
Validation & SystemsVerification of Knowledge-Based
Musa J. Jafar

Department of Management & Systems

Washington State University

Pullman, WA 99164-4726

musa@wsuaix.csc.wsu.edu

Historically, knowledge-base validation

and verification (V&V) has been carded out

manually. It is the process where the knowledge

engineers and their experts review the knowledge-

base and look for syntactic and semantic errors,

build decision trees, check for the logical

connectivity of the rules, run as many test cases

as possible, and watch for mismatches between

the system’s and experts’ output. This is a time-

consuming, error-prone process; it does not

guarantee f’mding all errors. Manually built

decision trees are tedious and need to be redrawn

after each change in the knowledge-base. Finally,

running test cases is a hit-or-miss activity, it only

tells if the system has errors, it does not tell

where an error occurred or what caused it.

Interactive V&V on the other hand, is an

automated process that insures the soundness and

completeness of a knowledge-base. It guarantees

that the addition, deletion or modification of any

set of rules does not leave the system in a state of

chaos. It allows the testing of predicates for their

values, and rules for their validity and proper

connectedness. It also ensures that every element
in the knowledge-base is logically accessible and

contributes to the overall soundness and

completeness of the system.

To solve the V&V problem we treat a

knowledge-base as a proof system where enough

evidence accumulates to successfully fh’e every

rule and prove the truthness of it’s propositions.

The truthness of every premise of every rule is

thought of as a theorem to be proved through

inferencing procedures, from facts in the

underlying database or through an external

interface. The rules and their premises are well

formed formulas that represent the strategic

governing rules of operations and skills in a

domain which is critical to the success of the

organization. Rules and skills accumulate over

time. They are hard to replace, "Corporate short-

term memory problem, where experts are not

around for a long time". The meta-facts and meta-

knowledge represent the integrity constraints of

the system. The underlying database is a set of

well defined constructs and procedures that serve

as a repository for the corporate data and is used

at the staffing and management level of the

organization. A knowledge-based system

provides all features provided by a database

system, plus support for complex operations that

involve decision making (rules and policies).

Within this framework, the integrity problem of a

database system is a sub-problem of the integrity

problem of a knowledge-based system; a "View"
in a relational database is equivalent to a set of

production rules; a table is equivalent to an object

where the table name is equivalent to the object

127

From: AAAI Technical Report WS-93-05. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



name; the table attributes are equivalent to the

object attributes and the table records are

instances of the object. In a rule, the instance of

an object is usually called a premise, a predicate

or a proposition. Within this framework the

following definitions are valid.

Interpretation: An Interpretation I is a mapping

from the states of the knowledge-base to the

underlying conceptual model that represents the

target system. The domain of I is the set of all

possible snapshots of the knowledge-base and

the range of I is the set of all possible realizations

of these snapshots. An interpretation maps the

elements of the language used to build the

knowledge-base to their conceptualizations. It

assigns variables used by production rules to the

corresponding elements in the universe of the

conceptualization.

Valid Rule: A production rule is valid if it is

true under the variable assignment rules of every

interpretation of the knowledge-base. In other

words, the conceptualization of the rule is indeed

true in the real world. Validity of a rule does not

guarantee the truthness of its conclusions. It is

also possible for a rule to be valid and to have

false condition premises.

Provable Rule: A rule is provable if there exits

a non-empty interpretation whose variable

assignment (restricted to the rule) enables the

f’ning of the rule. A data-driven rule is provable if

there exists an interpretation under which the

condition premises of the rule are evaluated to

true. A goal-driven rule is provable if there exits

an interpretation under which the conclusion

premises are in the search path of a goal.

Consistency: A knowledge-base is consistent

if there is no interpretation that yields both a

statement and its negation. In logical terms, it is

impossible to infer both P and not(P) from the

same set of facts and inferencing procedures.

Completeness: A knowledge-base is complete

if every valid rule is indeed provable. In other

words, for every rule there exists an

interpretation under which the variable

assignment rules (restricted to the rule) yield 

non-empty set. Completeness guarantees the

accumulation of enough evidence to fire every

rule and to prove the truthness of its conclusions.

Soundness: A knowledge-base is sound if

every provable rule is indeed valid. In other

words, every premise and every conclusion of a

rule are properly connected. It guarantees that no

dead-end rules and constructs exist in the

knowledge-base.

Validation: Validation is the process by which

the knowledge-engineering team insures that the

knowledge-base is consistent, sound and

complete. It guarantees that the addition, deletion

or modification of any set of rules does not leave

the system in a state of chaos. Validation allows

for the testing of predicates for their values and

rules for their validity and proper connectedness.

It insures that every element in the knowledge-

base is logically accessible and contributes to the

overall system. It insures the correct assignment

between variables and their conceptualizations.

Verification: Verification is building the system

right. It insures that the system correctly

implements the specifications of the previous

phase. It insures that the system does not have

any syntactic errors and every instance of every

object is indeed useful.

128




