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Abstract
Our project concerns the development of a
system which integrates situation driven exe-
cution with constructivist learning. We be-
gin with reactive planning as embodied in
the RAP planning and execution architecture
[Firby, 1989]. We describe how a system origi-
nally designed for unstructured constructivist
learning, Drescher’s Schema learning mecha-
nism [Drescher, 1991], can be modified to sup-
port similar goal directed reactive behavior. In
particular, we have adapted the system to pur-
sue explicitly defined goals and developed a set
of macros for specifying composite schema and
actions. Using the Truckworld simulation sys-
tem [Firby, 1989] as a testbed we were able to
verify that the modified Schema mechanism is
able to perform much like the RAP system.
Further, the mechanism learned information
relevant to the systems explicit goals.

1 Introduction

This paper presents initial results in integrating situ-
ation driven execution with a computational model of
constructivist learning. In recent years, researchers in
the area of planning have realized the necessity .of in-
corporating an ability to react to rapidly changing, un-
certain circumstances into their systems. Unfortunately,
learning has received scant attention in such research
even though constructivists have long argued that intel-
ligent agents construct an understanding of the world
concurrent with their activity in it [Papert, 1980].

The goal of this research is to develop an architecture
for situation driven execution with the intrinsic property
of continually learning about important features of the
environment. It will allow an agent to react intelligently
as unforeseen circumstances arise in the environment and
will also allow the agent to notice important features and
learn causalities which will enable the agent to improve
its performance. Our starting point is to merge ideas
from the RAP system for adaptive plan execution in a
dynamic world [Firby, 1989; Firby, 1987; Firby, 1990]
with the schema mechanism [Drescher, 1991] proposed
for unstructured constructivist learning.

Ill particular, we are adapting Drescher’s schema

mechanism to suit the needs of our reactive execution
system. Our initial approach is to implement the schema
mechanism, incorporate into it those gross features that
make the RAP system work well, and then explore the
detailed differences that don’t carry over from one sys-
tem to the other. This approach is motivated by the
compelling parallels between the RAP system and the
schema mechanism and the belief that learning should
be an intrinsic part of all interaction with the world and

1.1 System Overview

We begin with the abstract two part architecture con-
ceived with the RAP system and consisting of a planner
and a reactive execution system [Hanks and Firby, 1990].
The reactive execution system embodies a significant
level of intrinsic competence and is capable of achiev-
ing a wide range of goals in its own right. Its purpose is
to hide much of the uncertainty and changing detail of
the world from the planner by adapting actions quickly
and appropriately as goals are pursued. The planner’s
job is to construct plans for novel goals using subgoals
the reactive executor knows how to achieve and to look
into the future and prevent the executor from making
short-sighted mistakes with serious consequences.I

The system described in this paper takes the place of
the RAP execution system in such an architecture. The
RAP system works well as a reactive plan executor but it
lacks mechanisms for learning the effects of actions and
for compiling new methods. The schema mechanism, on
the other hand, learns action effects and abstract actions
(i.e., compiles methods) as an intrinsic part of the way 
works. Our goal is to create a system that maintains the
explicit goal achievement orientation of the RAP sys-
tem while including the learning characteristics of the
schema mechanism. Like the schema mechanism, our
system will not use an explicit training phase to learn
about the world, learning will be an intrinsic property
of taking action. Like the RAP system, our executor
will start with a large number of predefined methods so
that it will immediately be able to pursue a multitude
of complex goals. However, these initial methods will be

IThe RAP system, and any res~stic control architecture,
must also deal with the problems of interflg~ing to an under-
lying real-time control system [Firby, 1992; Firby and Swain,
1991]. We ignore those problems for the time being.
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open to revision and expansion via the learning mech-
anism and new causal knowledge learned about actions
will be available to the planner for future use.

The similarities between RAPs and the schema mech-
anism are striking. Both use a hierarchy of known meth-
ods as the basic knowledge for achieving goals, both
use very similar mechanisms for choosing between al-
ternative methods for achieving the same goal, and both
use measures of importance for shifting attention when
unanticipated events occur. However, the RAP system
stresses the knowledge and algorithm required for achiev-
ing a wide variety of goals while the schema mechanism
stresses the knowledge and algorithm required to learn
new causal knowledge during goal pursuit. As a result,
the RAP system assumes goals arise externally and basic
knowledge is available for achieving those goals while the
schema mechanism assumes goals arise internally and a
critical task is to explore actions that might be effective
at achieving goals.

Our approach is to begin with the learning and ac-
tion mechanisms from the basic schema mechanism and
adapt them to: (1) allow the inclusion of initial meth-
ods for achieving goals; and (2) prefer goal pursuit over
exploration.

2 The Schema Mechanism

The basic mechanism used in our system is based
upon the constructivist learning mechanism proposed by
Drescher [Drescher, 1991]. Drescher proposed an archi-
tecture designed to induce the causality of the world
through an agent’s repeated interactions with it. His
concern was with how such an architecture could give
rise to the kind of staged development elaborated by
Piaget [Piaget and Inhelder, 1969]. We have modified
Drescher’s original implementation to run primarily in
the pursuit of explicit goals (Drescher was principally
concerned with what structures the system was capable
of inducing in an exploration only mode). The mecha-
nism defined by Drescher uses three principle data struc-
tures: schemas, actions, and items.

2.1 Basic Data Structures

2.1.1 Schemas
Schemas attempt to describe what happens when a

given action is taken in a particular situation. A schema
is a data structure which consists of three principle slots:
a context, action, and result. The contezt slot expresses
the conditions under which the schema is appropriate.
A schema’s action slot designates an action which can
be executed in the state designated by the context slot.
The result slot contains information on what changes
in the world are likely to occur as a result of the ac-
tion having been taken. Here, we will use the syntax
(¢ontaxt)achena(reault) to describe schemas. 
that the schema does not guarantee that its result will
be obtained once the action is taken, it merely expresses
the belief that it is likely.

2.1.2 Actions
Actions are commands which allow the mechanism to

effect state changes in itself or the world. Primitive ac-

tions are analogous to simple agent reflexes, they are
atomic units of activity. A composite action designates
a set of schema, which when activated, are expected to
result in a particular state of the world.

Associated with each composite action is an object
called an action controller. The action controller su-
pervises execution of the schemas listed in the action’s
components slot. When a composite action is created
a broadcast is performed on the item’s goal: a search
is performed to determine the chains of schema which
can accomplish the goal. This is analogous to a depth
limited goal regression. The schemas which can accom-
plish the action’s goal are then added to the controller’s
components slot.

2.1.3 Items
An item is a binary valued descriptor of state: an item

just indicates whether a condition holds or not. Items
have two slots, relevance and primitive value which indi-
cate how generally relevant the item is to achieving an
explicit goal or how important it is that a particular item
state be maintained respectively.

2.2 The Schema Design Language

Our implementation of the schema mechanism includes a
language for defining initial actions, schema, and items.
A macro clef primitive allows a user to simultaneously
specify simple schema and actions. These schema and
actions correspond roughly to atomic actions. A de~item
construct allows the user to define binary valued states
items along with methods for obtaining their value from
the agent’s simulation environment.

The defroutine macro allows the user to specify the
context and result items of a schema, and also allows
the user to designate the components for the associated
composite action. Hence, the user is able to define com-
plex sequences of actions which allow the agent to act
effectively in a complex world.

2.3 Schema Selection

The schema mechanism decides what to do next by let-
ting schemas compete amongst each other for the oppor-
tunity to be run. A schema asserts its importance (i.e.
need to be activated) via its activation level. A schema’s
activation level is computed as a weighted sum of values
which express the schema’s relevance to pursuing agent
goals and its relevance to exploring interesting features
of the world. The activation function is designed to em-
phasize goal pursuit over exploration.

A schema’s relevance to the current goals of the agent
is expressed by the values of its goal.pursuit, subgoal-
pursuit, and primitive value slots. The synthetic archi-
tecture we are building receives goals that are generated
by an external source. Upon selection of a new goal, the
mechanism determines which of the valid schema contain
that goal in their result slot and sets the value of their
goal-pursuit slot to a value which expresses the degree
to which the goal should be pursued.

The subgoai.pursuit slot enables the schema mecha-
nism to include the fact that a schema has been indi-
cated as being part of a composite action chain. When a



composite action attempts to run a schema as part of its
chain, it sets the subgoal-pursuit flag of the schema. The
activation level of the schema will thus be incremented
by an amount which reflects the mechanism’s preference
for pursuing schema which appear in composite action
chains.

The primitive value slot indicates how relevant the
schema is to maintaining conditions which should always
hold.

The values of two other slots allow the mechanism to
engage in exploratory behavior if no goals are present.
The habituation parameter defines the rate at which the
schema’s activation increases on successive activations.
This allows the agent to explore further the results of
the last action taken. The hysteresis-onset and hysteresis
slots determine when and how rapidly the activation of
a schema will fall off after successive activations. These
parameters prevent the agent from exploring the effects
of one schema to the exclusion of others.

At each tick of the system clock, each schema com-
putes its activation by summing values in the primitive
value, goal-pursuit, and subgoal-pursuit slots with values
computed for habituation and hysteresis. The control
mechanism then selects the schema to run by choosing
randomly from among the highest valued schemas.

Once an action controller has selected a schema to rec-
ommend for activation, it monitors the result of schema
execution to determine whether the schema has suc-
ceeded. If the schema fails, it attempts to execute the
schema for a fixed set of tries, and then gives up, pro-
eeeding to the next indicated schema on the queue. If the
goal fails to obtain once the queue has been exhausted,
the controller attempts to rerun itself from the beginning
for a set number of tries and then gives up completely.
The schema which invoked the action then notes that it
did not succeed.

2.4 Generating New Schemas: Marginal
Attribution

The central aspect of learning in the schema mechanism
is noticing correlations between action (i.e. running 
particular schema) and observable state changes (i.e.
transitions in an item’s state). Drescher refers to this
process as marginal attribution.

Each schema includes an extended result structure
which maintains two statistics for each existing item:

I. Positive-transition correlation This is the
ratio of the probability that the item turns on when
the schema is activated to the probability that the
item turns off" when the schema is not active.

2. Negative-transition correlation This ratio is
analogous to the positive transition ratio, but with
respect to the probability of the item being turned
off’.

During update, the schema uses the result of the last
action to recalculate these values. If a schema detects
that the item is more likely to be turned on (or off) after
it has executed than when it has not, that item is deemed
relevant and a new schema is created which list the item
(or its negation) as a result.

When the mechanism determines the likely result of
a schema’s action, it then attempts to discover the con-
ditions which allow it to complete successfully. To do
this, each schema maintains an eztended context struc-
ture which records for each item the ratio of probability
of success when the item is on to the probability of suc-
cess when the item is off. When one of the probabilities
is significantly larger than the other, a new schema is
generated with that item (or its negation, depending on
which probability was larger) included in the context.
The mechanism then adds items to its context using the
same procedure, thus enabling it to learn conjunctive
preconditions.

In practice, performing an update for each schema on
statistics measured for each item severely degrades the
performance of our system. We therefore enforce a pol-
icy in which only those schema whose activation level ex-
ceeds a threshold participate in the update process and
restrict the items to those having made an on -> off
or off -> on state transition within a preset window of
cycles.

2.4.1 Creating Composite Actions
Each time that a spin off schema is created, the mech-

anism also determines whether the result of that action
is unique. If it is, the mechanism creates a new action
which lists the result as its goal. The mechanism then
attempts to initialize the action controller for the new
schema by determining those schemas which chain to
the goal of the action.

3 A Situated Learning Architecture

The schema mechanism selects which schema to execute
by letting schema compete on the basis of activation. In
our system, a planner specifies goals for the action and
learning mechanism in the same way as the RAP exe-
cution system . However, rather than spawning a task,
such a goal increases the activation energy of schema
listing that goal in their result slots (i.e., the goal rel-
evance of the item is incremented). As stated before,
this amounts to having the mechanism prefer explicit
goal pursuit rather than the exploration based pursuit
detailed by Drescher.

In addition, our schema definition language allows the
creation of high level schema and actions prior to exe-
cution. Detailed plans of action that an agent is likely
to need to behave effectively in its environment can be
defined in advance.

Consider an agent which must use a truck to deliver
bricks from a brick production sight to a construction
area. A RAP for such a circumstance might specify that
the bricks should first be loaded onto the truck, that the
truck should pass a number of landmarks to get to the
construction sight, and once there, that the agent should
unload the bricks from the truck, and then return to the
loading area to await further instructions. The RAP
for accomplishing this goal could be be decomposed into
a number of methods, for example, different plans for
loading different kinds of objects.

In our hybrid system, this same information is rep-
resented as schemas and actions for loading the truck,



moving past a series of landmarks to the construction
sight, and then unloading the bricks once there.

After a number of deliveries, however, the schema
mechanism is able to develop new schema which encapsu-
late information not specified in advance. In the delivery
example, suppose that agent noticed that the truck was
frequently stopped and its cargo seized along a certain
portion of the route, say between the right turn at 3rd
street and the left turn at 4th street. After a number
of such incidents, it should be possible for the underly-
ing schema mechanism to associate this portion of the
route with an unwanted result and given a choice in the
sequence of goals suggested by the high-level planner,
prefer an alternate route.

Further, after a number of runs, it should be possible
for the mechanism to compile a schema/action which im-
proves the agents performance on the task. Initially, the
planner specifies goals at fine levels of granularity. The
low level action selection and learning mechanism be-
gins with knowledge about how to accomplish primitive
actions ( in the example cited, lifting a brick say) and
some higher level schema that may be considered to be
generalizable across a range of likely situations (refuel-
ing the truck at a gas station for example). As the agent
is presented with tasks to accomplish in the world, the
underlying learning system is able to learn low level op-
erators that correspond to the goal sequences previously
"fed" to it by the planner.

3.1 Specifying Goals

The current implementation is designed to carry out
goals specified by some high level reasoning component.
As we do not yet have a working model of such a com-
ponent, we let the user specify goal sequences for the
agent to carry out via structures called scripts. A script
specifies the way in which a set of goals is to be achieved
and provides a mechanism for monitoring the agent’s
progress towards accomplishing those goals.

At each tick of the clock, the action selection mech-
anism is presented with the current high-level goal as
determined by the script. The goal then influences the
schema selection process and ultimately the selection of
actions. In the full implementation, the exchange be-
tween the schema mechanism and goal generator will
be bidirectional: whether the low level mechanism pos-
sesses a schema which can reliably accomplish the speci-
fied goal determines whether the goal needs to be further
expanded into a set of context specific tasks.

4 Results

Our initial results are taken from the agent’s interaction
in s a simulated delivery environment called Truckworld
[Firby, 1989]. The agent controls a truck capable of per-
forming delivery tasks. The truck possesses two mechan-
ical arms and two cargo bays. The simulated world con-
sists of a set. of locations connected together by roads
and the truck can move along the roads from location
to location. At each location, the truck may encounter
a number items which it can manipulate in a number
of ways. Principally these include: rocks, which can be
grasped by either of two mechanical arms residing on the

truck; fuel drums, which can also be grasped, and then
used to refuel the truck; a gun, which can be mounted
on the truck and loaded with ammo; and, enemy units,
which seek to capture the truck.

Uncertainty takes a number of forms in the world. En-
emy troops can be encountered without warning at any
location in the world with the exception of the agent’s
home base and the fuel depot. Rocks are subject to
disappearance in a probabilistic fashion (simulating the
uncontroller actions of other agents). Arms occasionally
drop objects and the degree of fuel consumption also
varies.

4.1 An Initial Experiment

Typical tasks in the truckworld environment involve de-
livery of objects to specified locations. The experiment
used in this investigation involves the truck agent in a
relatively mundane task. It is given a script which in-
structs it to try moving to the east, grab a rock, then
return to the original location, refuel, and then continue
the loop.

Presented with a high-level goal from a script, the
agent relies on roughly 300 RAP-like schema, items, and
actions to define its initial information about the world.
Briefly, these fall into categories of: (1) truck movement,
or schemas and and actions which specify how to move
about in the world; (2) arm movement, those schemas
which specify how the arms can be moved to and from
locations in the world, for example from the folded po-
sition to an object external to the truck; (3) protection
primitives and routines, those which determine how the
agent should behave when enemy units are sighted; (4)
arm manipulation schemas and routines, which specify
how objects can be held and moved by the arms.

The results from the experiments conducted so far in-
dicate that our hybrid architecture is effective in com-
bining a learning mechanism with a mechanism for sit-
uation specific goal directed activity without sacrificing
the performance of either. That is, the agent effectively
copes with the dynamic nature of its environment and
learns as a result of that interaction. A critical issue re-
maining is whether or not the kind of structures that the
schema mechanism learns can be of operational value to
a reactive planner as we have assumed.

An example of how it copes with the unanticipated
arrival of the enemy units illustrates this.

Active schema is <Generated schema AVOID-EIEHY>
Active scheme is <Qenerated schema AVOID-KI£HY)
Active mchoma is <Primitive schema HOVg-TIK~g-EAST>
;Goal (:on <Simple item ROCK-GLASSED>) abLndoned.
Active schema is <Primitive schema NOVE-TILUCr-soUTN>
Active schema is <Generated schema 01tAB-It0CK-I>

The agent has moved east and arrived at one of the
quarry nodes in an attempt to grab a rock. After arriving
at the quarry an enemy unit appears. As is indicated in
the trace of activated schema, the AVOID-EIEHY schema is
triggered by the prescence of enemy units. By the next
cycle, the AV0ZD-HZaY schema has passed activation onto
one of the specified primitived schema, n0vs-Tst~s-sAsT.
There is no road to the east however, and the agent
attempts escape to the south. This is successful and the
agent resumes the script of foraging for rocks once it
arrives at a safe location.
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After several encounters with enemy units, the mech-
anism produces the following spin-off schema/action
pairs:

Adding echema {}ROVE-TRUCr-VEST{Eg~Y-IS-SK|SED:DFF~
Adding schema {}NOVE-Tlt~I-WEST{IOOK-SEK|:OFF)

The learning mechanism has been able to generalize
several useful results from having avoided the enemy.
The new schema, ONOVE-TIO~-WEST(DENY-IS-SE|SStD:OFF)
is a specialization of the original AVOID-EIEN¥ schema
which allows the mechanism to make some conclusions
(perhaps premature) about the usefulness of the action
of moving west. The second generated schema begins to
hint at an even more interesting possibility, which is the
generation of a map of feature related data.

5 Conclusions

The preliminary results from our work suggest two
strong areas for further development: (1) definition and
implementation of an effective goal generator; and (2)
development of an architecture which integrates the goal
generator and the synthetic system described here.

So far, we have ignored the issue of describing what the
goal generating component should look like: the mech-
anism is simply given sequenced sets of goals to accom-
plish. The ideal planner would be able to generate goals
for the schema mechanism not only in response to some
higher level mission (e.g. collecting interesting rocks and
returning them to the home base), but in response the
the results of the low level component’s success in accom-
plishing those goals. In other words, the planner would
know when to intervene (i.e. specify new goals), when
the lower level mechanism is having difficulty.

The goal generator should also be capable of making
effective use of the knowledge gained by the low level
mechanism. In other words, it must know how and when
to alter its plans on the basis of new causal information.

This raises the issue of how to structure the goal gener-
ator so that it can effectively communicate with our ex-
isting situated learning architecture. The interface must
allow the goal generator to determine what causal infor-
mation has been learned by the low level mechanism. It
must also allow it to extract the information needed to
gauge the performance of the low level system.

In addition to investigating suitable goal generating
mechanisms, we are expanding and modifying the exist-
ing set of actions, schemas, and items to deal with more
complex tasks. As a result, our mechanism will have ac-
tions which allow it to focus attention on specific objects
in its environment to restrict the set of items which must
be monitored.
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