
Learning Continuous Perception-Action Models Through Experience

Ashwin Ram and Juan Carlos Santamar|a
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332-0280

{ashwin, carlos }@cc. gatech, edu

Autonomous robotic navigation is defined as the task of find-
ing a path along which a robot can move safely from a source
point to a destination point in a obstacle-ridden terrain and,
often, executing the actions to carry out the movement in a
real or simulated world. Several methods have been proposed
for this task, ranging from high-level planning methods to
reactive methods.

High-level planning methods use extensive world knowl-
edge and inferences about the environment they interact
with (see [Fikes el al., 1972; Georgeff, 1987; Maes, 1990;
Sacerdoti, 1975]). Knowledge about available actions and
their consequences is used to formulate a detailed plan be-
fore the actions are actually executed in the world. Such
systems can successfully perform the path-finding required
by the navigation task, but only ff an accurate and complete
representation of the world is available to the system. Con-
siderable high-level knowledge is also needed to learn from
planning experiences (see, for example, [Hammond, 1989;
Minion, 1988; Mostow and Bhatnagar, 1987; Segre, 1988]).
Such a representation is usually not available in real-world
environments, which are complex and dynamic in nature. To
build the necessary representations, a fast and accurate per-
ception process is required to reliably map sensory inputs to
high-level representations of the world. A second problem
with high-level planning is the large amount of processing
time required, resulting in significant slowdown and the in.
ability to respond immediately to unexpected situations.

Situated or reactive control methods have been proposed
as an alternative to high-level planning methods (see [Arkin,
1989; Brooks, 1986; Kaelbling, 1986; Payton, 1986]). In
these methods, no planning is performed; instead, a simple
sensory representation of the environment is used to select
the next action that should he performed. Actions are rep-
resented as simple behaviors, which can be selected and ex-
ecuted rapidly, often in real-time. These methods can cope
with unknown and dynamic environmental configurations,but
only those that lie within the scope of predetermined behav.
iors. It requires a great deal of careful design and tuning on
the part of the human designer to develop the control systems
that drive such robots, and even then these systems run into
serious difficulties when faced with environments which are
dlffment from those that the designer anticipated. Further-
more, even if the designer could anticipate and model all the
relevant aspects of the operating environment of the robot, the
dynamic nature of the real world would render parts of this

Robot Agent

I /

Env,ronment
Figure 1: System architecture

model obsolete over time.

The ability to adapt to changes in the environment, and
learn from experiences, is crucial to adequate performance
and survivability in the real world. We have developed a
self-improving navigation system that uses reactive control
for fast performance, augmented with multistrategy learning
methods that allow the system to adapt to novel environments
and to learn from its experiences (see figure 1). The system
autonomously and progressively constructs representational
structures that encapsulate its experiences into "cases" that
are then used to aid the navigation task in two ways: they al-
low the system to dynamically select the appropriate robotic
control behaviors in different situations, and they also allow
the system to _a~pt selected behaviors to the immediate de-
mands of the environment (see [Moorman and Ram, 1992;
Ram et al., 1992; Ram and Santamaria, 1993a: Ram and San-
tanuu’ia, 1993b] for further details).

The system’s cases are automatically constructed using a
hybrid case-based and reinforcement learning method with-
out extensive high-level reasoning. The learning and reactive
modules function in an integrated manner. The learning mod-
ule is always trying to find a better model of the interaction
of the system with its environment so that it can tune the
reactive module to perform its function better. The reactive
module provides feedback to the learning module so it can
build a better model of this interaction. The behavior of the
system is the result of an equilibrium point established by the
learning module, which is trying to refine the model, and the
environment, which is complex and dynamic in nature. This

2O

From: AAAI Technical Report WS-93-06. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



equilibrium may shift and need to be re-established if the en-
vironment ch,’mges drastically; however, the model is generic
enough at any point to be able to deal with a very wide range
of enviromnents.

The learning method is based on a combination of ideas
from case-based reasoning and learning, which deals with
the issue of using past experiences to deal with and learn
from novel situations, and from reinforcement learning, which
deals with the issue of updating the content of system’s knowl-
edge based on feedback from the environment (e.g., see [Sut-
ton, 1992]). However, in traditional case-based planning sys-
tems (e.g., [H,’unmond, 1989]) learning and adaptation re-
quires a detailed model of the domain. This is exactly what
reactive planning systems are trying to avoid. Earlier attempts
to combine reactive control with classical planning systems
(e.g.. [Chien el al., 1991]) or explanation-based learning sys-
teuns (e.g., [Mitchell, 1990]) also relied on deep reasoning
and were typically too slow for the fast, reflexive behavior re-
quired in reactive control systems. Unlike these approaches,
our method does not fall back on slow non-reactive techniques
for improving reactive control.

Each case represents an observed regularity between a par-
ticular environmental configuration and the effects of different
actions, and prescribes the values of the schema parameters
that are most appropriate (as far as the system knows based
on its previous experience) for that environment. The learn-
ing module performs the following tasks in a cyclic manner:
(1) perceive and represent the current environment; (2) 
trieve a case whose input vector represents an environment
most similar to the current enviromnent: (3) adapt the schema
p~u’,’uneter values in use by the reactive control module by in-
stalling the values recomnnended by the output vectors of the
case; and (4) learn new associations and/or adapt existing
associations represented in the case to reflect ,any new infor-
mation gained through the use of the case in the new situation
to enhance the reliability of their predictions.

The perceive step builds a set of four input vectors, one
for each sensory input described earlier, which are matched
against the corresponding input vectors of the cases in the
system’s memory in the retrieve step. The case similarity
metric is based on the mean squared difference between each
of the vector values of the case over a trending window, and
the vector values of the environment. The best match win-
dow is calculated using a reverse sweep over the time axis
similar to a convolution process to find the relative position
that matches best. The best matching case is handed to the
adapt step, which selects the schema parameter values from
the output vectors of the case and modifies the correspond-
ing values of the reactive behaviors currently in use using a
reinforcement formula which uses the case simih’u’ity metric
as a scalar reward. Thus the actual adaptations performed
depend on the goodness of match between the case and the
envirolunent.

Finally. the learn step uses statistical information about
prior applications of the case to determine whether informa-
tion from the current application of the case should be used
to m(glify this case, or whether a new case should be cre-
ated. The vectors encoded in the cases ,are adapted using
a reinforcement formula in which a relative similarity mea-
sure is used as a scalar reward or reinforcement signal. The

Figure 2: Typical navigational behaviors of different tunings
of the reactive control module. The figure on the left shows
the non-learning system with high obstacle avoidance and low
goal attraction. On the right, the learning system has lowered
obstacle avoidance and increased goal attraction, allowing it
to "squeeze" through the obstacles and then take a relatively
direct path to the goal.

relative similarity measure quantifies how similar the current
environment configuration is to the environment configuration
encoded by the case relative to how similar the environment
has been in previous utilizations of the case. Intuitively, if
case matches the current situation better than previous situa-
tions it was used in, it is likely that the situation involves the
very regularities that the case is beginning to capture; thus,
it is worthwhile modifying the case in the direction of the
current situation. Alternatively, if the match is not quite as
good, the case should not be modified because that will take it
away from the regularity it was converging towards. Finally,
if the current situation is a very bad fit to the case, it makes
more sense to create a new case to represent what is probably
a new class of situations.

A detailed description of each step would require more
space than is available in this paper (see [Ram and Santamaria,
1993a; Ram and Santamaria, 1993b] for details). Here, we
note that since the reinforcement formula is based on a relative
similarity measure, the overall effect of the learning process is
to cause the cases to converge on stable associations between
environment configurations and schema parameters. Stable
associations represent regularities in the world that have been
identified by the system through its experience, and provide
the predictive power necessary to navigate in future situations.
The assumption behind this method is that the interaction
between the system and the environment can be characterized
by a finite set of causal patterns or associations between the
sensory inputs and the actions performed by the system. The
nnethod allows the system to learn these causal patterns and
to use thenn to modify its ,~tions by updating its schema
panuneters as appropriate.

We have developed a three-dimensional interactive visu-
alization of a robot navigating through a simulated obstacle-
ridden world that allows a user to configure and test the nav-
igational performance of the robot (see figure 2). The user
can also test two robots simultaneously, and compare the per-
formance of a robot using traditional, non-learning reactive
control with another that uses our method to adapt itself to the

21



environment to enhance the performance of the navigation.

The system has been tested through extensive empirical
simulations on a wide variety of environments using several
different performance metrics (see [Moorman and Ram, 1992;
Ram et al., 1992; Ram and Santamaria, 1993b] for further de-
tails). The system is very robust and can perform successfully
in (and learn from) novel environments, yet it compares fa-
vorably with traditional reactive methods in terms of speed
and performance. A further advantage of the method is that
the system designers do not need to foresee and represent all
the possibilities that might occur since the system develops its
own "understanding" of the world and its actions. Through
experience, the system is able to _~__ pt to, and perform well
in, a wide range of environments without any user interven-
tion or supervisory input. This is a primary characteristic
that autonomous agents must have to interact with real-world
environments.

References
[Arkin. 1989] gonald C. Arkin. Motor schema-based mobile

robot navigation. The International Journal of Robotics
Research, 8(4):92-112, August 1989.

[Brooks, 1986] Rodney Brooks. A robust layered control
system for a mobile robot. IEEE Journal of Robotics and
Automation, RA-2(I): 14-23, August 1986.

[Chien et al., 1991] S. A. Chien, M. T. Gervasio, and G. F.
De2ong. On becoming decreasingly reactive: Learning to
deliberate minimally. In Proceedings of the Eighth Inter-
national Workshop on Machine Learning, pages 288-292,
Chicago, IL, June 1991.

[Pikes et al., 1972] R. E. Fikes, P. E. Hart, and N. L Nilsson.
l.,earning and executing generalized robot plans. Artificial
Intelligence, 3:251-288, 1972.

[Georgeff, 1987] M. Georgeff. Planning. Annual Review of
Computer Science, 2:359--400, 1987.

[Hammond, 1989] Ktistian J. Hammond. Case-Based Plan-
ning: Viewing Planning as a Memory Task. Perspectives
in Artificial Intelligence. Academic Press, Boston, MA,
1989.

[Kaelbling, 1986] L. Kaelbling. An architecture for intelli-
gent reactive systems. Technical Note 400, SRI Interna-
tional, October 1986.

[Maes, 1990] Pattie Maes. Situated agents can have goals.
Robotics and Auwnomaus Systems, 6:49-70, 1990.

[Minton, 1988] Steven Minton. Learning effective search
control knowledge: An explanation-based approach. PhD
thesis, Carnegie-Mellon University, Computer Science De,
partment~ Pittsburgh, PA, 1988. Technical Report CMU-
CS-88-133.

[Mitchell, 1990] T. M. Mitchell. Becoming increasingly re-
active. In Proceedings of the Eighth National Cw(erence
on Artificial Intelligence, pages 1051-1058, Boston, MA,
August 1990.

[Moonnan and Ram, 1992] Kenneth Moorman and Ashwin
Ram. A case-based approach to reactive control for au-
tonomous robots. In Proceedings of the AAAI Pall Sym-

posium on ,41for Real-World Autonomous Mobile Robots,
Cambridge, MA, October 1992.

[Moslow and Bhatnagar, 1987] J. Mostow and N. Bhamagar.
FAILSAFE - A floor planner that uses EBG to learn from
its failures. In Proceedings of the Tenth international Joint
Cm~erence on Artificial Intelligence, pages 249-255, Mi-
lan, Italy, August 1987.

[Payton, 1986] D. Payton. An architecture for reflexive au-
tonomous vehicle control. In Proceedings of the IEEE Con.
ference on Robotics and Automation, pages 1838-1845,
1986.

[Ram and Santamaria, 1993a] Ashwin Ram and Juan Carlos
Santamaria. Continuous case-based reasoning. In D. B.
Leake, editor, Proceedings of the AAAI Workshop on Case-
Based Reasoning, Washington, DC, July 1993.

[Ram and Santamaria, 1993b] Ashwin Ram and Juan Carlos
Santamaria. A multistrategy case-based and reinforcement
learning approach to self-improving reactive control sys-
tems for autonomous robotic navigation. In R. S. Michalski
and G. Tecuci, editors, Proceedings of the Second lnterna-
tional Workshop on Multistrat egy Learning, Harpers Ferry,
WV, May 1993. Center for Artificial Intelligence. George
Mason University, Falrfax, VA.

[Ram et al., 1992] Ashwin Ram, Ronald C. Arkin. Kenneth
Moorman, and Russell J. Clark. Case-based reactive nav-
igation: A case-based method for on-line selection and
adaptation of reactive control parameters in autonomous
robotic systems. Technical Report GIT-CC-92/57, College
of Computing, Georgia Institute of Technology, Atlanta,
GA, 1992.

[Sacerdoti, 1975] E. D. Sacerdoti. A structure for plans and
behavior. Technical Note 109, Stanford Research Institute,
Artificial Intelligence Center, 1975. Summarized in P.R.
Cohen and E.A. Feigenbaum’s Handbook of AI, Vol. III,
pp. 541-550.

[Segre, 1988] Alberto M. Segre. Machine Learning of Robot
Assembly Plans. Kluwer Academic Publishers, Norwell,
MA, 1988.

[Sutton, 1992] R. S. Sutton, editor. Machine Learning,
Special issue on reinforcement learning, volume 8(3/4).
Kluwer Academic, Hingham, MA, 1992.

22




