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Abstract
This paper addresses the need for monitoring the
environment given an action model that is
uncertain or stochastic. Its contribution is to
describe how monitoring costs can be included in
the framework of Markov decision problems.
making it possible to acquire cost-effective
monitoring strategies using dynamic pmgnmuning
or related reinforcement learning algorithms.

Statement of the Problem
In realistic domains, an agent must generate plans from an
action model that is imperfect and uncertain. Even if the
model can be improved by learning, there is usually a limit
to how accurate it can be made; to some degree, the effects
of actions are stochastic. When an agent cannot predict the
effects of its actions with certainty, it must monitor the state
of its environment. (In the rest of this paper, the terms
"monitoring" and "sensing" are used interchangeably.)
However if a cost is incurred for monitoring, it may be
prohibitively expensive for an agent to monitor every
feature of its environment continuously. Hence there is a
need for cost-effective monitoring slrategies.

Recent work that considers sensing costs in learning
stategies for robotic sensing attempts to make sensing more
efficient by selecting ¯ subset of the available features of the
environment to sense (Chrisman & Simmons, 1991; Tan,
1991). An interesting aspect of this work is that it deals
with the issue of incomplete state descriptions (Whitehead
& BAIlard, 1991). An assamption it m~h-J~, however, is that
the agent senses its environment (or selected features of it)
at a fixed periodic interval, typically at the beginning of
each time step or decision cycle. In this paper, we start by
quesfioniag this assumption. We consider an agent that can
decide for itself when to sense the world, and how long to
wait before sensing again. So our focus is less on the
problem of what featm~ of the environment to sense than
when and how often to sense them.

For both generality and rigor, we have attempled to
tTeat this problem as ̄  Markov decision problem using
methods based on dynamic pmgrm~ing. This framework
has been used in recent work to make useful connections
between planning and learning (Sutton, 1990). In this
framework, an action model takes the form of ¯ state

transition function, P~(a), that gives the conditional
wobabitity that action a taken in state x produces state y.
In addition, a payoff function, R(x,a), gives the expected
single-step payoff for taking action a in state x. The
problem is to find a policy that optimizes payoff in the long
term. This policy can be found with dynamic programming,
or various reinforcexnont learning algorithms that have been
shown to have ̄ theoretical basis in dynamic programming
(Burro, Sutton, & Watldns, 1990).

In ¯ conventional Markov decision problem, the state
of the environment is automatically monitored at each time
step without considering the costs this might incur. Because
this is exactly the assumption we wish to question, the key
step in our work is to show how to express monitoring costs
and fonmflate monitoring strategies in the framework of ¯
Markov decision problem. Given ̄  conventional Markov
decision problem with single-step state-transition
pmhabilities and ̄  single-step reward function, we show
how to transform it into another Markov decision problem
in which the agent does not automatically monitor each time
step, but considers sensing costs in deciding when and how
often to monitor. It is not poss~le to describe all the details
of this approach in this short paper, but ̄  simple example is
followed by ̄  brief commentary.

A simple example
Consider a Madmv chain with five states labelled from 0 to
4, in which the highest numbered state, 4, is an absorbin&
state. The action set for the controller is
A ffi {null, restart}. If the controller does nothing (i.e.,
l~forms the null action) st a given time step, the Markov
chain hm the atate transition probabilities shown in f~ure 1.
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i~gure 1. State trnitkm wobabilitea for the mall action

The conlxoller can restart the Markov chain once it enters
the absorbing state, 4. Restarting it restores itto state 0 and
hu ~e sine mmsitim pmbabili~s shown in figure 2.
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For example, a restart in state 4 effects a transition to state 0
but ¯ restart in state 2 does not change the state. (We
assume the effect of a restart is instantaneous, while the the
effect of the null action takes one time step.)

There is ¯ cost, -2, assesed for each time step the
process is in the absorbing state, and no cost assessed when
it is in the other states. A cost, .3, is incurred for restarting
the process, and thae is no cost for the null action. Sothe
payoff function for this Woblem is:

R(x, mdi)={~ 0rz=4otherwise
R(x, restart)= - 

The optimal control policy is self-evident; the
Wocess should be restarted whenever it enters its absorbing
state. This policy can also be found by computing the
optimal value function, below, by using some method of
infinite-horizon dynamic programming such as policy
iteration.

V(x)= ~e {R(x,a)+ ~y~sP,,7(a)V(y)}

Using ̄  discount factor of ~. = 0.95, the optimal
policy for I/tis problem and its expected cost are displayed in
table 1.

taste 0 1 2 3 4

colul m man ill mall null mmatt

monitmiq imen, d 1 1 ! 1 1

apm~ ooa (eot ~.t,d~ -1.06 -!.28 -1.77 -2.64 .4.06
m omt)

~4" ~n) (tncladiq -21.06
-21.28 -21.77 .22.64 -24.O6

Table 1. Optimal policy for original Mmkov decision problem

The hut row of the table shows how the expected cost
would increase if ¯ monitoring cost, M = -I, is assessed
each time step. In ¯ conventional Matkov decision problem,
the controller has no control over costs incurred by
monitoring because the state of the Wncess is monitored
autonmfically at each time step. We show that ¯ more cost-
effective policy can be found by defining ¯ new Madmv
de.ion problem in which monitoring coats are considered
and the controller does not autmmtic~y monitor each time

step but decides for itself how many steps to wait before
monitoring again. This new Markov decision problem is
constructed from the original one by defining ̄  new action
set:

A* = {null, restart} x (1,2,3 .... 

where ̄ tuple, (a,m), represents a decision to take action,
a, and monitor again m time steps later.

A multi-step state transition function is defined by
matrix multipfication,

P~((a,m)) = (P(a)l~"-’(null))~

where a is either mall or restart, and P(null) and
P(restarZ) are the single-step state transition probability
matrices displayed graphically in figures I and 2.

A multi-step expected payoff function is defined in
terms of the original payoff function as follows:

R’(x,(a,.))=. M + R(x,a) ~=l(,~.‘-tP’,,y((a,j))R(y,.ull))

where M = -I, again, is the cost incurred for monitoring.

The optimal value function for this new decision
problem is

÷
It can be solved only if the number of action and monitoring
interval pairs, (a,m), that must be evaluated in each state, 
finite. One way to ensure this is to put ¯ bound on the
maximum monitoring interval m. A less arbitrary solution
is to reuson that the expected vatue in state x for action a is
¯ unimndal function of the monitoriag interval, m. This is a
perfectly reasonable assumption since it amounts to saying
that the closer the monitoring interval is to the optimum, the
better it is. This allows an optimal monitoring interval for
each state-action pair to be found by bounded search or
simple gradient ~,ent.

The optimal policy and its expected cost have been
computed by dynamic programming and are displayed in
table 2.

0 1 2 3 4

coatn/m mill null null null

mmitminS ~emd 11 8 5 2 II

co.t (.’mcludins.4.98 -$ .70 -6.9O -8.44 -7.9g

Tsb]e Z Optimal policy fc~ the redefined Markov decision protean.

Two observations can be made about this policy.
First, taking monitoring costs into consideration makes it
possible to compute ¯ more efficient policy in which the
state of the Markov wocess does not have to be monitored
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at each time step. Second, the couu’oiler no longer monitors
at a fixed periodic rate. In this example, its rate of
monitoring increases M it gets closer to the costly absorbing
state. This reflects the general idea that there are regions of
a problem space or enviromnent in which a controller needs
to "be more careful’, so to speak, by monitoring more
frequently. We have found that a pattern much like this
emerges from a number of different problem-solving
sit-~tlons. Atkin and Cohen (1993) describe an example 
which it is worthwhile for an agent to monitor more
frequently as it approaches a goal.

Dynamic programming is not the only way to
determine a policy once monitoring costs and strategies
have been expressed in a Markov decision problem.
Various reinforcement learning algorithms have been
developed that have a theoretical basis in dynamic
l~ogramming and can be used either for direct learning,
when an explicit cost and probability model are not
available, of for real-time planning and learning when a
model is available but the problem space is too large to
perform full passes of dynamic programming in real-time
(Barm, Bradtke, & Singh, 1993). Although not described
he:e, we have designed a simple extension of the Q-lem~g
algorithm that learns to monitof as pert of its control policy.
It works by using a separate stochastic Gaussian unit for
each state-sction pair to fred the optimal monitoring interval
by gradient ascent.

Work in Prowess

Two interesting classes of policies can be found using our
approach. The first is illustrated by the previous example:
an agent observes the ctwrent state, performs a single action
(which could be the null action), and then waits some
number of steps before monitoring again. This is typical of
problems in which, for example, a Im3CeU is monitored over
time to detect when a corrective action should be taken. It
also applies to problems in which a single action is
continued for a period of time and periodically monitofed to
decide whether to continue it or not.

However tl~ clam of policies is only ¯ special case
of a more general class in which, in each state, ¯ policy
specifies an open-loop sequence of actions to perform
before monitoring again some number of time steps latex.
The difference between the tim class and the more general
class is that, in the latter, ¯ sequence of different actions is
taken before monitm’ing again, rather than ̄  single action.
This broader class of policies is mote closely related to
planning problems in which a sequence of actions is taken to
get from ̄ start state to a goal slate. However the first class
of policies, described here, correslxa~ to an important set
of practical monitoring problems; moreover, finding an
optimal policy in the fnst case is computationally simpler.
While the number of possible action and moniuxing interval
pairs, (a,m), in the first class is ¯ linear function of the
monitoring interval, the number of possible open-loop
sequences of actions in the general class grows
exponentially as ̄  function of the monitoring inta~al.

In both these classes of problems, the purpose of
monitoring is simply to deteamino the current state of the

mvironment. Another purpose of monitmi~, one we have
not yet considered, might be to check whether the model
used by the agent to generate its behavior is correct or needs
to be revised. A very simply example of Otis is described in
(Orefenstette & Ramsay, 1992), where ̄  monitor detects
discrepmcies between the Ixmuneters of m agent’s model
and the environment to decide whether to update the model
parameters and trigger ¯ learning algorithm to revise the
agent’s behaviof. It might be interesting to explore, within a
framework like the one described here, how uncertainty
about whether an action model is correct might influence the
rote of monitoring.
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