
Learning New Planning Operators by Exploration and

Abstract

This paper addresses a computational approach
to the automated acquisition of domain knowl-
edge for planning systems via experimentation
with the environment. Previous work showed
how existing incomplete operators can be re-
freed by adding missing preconditions and ef-
fects. Here we develop additional methods to
acquire new operators such as direct analogy
with existing operators, decomposition of mono-
lithic operators into meaningful sub-operators,
and experimentation with partially-specified op-
erators.

Introduction
In order for autonomous systems to interact with
their environment in an intelligent way, they must
be given the ability to adapt and learn incremen-
tally and deliberately. Our approach is to im-
prove initially hand-coded models for planning by
failure-driven experimentation with the environ-
ment. Incompleteness is one possible fault in the
given domain model. The initial domain may con-
tain incompletely specified operators, and may be
missing operators for legitimate actions that the

~clanner can use to achieve goals. In previous work
arbonell and Gil, 1990], we described the use

of experimentation within the Operator Refinement
Method (OR.M) to find new preconditions and ef-
fects of existing operators efficiently [Gil, 1991a,
Gil, 1993]. Shen and Simon [Shen, 1989,
Shen and Simon, 1989] describe methods to learn

This research was supported by the Avionics Labo-
ratory, Wright Research and Development Center, Aero-
nautical Systems Division (AFSC), U.S. Air Force, Wright.
Patterson AFB, Ohio 454,33-6543 under Contract F33615-
90-C-1465, ARPA Order No. 7597. The view and conclu-
sions contained in this document are those of the author
and should not be interpreted as representing the official
policies, either expressed or implied, of DARPA or the U.S.
government.

Experimentation
Yolanda Gil

USC/Inform~tion Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292
gil@isi.edu

new operators: by exploring available actions whose
effects are unknown, or by splitting an existing op-

¯ erator into two different ones when an expectation
failure occurs. This paper presents some additional
methods to acquire new operators. The first method
presented is based on constructing new operators by
direct analogy with existing ones through the types
of the objects that they are applied to. Then we
show how to create micro-operators, which contain
only some of the preconditions and effects of a given
operator. We describe two different methods to do
this: building partial operators and sequencing. This
work was developed using PRODIGY as the underly-
ing planning architecture [Carbonell et al., 1991,
Carbonell et al., 1990, Minten et al., 1989]. The
examples in this paper are drawn from a process
planning domain [Gil, 1991b].

The methods are goal-directed: they are triggered
when the planner finds itself in a situation where it
cannot solve a problem. The system assumes that the
available knowledge is incomplete and tries the var-
ious methods to formulate new operators. Learning
is always incremental, preferring overly incomplete
specifications (that are progressively refined by the
ORM) to more detailed specifications that may be in-
correct. None of the methods is guaranteed to work,
only the external execution of a proposed operator
can prove its correctness. See [Gil, 1992] for more
details about the overall framework.

Direct Analogy
New operators can be learned by direct analogy

with existing ones. As an example, suppose that the
system has the knowledge about drilling holes shown
in Figure l(a). A hole can be made if a drill has
high-helix drill bit of the size of the desired hole and
some cutting fluid, and if it is holding a part that has
a spot hole in the appropriate location. Suppose now
that the system is given the goal of producing a part
with a hole in it, and there are no high-helix drill
bits available. The preconditions of the operator for
drilling cannot be achieved, and the planner is not

From: AAAI Technical Report WS-93-06. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

Ifa given problem cannot be solved by a set of operators because a precondition P that specifies the type of
an object of an operator O cannot be achieved, formulate a new operator by direct analogy with O through
P.
1. Find a related predicate. Look through the type hierarchy ofthe objects in the domain and find P’ such

that it refers to objects of the same type of the unachievable precondition P.
2. Formulate a new operator. Construct a new operator O’ with the effects of O that the original problem

subgoaled on and all the object types of O except P.
3. Experiment with the new operator. Execute the action. If the desired effects are not obtained, apply

experimentation to isolate which of the other preconditions of O need to be added to O’. If O’ is applied
successfully in some state, then continue with step 4. Otherwise, go back to step 1, either looking for a
different P’ or considering a different P.
Refine the new operator. Apply the ORM to find all the preconditions and additional effects of the new
operator..

Table 1: Learning a new operator by direct analogy with an existing one.

able to solve the problem. But instead of returning
a failure, our system uses the following reasoning to
derive a new operator for drilling with other types of
drill bits that might be available. The system finds
that both high-helix and twist drill bits are of the
same object type: DRILL-BIT, and thus it creates
the new operator shown in plain font in Figure l(b).
The new operator only gets from the original one the
types of the objects that it is applied to, and the effect
that it is created for. Experiments are performed by
executing the action under different conditions un-
til a successful application is found. We describe
in the next paragraph how the experiments can be
designed efficiently. If the new operator cannot be
applied successfully, then the process is repeated
with other types of drill bits. If this does not yield
any success either, then other object types are tried.
In this case, a new operator for drilling holes with
a milling machine is acquired when a different type
of machine is considered. These experiments end
when a successful application of a newly formulated
operator is found that proves its existence. Once
this happens, the ORM helps to locate additional
conditions and effects that are specific to the new
operator. They are shown with a star (*) in Fig-
ure l(b). The method is summarized in Table
Notice that the power of this method comes from the
possibility of relating P to P’ through the object type
hierarchy.

Choosing the right experiments is an important
issue for making learning efficient. The conditions
for the experiments are guided by the precondi-
tions and effects of the original operator. If there
are several operators for drilling that are available,
then experiments that involve the preconditions and
postconditions common to all drilling operations are
preferred. The more available operators that al-
ready contain information about drilling, the more

(DRI LL-WI TH-HIGH-HELI X- DR ILL
(precond it ions

(and (is-a <machine> DRILL)
(is-a <drill-bit> HIGH-HELIX-DRILL-BIT)
(same <drill-bit-diam> <hole-diameter>)
(diameter-of-drill-bit <drill-bit> <drill-bit-diam>)
(has-fluid <machine> <fluid> <part>)
(has-spot <part> <hole> <side> <loc-x> <loc-y>)
(holding-tool <machine> <drill-bit>)
(holding <machine> <holding-device> <part> <side>)))

(effects
(del (Is-clean <part>)
(add (has-burrs <part>)
(del (has-spot <part> <hole> <side> <loc-x> <lot-y>))
(add (has-hole <part> <hole> <side> <hole-depth>

<hole-diam> <loc-x> <loc-y>)))

(a) An operator for drilling a hole using a high-helix
drill bit

(DR I LL-WI TH -TW I ST- DR ILL
(precondi t ions

(and
(is-a <machine> DRILL)
(is-a <drill-bit> TWIST-DRILL-BIT)

* (same <drill-bit-diam> <hole-diam>)
* (diameter-of-drill-bit <drill-blt> <drill-bit-diam>)
* (has-spot <part> <hole> <side> <Ioo-x> <loc-y>)
* (holding-tool <machine> <drill-bit>)
* (holding <machine> <holdlng-device> <part> <side>}))

(effects
" (del (is-clean <part>))
* (add (has-burrs <part>)
* (del (has-spot <part> <hole> <side> <loc-x> <loc-y>))

(add (has-hole <part> <hole> <side> <hole-depth>
<hole-diam> <loc-x> <loc-y>)))

(b) New operator for drilling with a twist drill bit.
The stars indicate new facts acquired by the

Operator Refinement Method for the new operator.

Figure 1: Learning a new operator for drilling by
analogy with an existing one.

efficient the experiments designed to refine the new
operator. Notice that these are heuristics and they

2

When a given problem cannot be solved by the current operators because a precondition P of an operator
O cannot be achieved, formulate a new operator O’.

1. Formulate a new operator. Construct a new operator O’ with the desired effect and the type of the
objects in O.

2. Experiment with the new operator. Execute the action. If the desired effects are not obtained, apply
experimentation to isolate which of the other preconditions of O (not including P) need to be added
O’. End the process when O’ is successful in a state where the preconditions of O are not true.

3. Refine the new operator. Use the ORM to fred additional preconditions and effects of O’.

Table 2: Learning a new operator by micro-operator formation

do not make any guarantees about the convergence
of the process.

Micro-Operator Formation

New operators can also be acquired by learning use-
ful partial specifications of an existing one. One
possible way to do this is when the system encoun-
ters situations in which only some of the effects of
the action are desired. If this is the case then ex-
perimentation is used to find if only some of the
preconditions are required for the partial effects
needed.

Suppose the system has the operator for cutting
specified in Figure 2(a). The operator expresses
that if a circular saw has a type of attachment
called friction saw and some cutting fluid and if it
is holding a part, then the size of the part can be
reduced and the resulting surface is smooth. Now
suppose that the system is given a problem whose
goal is to make the size of a part smaller, and that
no fluids are available in the initial state. The goal
cannot be achieved with the available knowledge,
and yet there is a way to solve the problem. The
system formulates a new cutting operator that has
only the effects that it needs from the original one,
and only the preconditions that specify the type of
the objects required for the operator. The action is
then executed. If the desired effect is not obtained,
then the system finds which additional conditions
are required. This is done by experimenting with
the action applying it under different situations.
The experiments are guided by the preconditions of
the known operator for cutting. This process ends
when a successful application of the new operator is
found (thereby proving its existence). This happens
when the desired effect is obtained in a state where
not all the preconditions of the original operator
are true. Finally, the ORM is called to further
refine the operator. The result is a cutting operator
without the preconditions and effects that have to
do with obtaining a reasonable surface condition
quality (having fluid on the machine), as shown

(CUT-WI~d-CIRCULAR-FRICTION-SAW
(prsconds (and

(Is-a <part> PART)
(Is-a <machine> CIRCULAR-SAW)
(is-a <attachment> FRICTION-SAW)
(has-fluld <machine> <fluid> <part>)
(slze-of <part> <dim> <value-old>)
{smaller <value> <value-old>)
(slde-up-for-machlnlng <dim> <side>)
(holdlng-tool <machine> <attachment>)
(holding <machine> <holdlng-devlce> <part> <side>)))

(effects
(dsl (has-fluld <machine> <fluid> <part>))
(add (surface-flnlsh-slde <part> <side> SMOOTH))
(add (slze-of <part> <dim> <value>)))

(a) An operator for cutting
(CUT-TO-SIZE

(preconds (and
(Is-a <part> PART)
(Is-a <machine> CIRCULAR-SAW)
(is-a <attachment> FRICTION-SAW)

¯ (slze-of <part> <dim> <value-old>)
t (smaller <value> <value-old>)
¯ (side-up-for-machining <dim> <side>)

(holding-tool <machine> <attachment>)
t (holding <machine> <holding-device> <part> <side>)))

(effects
(add (slze-of <part> <dim> <value>)))))

(b) New operator for cutting to reduce the size. The
stars indicate new facts acquired by the Operator

Refinement Method for the New Operator.

Figure 2: Mien-operator formation when only some
effects are needed.

in Figure 2(I)). This method for learning partial
operator is summarized in Table 2.

A second possibility is sequencing, i.e. to detect
a sequence of subactions that are currently repre-
sented by an operator. As an example, consider an
operator to set up a machine for performing a ma-
chining operation. The operator would have several
preconditions that check the availability of a ma-
chine, a holding device, a tool and a part. The set up
consists of holding the tool in the tool holder, having
a holding device on the machine, and holding the
part with the holding device. Since a different setup

is used for each machining operation, representing
this set of actions as a single operator is an efficient
way of expressing the configuration for the next op-
eration. Now, suppose that we want to perform some
manual operation on a part. We ask the system to
fred a plan to hold it. With the available knowl-
edge, holding a part is not possible because there
are no tools that can be installed in the machine.
But instead of returning a failure our system tries
to find if the operator can be divided into a sequence
of actions, one of them involving only holding the
part, The operator to do the setup gives several in-
dependent operators: setup the holding device, hold
the part, and setup the tool. Sequencing is done
by following the same basic steps shown in Table 2,
but in this case additional operators are formulated
with the effects not originally needed.

Discussion
The methods presented in this paper have been im-
plemented to demonstrate the feasibility of learning
by experimentation. They are triggered when a lack
of domain knowledge is detected, but the subsequent
experimentation process is simulated manually. The
full experimentation process (as is described in [Gil,
1992]) is implemented only for learning new pre-
conditions and new effects. Work is underway to
fully integrate the system. Other extensions include
relaxing our assumptions of environments with de-
terministic actions and where other agents cannot
produce changes.

Acknowledgements
I would like to thank Jaime Carboneli for many fruit-
ful discussions and guidance on this work. Thanks to
all the members of the PRODIGY group for providing
useful comments. This work was done at Carnegie
Mellon University.

References
[Carbonell and Gil, 1990] Jaime G. Carbonell and

Yolanda Gil. Learning by experimentation: The
operator refinement method. In Y. Kodratoff and
R. S. Michalski, editors, Machine Learning, An
Artificial Intelligence Approach, Volume III. Mor-
gan Kaufmann, San Mateo, CA, 1990.

[Carbonell et al., 1990] J. G. Carbonell, Y. Gil, R. L.
Joseph, C. A. Knoblock, S. Minton, and M. M.
Veloso. Designing an integrated architecture: The
PRODIGY view. In Proceedings of the Twelfth An-
nual Conference of the Cognitive Science Society,
Boston, MA, 1990.

[Carboneil et al., 1991] Jaime G. Car-
bonell, Craig ,~ Knoblock, and Steven Minton.
PRODIGY: An integrated architecture for planning

and learning. In Kurt VanLehn, editor, Archi.
tectures for Intelligence. Lawrence Erlbaum Asso-
ciates, Hillsdale, NJ, 1991.

[Gil, 1991a] Yolanda Gil. A domain-independent
framework for effective experimentation in plan-
ning. In Proceedings of the Eight International
Workshop on Machine Leaning, Evanston, IL,
1991. Morgan Kaufmann.

[Gil, 1991b] Yolanda Gil. A specification of manu-
facturing processes for planning. Technical Re-
port CMU-CS-91-179, School of Computer Sci-
ence, Carnegie Mellon University, 1991.

[Gil, 1992] Yolanda Gil. Acquiring Domain Knowl-
edge for Planning by Experimentation. PhD the-
sis, Carnegie Mellon University, School of Com-
puter Science, 1992.

[Gil, 1993] Yolanda Gil. Efficient domain-
independent experimentation. In Proceedings of
the Tenth International Conference on Machine
Leaning, Amherst, MA, 1993. Morgan Kaufmann.

[Minton et al., 1989] Steve Minton, Jaime G. Car-
bonell, Craig ,~ Knoblock, Dan R. Kuokka, Oren
Etzioni, and Yolanda Gil. Explanation-based
learning: A problem solving perspective. Arti-
ficial Intelligence, 40(1-3):63--118, 1989.

[Shen and Simon, 1989] Wei-Min Shen and Her-
bert A. Simon. Detecting and correcting errors
of omission after explanation-based learning. In
Proceedings of the Tenth International Joint Con-
ference on Artificial Intelligence, Detroit, MI,
1989.

[Shen, 1989] Wei-Min Shen. Learning from the En.
vironment Based on Percepts and Actions. PhD
thesis, School of Computer Science, Carnegie Mel-
lon University, Pittsburgh, PA, 1989.

