From: AAAI Technical Report WS-93-06. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

Exploration with and without a Map*

Sven Koenig and Reid G. Simmons
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213-3891
skoenig@cs.cmu.edu, reids@cs.cmu.edu

Abstract

We investigate the problem for an agent to reach
one of a number of goal states by taking ac-
tions, where actions cause a deterministic state
change. Initially, the topology of the state space
and its size are unknown to the agent. We com-
pare a zero-initialized version of Q-learning, that
minimizes deliberation time between action exe-
cutions, with other uninformed search algorithms
(i.e. where the effects of actions are initially un-
known). We show that the big-O worst-case com-
plexity of every uninformed search algorithm over
all domains is at least as large as the big-O worst-
case complexity of Q-learning. However, learning
and subsequently using a map of the state space
can provide a search algorithm with an advantage
over Q-learning in some (but not all) domains.
Formally, we show that there exists an uninformed
search algorithm that dominates Q-learning, i.e.
always performs no worse, but performs strictly
better in at least one case. In particular, there is
at least one domain in which the number of ac-
tion executions can be reduced by more than a
constant factor.

Introduction

Consider the problem for an agent of reaching one of
a number of goal states by taking actions, where ac-
tions cause a deterministic state change. Initially, the
topology of the state space is unknown to the agent,
and the agent therefore has to explore it until it finds
a goal state.

We are interested in the worst-case complexity of
uninformed search algorithms for this problem. We
define an uninformed search algorithm to be an
algorithm that does not know the effect of an action
before it has executed it at least once and observed

*This research was supported in part by NASA under
contract NAGW-1175. The views and conclusions con-
tained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of NASA or the U.S. government.

28

its effect. By worst-case complexity we mean, for
a state space of a given size, an upper bound on the
number of action executions (steps), until a goal state
is reached that holds for all possible topologies of state
spaces, start states, goal states, and tie-breaking rules
among unexplored actions. Clearly, in order to have
a worst-case complexity smaller than infinity, an ini-
tially uninformed search algorithm must learn some-
thing about the effects of actions.

Zero-initialized Q-learning [Watkins, 1989] is one
popular example of such uninformed search algorithms.
Its application to path planning problems in discrete
state spaces has been studied by [Peng and Williams.
1992], [Sutton, 1990b], [Thrun, 1992], [Whitehead,
1992, and others.

We study a version of zero-initialized Q-learning
with very restricted capabilities: 1-step Q-learning
[Whitehead, 1991] does not learn a map of the state
space. Also, it performs only minimal computation
between action executions, choosing only which action
to execute next, and basing this decision only on infor-
mation local to the current state. This way, the time
between action executions is linear in the number of
actions available in the current state, and the number
of steps executed is a good measure for the run-time
of the algorithm.

A highly reactive algorithm such as I-step Q-
learning often executes actions that are suboptimal
(even when judged according to the knowledge that the
agent could have when remembering its experiences).
The agent can move around for a long time in parts
of the state space that it has already explored, thus
neither exploring unknown parts of the state space nor
having a chance to find a goal. One could hope that
this can be avoided when planning further into the
future: the agent learns a map, i.e. a model of the
state space, and uses it subsequently to predict the ef-
fects of action executions. This enables the agent to
choose more carefully which action to execute next, al-
though it comes at the expense of a larger amount of
computations between action executions.

In the framework of Q-learning, for example, Sut-
ton proposed the DYNA architecture [Sutton, 1990a)

[Sutton, 1990b), which learns a “mental” model of the
world (map). Actions are executed in the real world
mainly to refine the model. The model is used to sim-
ulate the execution of actions and thereby create ex-
periences that are indistinguishable from the execu-
tion of real actions. This way, the real world and the
model can interchangeably be used to provide input for
Q-learning. Using the model, the agent can optimize
its behavior (according to its current knowledge) with-
out having to execute actions in the real world. Also,
the agent can simulate the execution of arbitrary (not
just local) actions at any time. Various researchers,
for example [Moore and Atkeson, 1992] and [Peng and
Williams, 1992], have devised strategies that determine
which actions to simulate in order to speed up plan-
ning if the deliberation time between action executions
is limited.

To summarize, when learning a map and using it
for planning, the agent has to keep more information
around and perform more computations between ac-
tion executions. This paper investigates whether plan-
ning decreases the number of steps needed to reach a
goal state and, if so, by how much.

In the following, we compare the worst-case com-
plexity of the 1-step Q-learning algorithm, that does
not learn a map, to the worst-case complexity of any
other uninformed search algorithm, for example one
that learns a map and uses it for planning.

Notation and Assumptions

We use the following notation. S denotes the finite set
of states of the state space, and G (with@ # G C S) is
the non-empty set of goal states. s,1ar: € S is the start
state of the agent. The size of the state space is n :=
|S|. A(s) is the finite set of deterministic actions that
can be executed in s € S. succ(s,a) is the uniquely
determined successor state when a € A(s) is executed
in s € S. A domain is a state space together with a
start state and a set of goal states.

We assume that the state space is strongly connected
(or, synonymously, irreducible), i.e. every state can be
reached from every other state. We also assume that
the state space is totally observable, i.e. the agent can
determine its current state s and A(s) with certainty
and knows whether it is in a goal state. Furthermore,
the domain is single agent and stationary, i.e. it does
not change over time. To simplify the following pre-
sentation, we also assume that the state space has no
duplicate actions, i.e. for all s € S and a,a’ € A(s),
either a = a’ or succ(s, a) # succ(s,a’). This assump-
tion can easily be dropped.

We say that the agent knows a map if it is able to
predict succ(s, a) for all s € S and a € A(s), no matter
which state it is in. We say that the agent knows a
distributed map if it is able to predict succ(s, a) for
all a € A(s) in its current state s € S, but is not able
to predict the outcomes of actions that are executed in
other states than its current state.

29

Initially, Q(s,a) = 0 for all s € S and a € A(s). The
agent is in state S,tart.

1. Set s := the current state.

2. If s € G, then stop.

3. Set a := argmax, g 4(,)@(s,a’), i.e. select an a €
A(s) with Q(s,a) = mazaea(s)Q(s,a’). (Ties can
be broken arbitrarily.)

4. Execute action a. (As a consequence, the agent re-
ceives reward —1 and is in state succ(s,a).)

5. Set Q(s,a) := —1+ v x U(succ(s, a)).

6. Goto 1.

where U(s) := maxq¢ 4(s) @(s, @) at every point in time
and v € (0, 1}.

Figure 1: The 1-step Q-learning algorithm

Q-Learning

The uninformed 1-step Q-learning algorithm (in the
following just called Q-learning) is shown in Figure 1.
It is a dynamic programming algorithm that consists of
a termination checking step (line 2), an action selection
step (line 3), an action execution step (line 4), and a
value update step (line 5). (The learning rate o is set
to one, since the domain is deterministic.)

With every state-action pair s € S and a € A(s),
there is one Q-value Q(s,a) associated. —Q(s, a) ap-
proximates the smallest number of action executions
that is necessary to reach a goal state if the agent
starts in s, executes a, and then behaves optimally
(provided that the discount factor v is 1). The Q-
values are zero initially, reflecting that the algorithm
has no prior knowledge of the state space.

The action selection step always selects the most
promising action, which is the action with the largest
Q-value. It does not need to predict the effects that
actions have. Thus, Q-learning neither learns a map
nor a distributed map.

The value update step adjusts Q(s, a), after the se-
lected action @ has been executed in state s. The 1-step
look-ahead value —1+ yU (succ(s, a)) is more accurate
than, and therefore replaces, @(s,a). The —1 is the
immediate reward for each action. We use this for-
mulation because, according to a recent result, this
Q-learning algorithm has a worst-case complexity of
O(n®) for reaching a goal state, see [Koenig and Sim-
monﬁ, 1993) and for the proofs [Koenig and Simmons,
1992].

Worst-Case Complexity of Uninformed
Search Algorithms

In the following, we compare the worst-case complexity
of Q-learning to the worst-case complexity of any other
uninformed search algorithm.

start

goal

Figure 2: A state space for which every uninformed search algorithm can need at least 1/6n3 — 1/6n steps to reach

the goal state (for n > 1)

Figure 2 shows that every uninformed search algo-
rithm has a worst-case complexity of at least O(n?). If
ties are broken in favor of actions that lead to states
with smaller numbers, then every uninformed search
algorithm can traverse a superset of the following state
sequence: 1,2,1,2,3,2,3,1,2,3,4,...4,i—1,{,{—2,i—
1,i,...,1,2,3,...,i= 1,4t 4+ 1,...,n — 1,n. Initially,
the agent does not know what the effect of each action
is. Therefore, it is indiflerent between all actions in its
current state that it has not executed at least once. In
the worst case, it executes all of the actions that lead
away from the goal state before the (only) action that
lecads one step closer to the goal state. Thus, it exe-
cutes all of the O(n?) actions in non-goal states at least
once. Most of these lead the agent back to a part of
the state space that it has already explored and there-
fore force it to execute O(n) explored actions (namely
the ones that let it approach the goal state again) on
average before it can explore a new action.

This result shows that the worst-case bound of O(n?)
for zero-initialized Q-learning is tight. Furthermore,
planning cannot decrease the big-O worst-case com-
plexity in this particular state space, since the agent
can only plan in the part of the state space for which
it knows the effects of actions. Theorem 1 follows im-
mediately.

Theorem 1 No uninformed search algorithm has a
smaller big-O worst-case complezsty (for arbitrary
state spaces) than Q-learning.

In the following, we will demonstrate that this result
does not imply that Q-learning is the best possible al-
gorithm for reaching a goal state. To do that, we will
show that there exists an uninformed search algorithm
that strictly dominates Q-learning. An algorithm X
strictly dominates an algorithm Y, if X always per-
forms no worse (i.e. needs no more action executions)
than Y, and performs strictly better in at least one
case,

Consider an algorithm that maintains a map of the
part of the state space that it has already explored.
It explores unknown actions in the same order as Q-

30

learning, but always chooses the shortest known path
to the next unexplored action: It uses its current
map and its knowledge of the Q-values to simulate
its behavior under the Q-learning algorithm until it
would execute an unexplored action. Then, it uses
the map to find the shortest known action sequence
that leads from its current state in the world to the
unexplored action, executes this action sequence fol-
lowed by the unexplored action, and repeats the cy-
cle. We call this algorithm the Qnqp-learning al-
gorithm. Per construction, it cannot perform worse
than Q-learning if ties are broken in the same way (no
matter what the tie-breaking rule is). Thus, the worst-
case complexity of Qmap-learning over all tie-breaking
rules of a given domain cannot be worse than that of
Q-learning. Consider, for example, the state sequence
that Q-learning traverses in the state space shown in
Figure 3 of size n = 6 if ties are broken in favor
of actions that lead to states with smaller numbers:
112s 112!3y1v213)4:1)2)3)4:51172’ 1»213y415’6- Fil’St,
Q-learning finds out about the effect of action a; in
state 1 and then about az in 2, a; in 2, az in 3, a; Iin
3,a2in 4, a; in 4, a; in 5, and a; in 5, in this order.
The Qmap-learning algorithm explores the actions in
the same order. However, after it has executed action
as in state 5 for the first time, it knows how to reach
state 5 again faster than Q-learning: it goes from state
1 through states 2, 3, and 4, to state 5, whereas Q-
learning goes through states 2, 1, 2, 3, and 4. Thus, the
Qmap-learning algorithm traverses the following state
sequence: 1,2,1,2,3,1,2,3,4,1,2,3,4,5,1,2,3,4,5,6.
and is two steps faster than Q-learning. Figure 4 gives
an example of a state space for which the big-O worst-
case complexities of the two algorithms are different:
Q-learning can require O(n3) steps to reach the goal
state, whereas Qmgap-learning reaches a goal state with
at most O(n?) steps no matter how ties are broken, see
[Koenig and Simmons, 1992] for the proof.

Theorem 2 There ezxist uninformed search algo-
rithms that dominate Q-learning, i.e. always perform
no worse, but perform strictly better in at least one

goal

Figure 3: A state space used to compare the behavior of Q-learning and Qmap-learning

this part of the state space is totally connected

[|

Figure 4: A state space for which the Q-learning algorithm can need at least 1/16n% — 3/16n% —1/16n + 3/16 steps
to reach the goal state, but Qmap-learning needs only at most 3/8n% + 3/2n — 23/8 steps (for odd n > 3)

case.

The Qmap-learning algorithm is mainly of theoreti-
cal interest, because it demonstrates that there exist
algorithms that are better than the Q-learning algo-
rithm, and its domination proof is trivial. However,
algorithms whose behaviors resemble that of the Quap-
learning algorithm are not only of theoretical interest:

The idea behind the DYNA architecture is precisely
that executing actions in the real world is slow, whereas
simulating the execution of actions in a model of the
world is fast. Once an action is explored in the real
world, it can be integrated in the model. Hf possible,
planning should exclusively be done in the model. Con-
sequently, actions should only be executed in the real
world

1. to find out about the effect of an unexplored action,

2. to get the agent into a state in which it can find out
about the effect of an unexplored action, or

3. to get to a goal.

Therefore, reinforcement learning researchers, for
example [Moore and Atkeson, 1992], have proposed
real-tinie schemes for approximating the following be-
havior of the agent: “If the current world state is a goal

31

state, stop. Otherwise, go to the closest state with an
unexplored action, execute the unexplored action, and
repeat.” This way, one prevents the agent from unnec-
essarily executing actions that it has already explored,
which is also the objective of the Qyuap-learning algo-
rithm.

Conclusion

The relationships between the Q-learning algorithm,
the Qmgqp-learning algorithm, and uninformed search
algorithms in general are summarized in Figure 5. Ev-
ery uninformed search algorithm {even if it is more
powerful than Q-learning in that it keeps more infor-
mation around and performs more computations be-
tween action cxecutions) has at least the same big-
O worst-case complexity as the Q-learning algorithm.
However, it can be misleading to focus only on the big-
O worst-case complexity of a search algorithm over
all domains, as the Qmngap-learning algorithm shows.
Learning (and subsequently using) a map of the state
space can provide the agent with an advantage over
Q-learning for some, but not all domains if one is will-
ing to tolerate an increase in deliberation time between
action executions. The Qpqap-learning algorithm, that

maximal number of steps *
over all tie-breaking rules

on?)

every uninformed search
algorithm is in here

Q-learning is never

o®m?)

above this line

uninformed Q-learning

uninformed
Qmap-learning:

it is never above the
graph for Q-learning

domain domain domain domain domain domain domain domain domain

6 figd 8 9

1 2 3 4

@ = cormresponds to a data point proved to hold

fig 2

—
enumeration of all

domains that have

no duplicate actions

Figure 5: A diagram showing the relationships between the Q-learning algorithm, the Qmap-learning algorithm,
and uninformed search algorithms in general (data points for domains other than the ones shown in Figures 2 and

4 are fictitious)

learns a map, dominates Q-learning: it always per-
forms no worse, but reduces the number of action exe-
cutions by more than a constant factor in at least one
domain.

Acknowledgments

The Reinforcement Learning Study Group at Carnegie
Mellon University provided a stimulating research en-
vironment. Avrim Blum, Lonnie Chrisman, Long-Ji
Lin, Michael Littman, Joseph O’Sullivan, Martha Pol-
lack, and Sebastian Thrun provided helpful comments
on the ideas presented in this paper. In addition,
Lonnie Chrisman provided extremely detailed techni-
cal comments on the proofs in [Koenig and Simmons,
1992], which improved their presentation.

References

Koenig, Sven and Simmons, Reid G. 1992. Complex-
ity analysis of real-time reinforcement learning ap-
plied to finding shortest paths in deterministic do-
mains. Technical Report CMU-CS-93-106, School of
Computer Science, Carnegie Mellon University.
Koenig, Sven and Simmons, Reid G. 1993. Complex-
ity analysis of real-time reinforcement learning. In
Proceedings of the AAAL

Moore, Andrew W. and Atkeson, Christopher G.
1992. Memory-based reinforcement learning: Efficient
computation with prioritized sweeping. In Proceed-
ings of the NIPS.

32

Peng, Jing and Williams, Ronald J. 1992. Efficient
learning and planning within the Dyna framework.
In Proceedings of the Second International Conference
on Simulation of Adaptive Behavior: From Animals
to Animats.

Sutton, Richard S. 1990a. First results with DYNA.
In Proceedings of the AAAI Spring Sympostium.
Sutton, Richard S. 1990b. Integrated architectures
for learning, planning, and reacting based on approx-
imating dynamic programming. In Proceedings of the
Seventh International Conference on Machine Learn-
ing. : ,

Thrun, Sebastian B. 1992. The role of exploration
in learning control with neural networks. In White,
David A. and Sofge, Donald A., editors 1992, Hand-
book of Intelligent Control: Neural, Fuzzy and Adap-
tive Approaches. Van Nostrand Reinhold, Florence,
Kentucky.

Watkins, Christopher J. 1989. Learning from Delayed
Rewards. Ph.D. Dissertation, King’s College, Cam-
bridge University.

Whitehead, Steven D. 1991. A complexity analysis of
cooperative mechanisms in reinforcement learning. In
Proceedings of the AAAL 607-613.

Whitehead, Steven D. 1992. Reinforcement Learn-
ing for the Adaptive Conirol of Perception and Ac-
tion. Ph.D. Dissertation, Department of Computer
Science, University of Rochester.

