williamson and Dahl,
1993.

Figure 1 provides a basic overview of the KBR3
analysis tools. A KB to be analyzed is first translated
from its original source language into a application-neu-
tral language tailored for KBR3. Then the "label" for
each rule conclusion is computed. Each label is simply
the set of input states (called "environments") that allow
the conclusion to be deduced. These labels describe the
KB functionality in terms of input/output pairs.
Computing them essentially "compiles out" all the de-
ductive paths of the original KB (often referred to as the
"extension" of the KB).

The resulting labels are used by the "perform checks"
module in detecting the errors types enumerated in the
next section. Finally, the "Report Interface" module al-
lows tool users to integrate the results in the context of
the KBs original source language.

i~ i I KBR3 h._l ComputeI
SourceKBs ’ lTranslat°rs Labels I

~1r
~LabelsI Peff°rml Errors~]

I Checks I " ReportI
InterfaceI

Figure 1 - KBR3 tool architecture

Context of tool usage

To understand the observations made in this paper, it is
important to know that the KBR3 tools were used during
KB maintenance and usually after some amount of con-
ventional KB testing had been done. This conventional
testing included syntax checking, checks for obvious
constraint violations, and some manual testing of the
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maintenance changes. In some cases, more thorough
testing was done, such as regression testing or code in-
spection.

This paper focuses on KB maintenance because the
major use of the KBR3 tools have thus far been by KB
maintainers. Besides testing maintenance changes, the
tools have been helpful in verifying a maintainer’s un-
derstanding of KBs originally developed by others (see
Dalai and Williamson 1992).

The reason why some conventional testing was done
before employing the KBR3 tools was due to the large
amount of time it takes to run the KBR3 analysis (see
"Efficiency Limitations"). Thus the KBR3 analysis was
reserved for finding the more elusive errors, such as or-
der dependencies among rules. An incremental version
of KBR3 may reduce these limitations (see "Future
Directions").

Error Types
There are eleven types of errors detected by KBR3. Of
these, inconsistency and redundancy are discussed in de-
tail since they are the most general problem indicators
and the most challenging for users to deal with. Since
the other error types are relatively intuitive, this paper
does not dwell on them. Formal definitions of all the er-
ror types can be found in Williamson and Dahl, 1993.

Inconsistent rules
Two rules are considered inconsistent if they assert logi-
cally contradictory conclusions under the same input
states. Rules rl and r2 are inconsistent in the following
example:

rl: IF p THEN q

r2: IF s THEN NOT q
r3: IF p THEN s

Redundant rules
A rule is considered redundant if it can be removed from
the knowledge base without effecting its functionality.
This notion of redundancy is very general and has as
special cases dead end rules, un-firable rules and sub-
sumed rules.

Other error types
The other types of errors detected by KBR3 are: incom-
pleteness, invalid conclusions, un-firable rules, rule sub-
sumption, unused variables, un-computed variables, dead
end rules, overlapping rules, and circular reasoning.

Errors vs. Their Causes
It is important to remember that there are many possible
causes for each of the error types discussed in the last

section. In Preece and Shinghal, 1992, it is noted that the
distinction between these anomalies and their causes "has
often been blurred in the literature". This blurring has
promoted some inappropriate ideas on how to interpret
errors and how to automate their correction.

For example, one popular strategy for error correction
is to automatically remove all redundant rules. While
this strategy preserves KB functionality, it could cover
up any number of problems. Suppose during mainte-
nance, a under-qualified rule is introduced. This new
rule may unintentionally subsume other valid rules, caus-
ing them to be redundant and candidates for removal!
The reverse strategy of removing the most general rule
can also backftre if the more specific cases were mistak-
enly added to a valid KB already containing the general
rule (of course, the general rule was never redundant
anyway).

Another example of this blurring is making the as-
sumption that a logical inconsistency found in a KB is
due to an inconsistent mental model on the part of the
knowledge engineer. For instance, in the following ex-
ample, one strategy of automatic error correction sug-
gests the most general rule, r2, is at fault and should be
specialized. However, it is possible that the error is just
a typo and rl’s antecedent should have been: NOT P
AND Q.

rl: IF P AND Q THEN R
r2: IF P THEN NOT R

The next two sections survey the causes of inconsisten-
cies and redundancies uncovered with the KBR3 analysis
tool.

Causes of Inconsistency
This section describes the seven causes of inconsistency
that were uncovered by using the KBR3 tools on ESDS
KBs: order-dependent rules, inconsistent KB specifica-
tions, inputs correctly assumed to be unrealistic, inputs
improperly assumed unrealistic, under-qualified rules,
overly complex rules with overlapping conditions, and
typos or cut and paste errors.

Order-dependent rules
One of the often cited benefits of rule-based system is the
modularity of rules. However, this modularity often
breaks down in practice due to unforeseen rule inter-ac-
tions. One type of rule inter-action that hinders mainte-
nance occurs when rules deducing values for the same
attribute are written in an order-dependent fashion. As
reported in Dahl and Williamson, 1992, order dependent
rules are maintenance traps since they leave knowledge
implicit (e.g., it is not stated which rules are dependent
on which others and why).

Unfortunately, it is difficult in practice to prevent the
introduction of order-dependent rules. This is because
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the inference engine that processes the roles has a fixed
strategy which is usually understood and (often unwit-
tingly) exploited when writing rules. Order dependent
rules may not be detected by running KB test cases since
these rules may not cause the KB to produce erroneous
answers.

Fortunately, the inconsistency detection of the KBR3
analysis tool can uncover order-dependent rules.
Whether this is done depends on an option set when run-
ning the KB to KBR3 language translators shown in fig-
ure 1. To suppress detection of order dependency in the
example below, the translator conjoins the negation of
the antecedent of rule rl to the antecedent of rule r2, re-
sulting in a new antecedent for rule r2 of: NOT (x 
1) AND y = 1. Without this option set, KBR3 would
find rule r2 inconsistent with rule rl.

rl: IF x=l AND y=l THEN a=10
r2: IF y=l THEN a=20
r3: DEFAULT VALUE OF a=30

As suggested by the syntax in the example above, rule r3
specifies default information and can never be consid-
ered inconsistent with other rules. The KBR3 language
provides a convenient way for explicitly representing de-
fault mechanisms via a default rule that names all other
rules (in this case rl and r2) whose conditions must 
false for the default rule to fire.

With this arrangement, explicit order dependencies are
ignored while implicit ones are optionally uncovered. If,
as sometimes is the case, an order dependency detected
by KBR3 is caused by a rule acting to represent default
information that can not be explicitly identified as such
in the source language, then the resulting inconsistency
error can be marked to be ignored by KBR3 in the future.
For instance, rule r2 in the previous example may act as a
more specific default which should be considered before
r3.

One may observe that notations for specifying defaults
are logically unnecessary since defaults can always be
expressed as the negation of the disjunction of all the
other cases. This, however, is a maintenance problem,
since the conditions for defaults must be kept in sync
with the non-default cases and amounts to an error-prone
form of redundant information. In fact, the existence of
this maintenance problem is probably the best indicator
of whether a rule should be considered as representing
default information.

Using KBR3 to detect rule order dependencies has
turned out to be a very valuable tool for uncovering
knowledge that was left implicit. It is a unique test for
KB quality and maintainability which is not addressed by
other conventional testing methods. A majority of the
inconsistencies found thus far have been of this type.

Inconsistent KB specifications

The most obvious cause of a logical inconsistency where
the specifications on which the KB is based are them-
selves logically inconsistent (by "specification", we
mean either formal documentation of mental models of
the domain expert or knowledge engineer).

Surprisingly, n0ng of the inconsistencies uncovered so
far by the KBR3 tool are attributable to inconsistent
specifications. This is probably because KBR3 has thus
far only been used for checking maintenance changes
that have already been tested in other ways (e.g, regres-
sion testing, manual testing). Of course, this is not to say
that such inconsistencies will never be uncovered.

This finding does, however, emphasize the importance
of distinguishing between error types, as defined by their
syntactical form, and the underlying causes for their in-
troduction into a KB.

Inputs correctly assumed to be unrealistic

A logical inconsistency detected by KBR3 can be caused
when a set of inputs is allowed by the KB that would
never in practice be entered by any KB user. A simple
example might be:

rl: IF airplane-model = "747" THEN
travel-range = "long"

r2: IF number-of-engines = 1 THEN
travel-range = "short"

KBR3 would treat rules rl and r2 as inconsistent, unless
the KB explicitly disallowed consideration of a single
engine 747. This could be done with the explicit con-
straint: NOT (airplane-model = "747" AND
number-of-engines <> 4).

Apparently this type of inconsistency was prevalent in
the KBs used to test the initial version of the KB Reducer
algorithm that was used at Bell Labs. In our experience

of using KBR3 on ESDS KBs, we have found relatively
few inconsistencies that were due to such under-con-
strained combinations of inputs.

Inputs improperly assumed unrealistic

Another more serious cause of inconsistencies found by
KBR3 is like the last, except that the KB builders incor-
rectly assumed an input set would be viewed as
"unrealistic" by users. The KBR3 tool found such an in-
consistency in the first real KB it analyzed. A simplifi-
cation of the rules involved was:

rl: IF
THEN

r2: IF
THEN

part-is-machined
NOT use-transparent-material
part-must-be-seen-through

use-transparent-material

The problem was actually in the definition of machined
part. The domain expert did not expect that users would
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rl: IF ((P AND NOT (vl IN-LIST 
AND NOT (v2 IN-LIST L))

ORQ)
AND -50 <= X-max <= 350
AND -50 <= X-min <= 350
AND Y = yl
AND (Z IN-LIST (zl, z2) 

(Z = zl AND NOT R))
THEN Answer = answer-i

r2: IF (Q OR
(P AND NOT (vl IN-LIST L)))

AND -65 <= X-max <= 400
AND -65 <= X-min <= 400
AND Y = yl
AND Z = zl

THEN Answer = answer-2

Figure 2 - Overlapping Complex Rule Conditions

consider windows as machined parts because of the
modest cutting and drilling involved. The root of the
problem was an imprecise definition of what constituted
a machined part.

Although we have so far only found a few inconsis-
tencies of this type, the ability to detect them is a valu-
able contribution of the KBR3 tool.

Under qualified rules

Another cause of inconsistencies found by KBR3 is the
familiar problem of under-qualified rule conditions. One
such error had the form:

rl: IF i00 < x < 500 AND P
THEN y = 20

r2: IF 125 < x < 500 AND P AND Q
THEN y = 50

The problem was that rl left out the condition: NOT Q.
Thus while the rules seemed to cover overlapping condi-
tions, the conditions should have been mutually exclu-
sive. In the case alluded to above, the error may have not
been found with conventional testing since the error’s
only effect was to sometimes provide overly safe rec-
ommendations.

Causes of Redundancy

All but two of the causes of inconsistencies covered in
the last section can in theory also cause redundancy. The
cause called "overly complex rules with overlapping
conditions" does not apply because rules with overlap-
ping conditions and identical actions are not technically
redundant (there is a separate test for this). Obviously,
the other cause that can not apply to redundancy is
"Inconsistent KB Specifications".

From the KBs analyzed, the causes of inconsistency
that were actually found to also cause redundancy were:
"Order-dependent rules", "Under qualified rules", and
"Typos and cut and paste errors". The two causes in-
volving unrealistic inputs were not seen, although there
is no reason to think they never will. There were always
less redundancies reported than inconsistencies.

While inconsistency always involves rules that con-
clude different values for the same input, redundancy in-
volves more than just rules concluding the same values
for the same input. Since a rule is redundant if it can be
removed without affecting KB behavior, redundancy also
involves dead code in the form of un-firable rules or
dead-end rules (i.e. rules not contributing to KB outputs).
For this reason, typos in attribute values were a common
cause of redundancy, since they often produce un-firable
rules.

Overly complex rules with overlapping
conditions

Some knowledge engineers (and even some domain ex-
perts) "enjoy" writing complex boolean expressions.
Unfortunately they rarely enjoy reading them. Such ex-
pression also tend to contain errors, especially when
taken in combination. KBR3 has uncovered such errors,
usually as inconsistencies among rules. Figure 2 shows
the form of one case encountered.

Typos and cut and paste errors

It is possible to imagine all kinds of logical errors that
can be caused by editing mistakes. In practice, not many
errors found by KBR3 were attributed to editing mis-
takes. Most that were so attributed were not identified as
inconsistencies, but as redundancies.

Other causes found for redundancy include:

Intentional mirroring of redundant knowledge
sources

There were several cases where a KB intentionally had
rules subsumed by others because the rules directly rep-
resented knowledge obtained from different sources and
direct traceability to those sources was an important vali-
dation goal.

Intentional dead code

Some KBs had a lot of dead code (un-firable or dead-end
rules) which was intentionally "dead", either because it
was part of an in-work section of the KB or was tem-
porarily disabled.
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rl: IF x=l

r2: IF x=l

r3: IF x=2

THEN y=10 r4: IF y=10 THEN z=100

THEN y=20 r5: IF y=20 THEN z=200

THEN y=20 r6: IF y=20 AND x <> 1 THEN

Figure 3 - Example of Error Propagation

z=300

Unintentional Dead Code
This form of dead code was often created in the process
of restructuring a KB. Sometimes such code was ini-
tially left to fall back on in case the new code did not
work out. It is helpful to identify this code since it can
be a stumbling block for future maintenance.

Invalid assumptions by KBR3
One cause of redundancy reported by KBR3 had nothing
to do with the KBs analyzed but rather was an invalid as-
sumption made about the inference engine that the KB
was written for. The KBR3 analysis mistakenly assumed
string comparisons should be case sensitive. This cause
of "redundancy" is worth noting since knowledge repre-
sentation languages and inference schemes used by real
KBs are often rich and not fully documented.

Issues in Error Reporting

Two problems in error reporting were experienced, both
involve single errors which generate multiple error mes-
sages.

Error propagation
Under some circumstances, errors can be propagated
from the rules generating them to other rules that depend
on the former rules. Take for example, the set of rules
shown in figure 3.

In figure 3, the inconsistency between rl and r2 would
be propagated to rules r4 and r5. Note that the error will
not propagate to rules r4 and r6 because the condition "x
<> 1" prevents r2 contributing to r6.

To partially alleviate the problem having users wade
through propagated errors, the errors are sorted by rule
level, so that propagated errors are always reported after
their primary errors. In practice, this approach is usually
adequate but incurs the risk of missing primary errors
that exist at the same level as a sea of propagated errors.
We are looking for more effective approaches that would
let us detect and remove propagated errors. It is possible
that the approach taken in Zlatareva, 1992, can handle
this problem.

Number of actual vs. reported errors

Beyond the extra errors reported due to error propaga-
tion, the KBR3 algorithm will report a single logical in-
consistency many times, once for each assignment of

values to non-input attributes that cause the inconsis-
tency to manifest itself.

rl: IF A=B THEN R
r2: IF A=B THEN -R

In the above example, if attributes A and B were both not
inputs and could each take on 10 values, then KBR3
would report 100 errors (one for each pair of A and 
values). Fortunately, these individual error reports are
grouped together, allowing the user to skip over most of
them. This practice does have a slight drawback since
the user may not discover that some rules have more than
one inconsistency between them (e.g., suppose rl and r2
both had an antecedent of: A=B OR C=D)

KBR3 Limitations and Work-Arounds
The KBR3 approach has a couple of inherent limitations
for which we have found practical work-arounds.

Problems related to undecidability
Because KBR3 analyzes KBs containing algebraic equa-
tions, it cannot be guaranteed to find all errors, and in
fact may at times report erroneous errors. For example,
since the present version of KBR3 does not have any
knowledge of trigonometric identities, it won’t recognize
that rules rl and r2 are inconsistent. Likewise it will er-
roneously report rules r3 and r4 as inconsistent.

rl: IF sin(90 + x) > 0 THEN 
r2: IF cos(x) > 0 THEN 
r3: IF x = 1 THEN y=sin(90+x)
r4: IF x = 1 THEN y=cos(x)

The approach we have taken to this problem is to add a
limited suite of algebraic rules which are expanded as the
need arises. Fortunately, the KBs we are now analyzing
only contain very simple algebraic expressions and the
current set of rules have proven adequate.

Efficiency limitations

We have found it computationaly prohibitive to run the
KBR3 analysis on many of our large KBs. We have also
found that size of a KB alone is not a good indicator of
how long the analysis may take. For example, two small
KBs were analyzed, both with roughly 150 rules. One
took only 5 minutes, while the other took 120 hours!
What appears more important than KB size is the amount
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of rule inter-connectivity, length of inference chains, and
the number of non-input attributes whieh have a large
number of explicitly stated values and which are also
referenced in rule conclusions.

The costlier KBs can still be partially analyzed. One
approach we employ is to use tools that derive a subset
of a KB that supports KBR3 analysis of a requested set
of attributes or rules. While an analysis is in progress, it
is also possible to request obviously costly rules (and
their dependants) to be skipped.

found by running the KB, including hidden dependencies
on rule ordering and under-constrained inputs.
Interpreting the results of the analysis can sometimes be
challenging since there are many potential causes for the
errors detected, especially in the case of the general er-
rors of inconsistency and redundancy. Due to the com-
putational cost and time required by KBR3, it makes
sense to first screen out obvious errors with less expen-
sive tools or methods. An incremental version of KBR3
could reduce the need for this pre-screening.

Future Directions
There are many potential enhancements which could be
made to the KBR3 tool suite. Enhancements we are con-
sidering include:

Incremental analysis

The efficiency limitations mentioned in the last section
motivate ongoing research into an incremental version of
the KBR3 analysis. Incremental analysis will make it
unnecessary to re-analyze portions of a KB unaffected by
KB maintenance changes. This should allow the KBR3
tool to be used more frequently.

Error interpretation/correction support

The variety of causes we encountered for errors detected
by KBR3 tools have shown that strategies for fixing er-
rors must depend on the underlying causes of errors and
not just the syntactical form of the errors. Therefore, we
are not currently trying to automate error correction.
Instead, we are working to provide information relevant
to error interpretation via a rich user interface that incor-
porates hyper-text links.

Test case generation

We are looking into using the results of KBR3 analysis
to augment regression test suites with tests that cover
newly added KB input-output behavior.

Integration/Redundancy management tools

We are looking into tools based on KBR3 analysis which
automatically detect redundancies across KBs as well as
general frameworks to manage replicated knowledge.
Such tools will probably not be practical without an in-
cremental version of the KBR3 analysis.
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Conclusions
Verification tools such as KBR3 are proving to be effec-
tive in detecting otherwise hard-to-find anomalies in
knowledge bases, despite the computational cost of per-
forming the analysis. Moreover, the analysis can un-
cover potential maintenance traps that are usually not
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