
A Perspective on Formal Verification

Rose F. Gamble
Department of Mathematical and Computer Sciences

The University of Tulsa
Tulsa, OK 74104

gamble @ euler.mcs.utulsa.edu

Formal methods employ mathematical
techniques to prove a program satisfies its specifications.
Many have stated that the use of these methods provides
the only means to truly guarantee a program is
dependable [4,8]. Though the use of these methods can
be susceptible to human error, they will still increase the
dependability of a program. Additionally, using formal
methods can uncover design problems or inefficiencies in
a program. If knowledge base system (KBS)
dependability is a goal, formal methods must become as
integral a part of system development as software testing.
However, we must overcome many obstacles before
realizing this goal. The main objective of our research is
to address the verification of knowledge based systems
using formal methods. For the remainder of this paper,
we outline (i) how formal methods can be used to verify
KBSs that rely on rule-based programs, (ii) how these
methods address issues of efficiency and concurrency,
(iii) the lessons learned, and (iv) the future directions 
the research.

The use of formal methods. To employ formal
methods for developing and verifying KBSs, we need a
computational model that provides a notation in which to
formally state the specification of the KBS and its
associated program. In addition, the computational
model needs a proof theory for verification, i.e., to show
that the KBS complies with a given specification.
Currently we restrict the KBS to using only rules for its
knowledge. Swarm [3,10], the computation model used
for this research, allows us to develop rule-based
programs independent of a particular architecture, to
verify dependability using an assertional-style proof
logic, and to express concurrent operations. Swarm is
based on atomic transactions over a set of tuple-like
entities. Its syntax and execution semantics differ only
slightly from traditional rule-based systems. In Swarm,
the computation state is represented by the contents of a
dataspace, a set of content-addressable entities
partitioned into a tuple space and a transaction space.
Tuples in Swarm are similar to working memory
elements. Executing a Swarm transaction is similar to
executing a rule in a rule-based program. Tuples and
transactions are defined as classes, whose instances can

be created dynamically to appear in the tuple and
transaction spaces respectively.

A Swarm program executes by non-
deterministically choosing a transaction from the
transaction space and deleting it from the space. To
ensure fairness, every transaction appearing in the
transaction space is eventually chosen. There is no
notion of global control or sequencing. A transaction
may comprise multiple simultaneously executing
subtransactions, each of which has a typical rule
structure. Given a transaction chosen from the
transaction space, the LHSs of all of its subtransactions
are simultaneously matched against the tuple space.
Those subtransactions whose LHSs successfully match
within the current contents of the dataspace perform the
actions of their RHSs simultaneously, with all deletions
before additions. The combined actions of the executing
subtransactions determine the actions of the whole
transaction. Tuples can be added and deleted, but
transactions can only be added as an action of the
transaction itself or as the result of executing another
transaction. A Swarm program terminates when there
are no transactions left to choose.

We have shown that Swarm programs can be
directly translated to traditional rule-based programs. In
addition, traditional rule-based programs can be
translated to Swarm with the appropriate conversions of
the programs’ conflict resolution strategies [5]. Swarm is
robust in that we can express both synchronous and
asynchronous computations, and reason over both the
tuple space and transaction space.

Our methodology presupposes the ability to
specify the operational details and formal properties of
the program under development and to formalize the
functional requirements imposed by the application. We
specify and verify safety and progress properties using
the Swarm proof logic. Safety properties are used to
guarantee that the program will do nothing wrong.
Progress properties are used to guarantee that the
program will eventually do something. Properties are
formulated and expressed by constructing a sufficiently
complete assertional-style characterization of programs
representing possible realizations of an application. For

123

From: AAAI Technical Report WS-93-05. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



example, we express the verification concern of
consistency as a safety property that characterizes the
information that cannot be present at the same time in
working memory. To prove such a property, we must
examine all transactions to show that they do not violate
the safety property. We express the verification concern
of cycles as one or more progress properties. For
instance, one progress property may be that the
completion of a certain task eventually leads to the start
of another. If we can show that the transactions are such
that this property is obeyed, then there are no infinite
cycles between the two tasks.

Concurrency and efficiency. The term
concurrency describes the possibility of several tasks
executing at once. This term is used in contrast to
parallelism that refers to the implementation of tasks
distributed to several processors. In general, there are at
least three reasons to consider concurrency [14]. First,
the real world is concurrent. Therefore, if we are
modeling real-world tasks, as is often the case in
knowledge based systems, concurrency will be inherent
in the solution. A system that expresses and exploits the
inherent concurrency in a problem solution will realize a
performance gain over sequential implementations.
Often fault tolerance or robustness requirements may be
best met by replication of not only information but also
the means of processing. For example, in Swarm, we can
partition multiple transaction instances of the same class
over a set of variable bindings to replicate knowledge.

Program derivation refers to a systematic formal
process of constructing programs from their
specifications, typically through some form of stepwise
refinement. For concurrent programming, Chandy and
Misra’s work in UNITY [2] advocates an approach in
which the formal program specification is gradually
refined to the point where the specification is restrictive
enough to suggest a trivial translation into a concurrent
program. Thus, program development using this
approach first focuses on the problem at hand and
postpones language and architectural considerations until
last. Back and Sere [1] have a different approach in
which they start with an initial (mostly sequential)
program and refine its text to represent an efficient
concurrent program.

We derive executable rule-based programs from
formal specifications by tailoring a methodology that
incorporates both the specification refinement and
program refinement strategies. Specification refinement
is used to derive a generic rule-based program from its
formal specifications. Program refinement is used to
exploit implementation concerns, such as query
complexity and language restrictions, in an effort to

maximize efficiency and concurrency. The following are
sample refinements from the methodology [7,11]: (i) 
general specification refinement, (ii) a general program
refinement (iii) a refinement to exploit concurrency, and
(iv) a refinement to impose target environment
restrictions to increase efficiency.

(i) Often we can divide global progress
properties into multiple stages of computation
(tasks) or multiple preconditions (cases) of 
property, allowing the definition of local progress
properties that are easier to express and measure,
and hence, easier to guarantee.

(ii) Global data structures used for initial
representation often cause bottlenecks. We can
distribute these structures locally to reduce shared
information, provided we can verify the local
computation eventually becomes equivalent to the
global computation. This process can introduce
new progress properties and force the weakening
of safety properties that constrain the structure.

(iii) For more asynchronous computation, 
partition a transaction modifying several variables
into a set of transactions, each modifying a few
variables. We must verify that the distributed
modification of variables eventually becomes
equivalent to the global modification.

(iv) With knowledge of the target system 
can impose restrictions early in the refinement to
still derive an efficient concurrent program. For
instance, if the target system is a parallel
production system shell such as PARS we need
consider the difference in the atomicity of the
knowledge statement. In Swarm a transaction is
an atomic statement. However, conversion to
PARS requires a subtransaction to be an atomic
statement.

Lessons learned. We approached verification
from two viewpoints: verifying existing systems and
deriving verifiable systems from specifications. The
former requires some reverse engineering because many
specifications needed for proof may not be explicitly
stated. Also, verifying an entire KBS is a complex and
time-consuming process. However, if economy of
resources is important, it is possible to verify only
portions of a large program [6], allowing concentration
of formal methods where it is critical that code be
dependable. Deriving a KBS is a more direct means of
verification because the proof of the system is an inherent
consideration of each refinement step. Knowledge of the
target environment can offer substantial information that
influences the derivation process. Specification
refinement allows us to view the program generically,
while program refinement offers a way to incorporate the

124



constraints and exploit the advantageous characteristics
of the target environment.

We found that we can best exploit concurrency
in rule-based programs through derivation. This method
contrasts with methods used by parallel production
system shell developers [9,13] that partition rules of
existing sequential programs for multi-rule execution.
Concentration on the sequential program inhibits its
concurrency because it restricts the choice of solution
strategies that may increase the number of co-executing
rules.

Future directions of research. Formal
methods have been criticized for the amount of resources
they require. These resources are normally in the form of
manual specification, refinement, and proof. For formal
methods to be commercially accepted for KBS
development, we envision two immediate directions for
research. One direction is to abstract the proof
methodology and refinement process and to create a
partially automated development tool. The second
direction is to look at current methods for specifying
KBSs [5,12,15] to determine if those specifications that
are crucial to the acceptance of the KBS in a commercial
setting can be readily found, and then to concentrate
formal methods only on the portions of the program
responsible for satisfying the crucial specifications. The
program as a whole can be rigorously tested to satisfy the
remaining specifications.

Knowledge base systems made up of purely rule-
based programs are not robust enough. Many vendors
offer software development environments that include
both objects and rules. We can model concrete classes
and instances within Swarm. Additionally, an object can
be modeled as an independent process with transactions
as methods, to maintain autonomy and to concurrently
execute with other objects. However, we need to extend
Swarm to combine multiple objects into one system and
to use inheritance. Currently, we are enhancing our
methodology to derive KBSs to use objects and rules.
Through this research we hope to determine how to
subject this integrated paradigm to formal verification
and derivation.

References

[1] R.J.R. Back and K. Sere. Stepwise refinement of
parallel algorithms. Science of Computer
Programming, 13:133-180, 1990.

[2] K.M. Chandy and J. Misra. Parallel Program
Design: A Foundation. Addison-Wesley, New
York, 1988.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

H.C. Cunningham and G.-C. Roman. A UNITY-
style programming logic for a shared dataspace
language. IEEE Transactions on Parallel and
Distributed Systems, 1(3): 365-376, 1990.

E.D. Dijkstra. A Discipline of Programming.
Prentice-Hall, Englewood Cliffs, NJ, 1976.

R.F. Gamble, G.-C. Roman, W.E. Ball, and H.C.
Cunningham. The application of formal specifi-
cation and verification to rule-based programs.
International Journal of Expert Systems
Research and Applications, 1992, (to appear).

R.F. Gamble, G.-C. Roman, and W.E. Ball.
Formal verification of rule-based programs. In
Proceedings of the 9th National Conference on
Artificial Intelligence, pp. 329-334, July 1991.

R.F. Gamble and G.-C. Roman. Achieving soft-
ware reliability in concurrent expert systems.
Manuscript in preparation.

A. Kaldewaij. Programming: The Derivation of
Algorithms. Prentice-Hall, New York, 1990.

C.M. Kuo, D.P. Miranker, and J.C. Browne On the
performance of the CREL system. Journal of
Parallel and Distributed Computing, 13(4):
424-441, 1991.

G.-C. Roman and H.C. Cunningham. Mixed
programming metaphors in a shared dataspace
model of concurrency. IEEE Transactions on
Software Engineering, 16(12):1361-1373,
December 1990.

G.-C. Roman, R.F. Gamble, and W.E. Ball.
Formal derivation of rule-based programs. IEEE
Transactions on Software Engineering, 1992,
(to appear).

J. Rushby and R.A. Whitehurst. Formal verifi-
cation of AI software. Technical report, SRI
International, Computer Science Laboratory.
February 1989.

J.G. Schmolze. Guaranteeing serializable results in
synchronous parallel production systems. Journal
of Parallel and Distributed Computing,
13(4):348-365, 1991.

125



[14] C. Tomlinson and M. Scheevel. Concurrent Object-
Oriented Programming Languages. In W. Kim and
F.H. Lochovsky, eds. Object-Oriented Concepts,
Databases, and Applications, Addison-Wesley,
Reading, Mass. 1989.

[15] J. Yen and J. Lee. A task-based methodology for
specifying expert systems. IEEE Expert, 8(1):
8-15, 1993.

126




