
Knowledge.Based Process Specification Language

A Specification and Validation Technique for Knowledge-Based Systems

by

G.B. Prabhat and P. Srinivasan

Sundram Information Systems
(A Division of Sundram Fasteners Limited)

98-A, III Floor, Dr. Radhakrishnan Salai, Madras 600 004.
Tel: (+91)-44-844350
Fax: (+91)-44-844699

138

From: AAAI Technical Report WS-93-05. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

Abstract
This paper is the third in a series of papers to be presented on the KITS MethodologyTM. In

this paper, we focus on the verification and validation issues of Knowledge-Based Systems with

particular reference to Knowledge-Based Process Specification Language, a shell-independent

technique we had developed for the formal specification and subsequent validation of Knowledge-

Based Processes.

Introduction
As a professional organization involved in the development of Knowledge-Based intelligent

systems for clients from various Industry sectors, we observed the need for a shell-independent,

standard scheme for specifying and validating Knowledge-Based Systems. We observed that

specifying Knowledge-Based Systems using conventional specification techniques like Structured

English and Flowcharts was inadequate. Therefore, as part of the KITS Methodology - the

methodology we use to develop our brand of intelligent systems, namely Knowiedge-integrated

Information Technology Solutions (KITSTM) - we have developed a tool-independent formalism to

specify and subsequently validate Knowledge-Based Processes.

Knowledge-integrated Information Technology Solutions
The term Knowledge-integrated Information Technology Solutions (KITS) indicates

Integrated Knowledge-Based System architecture as shown in Figure 1. The KITS architecture

integrates frontier technologies like Knowledge-Based Systems and Hypertext with conventional

ones like Database Management Systems, Procedural Computing, Spreadsheets and Graphics.

Since Knowledge-Based Systems form a major part of the KITS architecture, Verification and

Validation are vital issues that are addressed in the KITS Methodology.

KITS Methodology - An Overview

The KITS Methodology is a comprehensive approach to building KITS. It is built on the

basic premise that existing models for project management like the Waterfall Model and techniques

like Data Flow Modelling are inadequate for the professional management of building intelligent ¯

Information systems. The KITS Methodology blends the tenets of the Waterfall Model and the

Prototyping paradigm providing a unique approach to building intelligent Information Systems.

According to the KITS Methodology, an application based on the KITS architecture is built

in four phases, viz., Project Inception, Application Design, Prototyping and Project Completion as

shown in Figure 2.

Project Inception

Project Inception consists in evaluating the problem through a feasibility study employing

special methods for domain evaluation. Apart from evaluating the domain, one of the major

problems associated with building intelligent systems of this type which incorporate expert

knowledge is determining the complexity of the project in terms of time, people and cost. Project

Inception helps tackle these issues. The end products of Project Inception are the Functional

139

Procedural
Computing

Graphics

Knowledge-
Based

Systems

Spreadsheets

Hypertext

DBMS

Figure 1. The KITS Architecture.

IKITS Methodology

Project Inception

Application Design

Prototyping

Project Completion

Figure 2. The KITS Methodology.

KITS Methodology

Project Inception

Application Design

Prototyping

Project Completion

End-user Training

Feasiblity Study

Functional Specifications

Figure 3. The KITS Methodology - Project Inception.

140

Specifications and the Project Plan documents. The functional specifications of the system are

captured using an Information Flow Diagram (IFDTM) based on a technique called Information Flow

Modelling [Prabhat et al, 1991]. Figure 3 sums up the activity in Project Inception.

Application Design

Application Design is the process of producing a logical and physical design of the KITS

architecture. The primary input to this phase Is the Information Flow Diagram produced In the

Functional Specifications of the system. This abstract Information Flow Diagram is broken down into

many Steps to fundamental levels of detail. The details of the elements of the Final Step IFD are

documented in the Information Flow Components Dictionary (IFCD~). The logical view in the IFD

now mapped onto a physical view in the Systems Architecture Diagram (SADTM) using a technique

called Systems Architecture Specifications. The details of the elements in the SAD are then

documented in a Systems Architecture Components Dictionary (SACD~). The Application Design

phase concludes with a prescription of testing strategies as shown in Figure 4.

Prototyplng

Prototyping Is the process of building a microcosmic version of the ultimate system. It

begins with Knowledge Acquisition where the domain knowledge is acquired from the expert in the

form of rules, heuristics, procedures and facts. The knowledge acquired from the expert is

documented in a shell-independent formalism called the Structured English Representation of

Knowledge [Prabhat et al, 1992]. The output document at the end of this sub-phase is the

Knowledge Document. The Knowledge Base is then designed and specified. The prototype Is

implemented and validated for conformance to its functional specifications. The Test Report is

generated at the end of this sub-phase. We have developed structured methodologies for each of

these steps detailed in Figure 5.

Project Completion

Project Completion phase converts the prototype system to the full-scale KITS architecture.

It begins with the necessary redesign of the prototype and scaling up the prototype Knowledge

Base to contain the complete knowledge. The prototype is then ported to the delivery platform (if,

different from the development platform) and integrated with data sources and sinks such as

databases, spreadsheets, etc, Validation Testing is conducted to ensure that the system conforms

to the customer’s requirements. The User Manual is produced in the Documentation phase. This

concludes the deployment of the system. Change Management modules assist in the maintenance

of the system thereafter, Figure 6 summarizes the activity in this phase.

141

KITS Methodology

Project Inception

Application Design

Prototyping

Project Completion

Information Flow Modelling

System Architecture Specifications

Testing Strategies

Figure 4. The KITS Methodology - Application Design.

IKITS Methodology

Project Inception

Application Design

Prototyping

Project Completion

Knowledge Acquisition

Knowledge Base Design & Specifications

Prototype Implementation & Testing

Figure 5. The KITS Methodology - Prototyping.

IKITS Methodology

Project Inception

Application Design

Prototyping

Project Completion

Scaling up of Knowledge Base

Porting to Delivery Platform

Data Sources Integration

Validation Testing

Documentation

Change Management Modules

Figure 6. The KITS Methodology - Project Completion.

142

Verification and Validation - The Context
In the KITS Methodology, Verification and Validation are carried out during the phases of

Prototyping and Project Completion. In order to ensure that all Knowledge-Based Processes in the

KITS architecture conform to their functional requirements, they have to be specified and

documented in an unambiguous and tool-independent formalism. In the KITS Methodology, the

specification scheme employed is called Know/edge-Based Process Specification Language

(KPSLTM). This language is the common denominator of the constructs and facilities found in most

commercial Knowledge-Based System shells. However no commercial shell’s representation

language has been used.

Knowledge-Based Process Specification Language

At the end of Application Design and during the phase of Prototyping, the Knowledge

Engineer encounters various Knowledge-Based Processes. A Knowledge-Based Process is one that

requires reasoning and inferencing based on expert knowledge. These processes and their

interrelationships are codified in a diagram called the Information Flow Diagram (IFD). An IFD is a

pictorial representation of the logical functionality of the KITS architecture.

As an example, let us consider a fictitious diagnostic Knowledge-Based System. The

system is required to diagnose the cause of a problem in a machine and suggest some remedial

action. The IFD for this system is shown in Figure 7. The Knowledge-Based Process "Start

Diagnosis Activity" gets the "symptom" of the problem from the machine operator and performs

some Initialisation activities. It then passes the "symptom" to the Knowledge-Based Process "Find

Cause of Problem" which locates the "cause" of the problem and passes it to the Knowledge-Based

Process "Suggest Remedy for Problem". This process prescribes a "remedy" and passes it the

Knowledge-Based Process :’End Diagnosis Activity" which performs some winding up activity and

returns the "remedy" to the operator. Each Knowledge-Based Process taps domain expertise from

its associated Knowledge Repository.

All Knowledge-Based Processes in the IFD are now specified using KPSL constructs. A few

general KPSL constructs are described below. Following that is the KPSL specification for the

diagnostic Knowledge-Based System.

KPSL Constructs
The syntax used to describe the KPSL constructs is given below:

Symbol Meaning

<> replace with appropriate literal

[] select from among alternate choices

I separator for alternate choices

143

<symptom>

<symptom> ~ <cause>

Start Diagnosis

I
I Initialization

R1 Knowledge
Repository I

I

Fault Cause
KR2 Knowledge

Repository

Machine /
Operator /

/End Diagnosis~ /Suggest Remedy~

/ Activity ~ /
forProblem ~

,f f
I I End Diagnosis

KR4 Knowledge
Repository I I Fau’tRe° yKR3 Knowledge

Repository

Legend:

Knowledge-Based Process

I I I
Knowledge Repository

/ /
Human I/O Element

Figure 7. The Information Flow Diagram for the diagnostic Knowledge-Based System.

144

I{ } I iteration

Operators

Arithmetic Operators * % + mod div ,

Relational Operators < > = <= >= <>

Logical Operators AND OR NOT

Predicates

Predicates are used to test various conditions during the process of execution. The KPSL

predicates are

¯ DEFINED(<Attribute>) - Returns TRUE if <Attribute> is defined, Otherwise, returns

FALSE.

¯ NO OF VALUES(<Attribute>) - Returns the number of values that the attribute currently

has. This is applicable for attributes that can take more than one value.

Problem-Solving Constructs

The expressive power of KPSL comes from the set of language statements that describe

the problem-solving process. Some of them are explained below:

1. DETERMINE

Syntax:

DETERMINE <Attribute>

BY [FORWARD CHAINING I BACKWARD CHAINING ON <Attribute>]

USING <Knowledge Repository>

Description: Establish a value for the attribute by forward or backward chaining using the given

Knowledge Repository.

2. ATTEMPT TO DETERMINE

Syntax:

A’I-I’EMPT TO DETERMINE <Attribute> = { <Value> }

BY [FORWARD CHAINING I BACKWARD CHAINING ON <Attribute>]

USING <Knowledge Repository>

Description: By forward or backward chaining on the given Knowledge Repository, attempt to

establish that the attribute takes the given value(s). In this case, establishing that

the attribute takes the given value is of primary importance.

3. INITIALIZE

Syntax:

INITIALIZE BY [FORWARD CHAINING I BACKWARD CHAINING ON <Attribute>]

USING <Knowledge Repository>

145

Description: This is a startup mechanism to initialize the values of various attributes.

4. FIRE RULES

Syntax:

FIRE RULES BY [FORWARD CHAINING I BACKWARD-CHAINING ON <Attribute>]

USING <Knowledge Repository> ,
Description: Load the given knowledge repository and fire the rules in forward or backward

chaining mode.

5. WINDUP

Syntax:

WINDUP BY [FORWARD CHAINING I BACKWARD CHAINING ON <Attribute>]

USING <Knowledge Repository>

Description: This is a shutdown mechanism to perform winding up operations.

6. SET CURRENT GOAL AS

Syntax:

SET CURRENT GOAL AS <Attribute>

Description: This is a means of reordering the sequence in which goals will be tried.

KPSL Specification for the Diagnostic Knowledge-Based System

Process Name

Start Diagnosis Activity

Process Specification

INITIALIZE BY FORWARD.CHAINING ON Initialization Knowledge Repository

Process Name

Locate Cause of Problem

Process Specification ’

A’FFEMPT TO DETERMINE CauseOfProblem = "Insufficient lubrication" BY BACKWARD

CHAINING ON CauseOfProblem USING Fault Cause Knowledge Repository

IF NOT DEFINED(CauseOfProblem)

THEN ATTEMPT TO DETERMINE CauseOfProblem = "inadequate power supply" BY BACKWARD

CHAINING ON CauseOfProblem USING Fault Cause Knowledge Repository

ENDIF

IF NOT DEFINED(CauseOfProblem)

THEN DETERMINE CauseOfProblem BY BACKWARD CHAINING ON CauseOfProblem USING

Fault Cause Knowledge Repository

ENDIF

146

Process Name

Suggest Remedy for Problem

Process Specification

DETERMINE RemedyOfProblem BY FORWARD CHAINING ON Fault Remedy Knowledge

Repository *

Process Name

End Diagnosis Activity

Process Specification

WINDUP BY FORWARD CHAINING ON End Diagnosis Knowledge Repository

After these Knowledge-Based Processes have been implemented using a Knowledge-Based shell

or a language, they can be verified and validated by ensuring that they conform to their KPSL

specifications.

Knowledge-Based Process Specification Language - Advantages
The advantages of KPSL are many:

¯ The specification results in effective Verification and Validation of Knowledge-Based

components.
¯ It is a structured language; therefore ambiguities in specifying Knowledge-Based Processes

are significantly reduced resulting in more accurate validation.

¯ The specification is English-like; therefore comprehensibility of processes is enhanced.
¯ KPSL is shell-independent. A set of Knowledge-Based Processes specified using KPSL can

be implemented in more than one Knowledge-Based tool. This helps in easy portability

between shells. The KPSL specification forms the common ground from which all physical

implementations arise. This implies that even if the tool is changed, the specification

remains unaffected.

References

1. [Prabhat et al, 1991] - Prabhat G.B., Ramachandran N., Nagendra Prasad G., "Knowledge Flow

Modelling and Beyond: Towards a Development Methodology for Knowledge-Based Systems",

Proceedings of the AAAI-91 Workshop on Standards in Expert System, July 1991, pp 11-34.

2. [Prabhat et al, 1992] - Prabhat G.B., Rajmohan S., Anandhi I., Srinlvasan P., "Structured English

Representation of Knowledge - A Mediating Knowledge Representation Formalism", Proceedings of

the AAAI-92 Workshop on Knowledge Representation Aspects of Knowledge Acquisition, July 1992,

pp 129-146.

Trademarks
KITS, KITS Methodology, IFD, IFCD, SAD, SACD, KPSL are trademarks of Sundram Information

Systems, India.

147

