
Integrated Design And V&V Of Knowledge-Based Systems

Ed P. Andert Jr.
Conceptual Software Systems, Inc.

P.O. Box 727, Yorba Linda, CA 92686, U.S.A.
andert@orion.oac.uci.edu

Introduction

The state-of-the-practice in Knowledge-Based
System (XBS) verification and validation (V&V) 
three major problems: developers are unaware of the
need for and basic issues of V&V, tools are generally
unavailable to aid developers, and research has
concentrated primarily on static anomaly detection
which alone is inadequate for validation of real-world
KBSs. This abstract proposes an approach to
improving the situation that concentrates on two key
areas. The f’LrSt is exploring a common knowledge
representation and KBS execution environment to be
augmented with integrated automated V&V tools.
The goal is to develop the integrated environment as
an open system for wide dissemination to developers.
The second improvement is to develop innovative
automated dynamic analysis techniques to augment
current static anomaly detection capability.

The State-of-the-Practice in KBS V&V

The state-of-the-practice in KBS V&V can be
characterized as not very good. This is despite a
significant amount of research that has been
performed in the area. KBS developers are unaware
of the need for and the basic issues of V&V. In
addition, even basic tools are virtually unavailable to
aid developers. Finally, KBS V&V research has
concentrated primarily on applying static anomaly
detection on the KB which is not adequate for the
validation of most real-world KBSs.

A solution is being pursued to the problem of
KBS developers being unaware of the needs for and
basic issues of V&V. A workshop has been
developed by IBM for NASA/JSC to motivate the
need for applying more systematic V&V approaches
to KBS development and to provide hands-on
experience in using V&V techniques. This is
augmented by researcher efforts to document
guidelines (funded by EPRI/NRC) and teach KBS
V&V tutorials (primarily at AI conferences).

A major deficiency that has been noted by the
IBM workshop effort and various V&V researchers,
is that tools to aid developers in KBS V&V are
virtually unavailable. These tools are needed to
streamline the V&V process, reduce the cost of
performing V&V, and aid in integrating V&V into
the KBS development process. One commercial KBS
development environment, EXSYS 3.0 from EXSYS,
Inc. is known to have an automated V&V tool

capability. Unfortunately, this tool performs only a
single technique of basic static anomaly detection as a
utility with little emphasis on basic issues and
systematic V&V. Probably one of the most common
mistakes in V&V is relying on a single post-
development technique.

In addition, several tools have been developed by
researchers. The most note-worthy of these are EVA
and COVER. EVA built on results from seminal
anomaly detection research (RCP and CHECK) 
yield a comprehensive static anomaly detection tool.
Unfortunately it was developed for the then-popular
KEE environment on Symbolics platforms which has
been abandoned by KBS developers. Thus, EVA is
inaccessible and unused by KBS developers. COVER
has similar functionality to EVA, but can be used on
a variety of KBS development languages. The
process for using the tool is to convert a KBS into
COVER’s rule language and then run the anomaly
detection tool. Besides requiring non-automated KB
conversion, COVER is only available from the
academic developer which makes it essentially
unavailable to KBS developers. R&D tools have
made essential contributions to improving the state-
of-the practice in V&V. The have shown the
possibility of user-accessible tools, theoretical
foundations for techniques, and the practicality of
such tools despite theoretical complexity limitations.

KBS V&V research has concentrated on static
KB anomaly detection techniques which are
inadequate for assuring the reliability of nearly all
real-world KBS applications. This is motivated by
the ease of defining V&V techniques for a KB with a
strong theoretical foundation assuming the validity of
requirements and procedural (control) aspects of the
KB/ inference engine. Unfortunately, the
requirements and their transfer to the KB design are
difficult to validate for most ill structured problems
tackled with KBSs. Most commercial KBS
development tools contain proprietary inference
engine control specifics, making their validation a
daunting task for developers. Therefore, it is difficult
to assume the validity of requirements and inference
engines. Finally, knowledge-base representation
methodologies available in commercial tools have
expanded to non-rule-based representations, such as
case-based and model-based reasoning for which
anomaly detection techniques for rule and frame
representations do not readily apply. Thus, the well-

119

From: AAAI Technical Report WS-93-05. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



researched anomaly detection techniques alone are
not adequate to validate KBSs.

Improving the State.of.the-Practice by
Advancing the State-of-the-Art

Clearly the state-of-the-practice in KBS V&V
needs improvement. Developers need help in
becoming more aware of V&V issues. Tools that
allow and encourage systematic V&V need to be
made available to developers. Alternative techniques
to static anomaly detection techniques need to be
developed and explored for KBSs.

This approach to improving the situation is to
advance the state-of-the-art in two key ways. The
first is to explore a common knowledge
representation and KBS execution environment to be
augmented with integrated automated V&V tools.
The goal is to develop the integrated environment as
an open system for eventual transition to a
commercial product. The second improvement is to
develop dynamic analysis techniques to augment
current static anomaly detection V&V capability.

The development of a common knowledge
representation and execution environment (CKE) has
several advantages. Knowledge-bases from various
commercial/ popular knowledge languages can be
automatically translated into the CKE and validated.
This is more useful than trying to target a single
knowledge language that suddenly becomes
unpopular/unused due to unrelated issues. It is more
advisable to select a couple of popular knowledge
languages that are more closely associated with the
CKE. This allows automated V&V integrated with
development while avoiding lack of acceptance of the
CKE because of the sudden downfall of a single
knowledge language. An open system approach to
inferencing and reasoning facilitates validation of
non-proprietary control logic. In addition, the CKE
should support open system style definition of various
control and inference engine logics. This will allow
both experimentation with alternative and more rapid
validation of KBSs developed with less common
knowledge development tools. The validation suite
associated with the CKE can then readily address
important issues such as real-time performance. All
of this increases the usage of the V&V tool which
improves developer awareness of issues and
encourages systematic V&V.

A general improvement in the state-of-the-
practice will result from even relatively small-scale
acceptance of such a V&V tool (such as 10% of
developers interested in V&V ). The tool should be
distributed with integrated tutorial information on
how V&V should be systematically applied to KBS
development.

The advantages of developing dynamic analysis
V&V techniques include more comprehensive
coverage, the ability to validate KBS that utilize
proprietary inference engines and the ability to
validate non-rule-based KBs. Dynamic analysis has
long been utilized in general software V&V to yield
more extensive software coverage to approximate
exhaustive testing (since exhaustive testing is usually
computationaUy intractable). Although dynamic
testing has been characterized as inefficient in
detecting and locating errors, it should be at least as
effective as current static techniques. Current static
analysis techniques can only detect anomalies that are
indicators of errors and assume a validated inference
engine/ control structure. In addition, dynamic
analysis can aid in the validation of KBSs that utilize
proprietary inference engines. Test sets can be
generated from the KB and/or requirements and then
applied to the KBS in its execution environment,
including the proprietary inference engine. This will
provide some level of confidence in the reliability of a
KBS implementation. Finally, the current state-of-
the art in static KB anomaly detection techniques and
their theoretical foundation has primarily considered
rule and frame-based systems. Dynamic analysis can
be utilized to address model and case-based
knowledge representation providing some degree of
automated tool coverage. Theoretical underpinnings
of various dynamic analysis testing techniques
applicable to general software are just as applicable to
KBSs.

There currently exists a unique opportunity to
improve and impact the practice of KBS software
development. KBS V&V is a young area of study
with a small set of researchers and body of published
research. The majority of KBS developers utilize a
countable number of KBS development tools. A
growing number of developers and potential
developers are searching for answers on how to
perform V&V on their software. Many KBS
developers can be reached via publication and
advertisement through a few magazines and
advertisements. The opportunity is to develop and
release a seminal KBS development environment that
both implements and encourages comprehensive,
integrated V&V. This can yield an improvement
over the state-of-affairs in general software V&V
where the process is essentially unautomated due to a
large, complex body of research, techniques, and
software developers. It is viewed as too costly to
utilize automated methods because each project would
require development of a unique tool that meets its
needs and utilizes a selection of techniques from the
myriad of technical literature.

120



Incorporating Uncertainty in a DAG-Based Approach to
Static and Dynamic Verification of Rule-Based

Extended Abstract
Valerie Barr

Department of Computer Science

Rutgers University

New Brunswick, NJ 08903
E-mail: vbarr@cs.rutgers.edu

In [Barr, 1992] we presented preliminary work on
an approach to static and dynamic analysis of rule-
based expert systems that uses a common DAG rep-
resentation framework for both. The DAG is made
up of predicate nodes and AND nodes. The predicate
nodes represent individual components of antecedents
and consequents, while the AND nodes represent the
fact that multiple components of an antecedent must
be true in order for the conclusion of a rule to be made.

The static analysis uses a look-up table (with entries
for each component of an antecedent and for each com-
plete antecedent) and depth-first traversal of the DAG
representation in order to identify problems in the rule-
base such as circularity, redundancy, conflict and am-
biguity, dangling conditions, useless conclusions, and
isolated rules. An approach for dynamic analysis was
outlined, based on data-flow analysis of procedural pro-
grams, which executes over the same DAG representa-
tion used for static analysis. The dynamic analysis can
determine if test data provided satisfies a chosen test
criterion selected from a hierarchy of testing criteria..
Of the five testing criteria proposed, the simplest is
traversal of one sub-DAG to each goal of the system.
This is equivalent to providing, for each goal, one test
case that concludes that goal, clearly a very minimal
criterion. The most difficult criterion is traversal of all
sub-DAGs. (See [Barr, 1992] for the complete hierar-
chy).

In the initial work we considered only rule-bases that
encoded reasoning processes without any explicit rep-
resentation of uncertainty factors.

Ideally we would like the verification technique to
be applicable to more general classes of rule-based sys-
tems, or base the method on a format to which sys-
tems can be easily converted regardless of their initial
format. This task is made more difficult when we con-
sider rule-based systems that include uncertainty in-
formation. The interpretation of uncertainty can vary
from system to system, being viewed as probabilities or
confidence factors. The particular way in which uncer-

Systems:

tainty information is viewed in turn opens up a number
of possibilities for how to combine and manipulate that
information during execution of the expert system. For
example, if we consider the uncertainty information to
be probabilities then we can take either a Bayesian
or Dempster-Shafer approach during execution of the
system. One aspect of our continuing work using the
DAG representation is the selection of one view of un-
certainty which will then be incorporated into the dy-
namic testing scheme.

The inclusion of uncertainty raises a number of issues
for testing. For instance, if the system reaches a (fi-
nal or intermediate) conclusion but only with very low
certainty, should that be sufficient to satisfy a criterion
which states that we must have test cases which cause
every conclusion to be reached? Or must the system
make a conclusion with high confidence in order for the
tester to be satisfied that the system has worked cor-
rectly in that case. One approach to addressing these
questions involves a fairly simple method for handling
uncertainty in the DAG representation.

Commonly, the uncertainty associated with a con-
sequent in a rule is expressed as a value within the
interval [0, 1]. However, working with uncertainty over
such a continuum would make it extremely difficult to
incorporate into the DAG representation. Therefore
we propose dividing the uncertainty range into three
subranges:

¯ a "low" range, which is values in the interval [0, .4)

¯ a "medium" range, which is values in the interval
[.4, .7)

¯ a "high" range, which is values in the interval [.7, 1]

We then represent each (intermediate or final) conclu-
sion of the system three times, once for each subrange
of uncertainty values. The testing criteria must be
modified as well, to address sub-DAGs which include
uncertainty.

There are related issues that arise once we start to
include uncertainty in the DAG. Certainly, the num-

121



ber of test cases necessary to satisfy any of the test
criteria will be greater than in a DAG without cer-
tainty factors. This raises the issue for the tester of
how to choose samples to test the three different levels
of certainty factors. Furthermore, there is the possibil-
ity that one input set might cause the same conclusion
to be made multiple times, but with different certainty
factors in each case. We must determine what this
means relative to the overall correctness and integrity
of the knowledge base.

In addition to the work involving uncertainty, there
are additional aspects of this continuing work on the
DAG approach to testing expert systems. One as-
pect is the inconsistency problem of identifying sub-
sumption in the rule-base. It seems that potential in-
stances of subsumption can be identified if the look-up
table entries for consequents also point back to the an-
tecedents that concluded them. This will make it pos-
sible to compare a pair of antecedents which both re-
sult in the same consequent, to see if one subsumes the
other. However, this still leaves the problem that sub-
sumption is a computationally difficult problem. In an
actual expert system, where the number of components
of each antecedent can be relatively low, the problem
would be less costly to solve. Clearly some work re-
mains to fit the solution into the model outlined in
[Barr, 1992] and provide a bound on the complexity,
given an assumption about antecedent size. This also
raises a further question of overall complexity trade-
offs, since limiting the number of components in each
antecedent will cause the overall depth of the DAG to
increase (concomitant with an increase in the length of
reasoning chains in the underlying knowledge base).

Finally, there is the issue of possible restrictions on
the DAG. Are there reasonable restrictions that we can
make on the DAG that will not reduce the power of the
analysis but will reduce the complexity of the analysis,
particularly regarding the number of sub-DAGs? For
example, if the DAG is singly connected [Pearl, 1988],
where no more than one path exists between any two
nodes, how does this affect the power and complex-
ity of the analysis over the DAG, and what sorts of
changes does such a restriction imply for the underly-
ing knowledge base?

These represent the key issues that must be resolved
in order for the DAG representation presented in [Barr,
1992] to be useful for the static and dynamic evaluation
of rule-based expert systems that include uncertainty.

References

Barr, V.B. 1992. A dag-based approach to static and
dynamic verification of rule-based systems. In Work-
shop Notes of the AAAI-92 Workshop on Verification
and Validation of Expert Systems, San Jose, CA.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann, San Mateo, CA.

122




