From: AAAI Technical Report WS-93-06. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

Learning Monitoring Strategies to Compensate for Model Uncertainty

Eric A. Hansen, Paul R. Cohen
Experimental Knowledge Systems Laboratory
Department of Computer Science
University of Massachusetss, Amherst, MA 01003
hansen@cs.umass.edu

Abstract

This paper addresses the need for monitoring the
environment given an action model that is
uncertain or stochastic. Its contribution is to
describe how monitoring costs can be included in
the framework of Markov decision problems,
making it possible to acquire cost-effective
monitoring strategies using dynamic programming
or related reinforcement leaming algorithms.

Statement of the Problem

In realistic domains, an agent must generate plans from an
action model that is imperfect and uncertain. Even if the
model can be improved by learning, there is usually a limit
to how accurate it can be made; to some degree, the effects
of actions are stochastic. When an agent cannot predict the
effects of its actions with certainty, it must monitor the state
of its environment. (In the rest of this paper, the terms
"monitoring” and "sensing” are used interchangeably.)
However if a cost is incurred for monitoring, it may be
prohibitively expensive for an agent to monitor every
feature of its environment continuously. Hence there is a
need for cost-effective monitoring strategies.

Recent work that considers sensing costs in learning
stategies for robotic sensing attempts to make sensing more
efficient by selecting a subset of the available features of the
environment to sense (Chrisman & Simmons, 1991; Tan,
1991). An interesting aspect of this work is that it deals
with the issue of incomplete state descriptions (Whitchead
& Ballard, 1991). An assumption it makes, however, is that
the agent senses its environment (or selected features of it)
at a fixed periodic interval, typically at the beginning of
each time step or decision cycle. In this paper, we start by
questioning this assumption. We consider an agent that can
decide for itself when to sense the world, and how long 10
wait before sensing again. So our focus is less on the
problem of what features of the environment to sense than
when and how often to sense them.

For both generality and rigor, we have attempted to
treat this problem as a Markov decision problem using
methods based on dynamic programming. This framework
has been used in recent work to make useful connections
between planning and learning (Sutton, 1990). In this
framework, an action model takes the form of a state

33

transition function, Py(a), that gives the conditional
probability that action a taken in state x produces state y.
In addition, a payoff function, R(x,a), gives the expected
single-step payoff for taking action a in state x. The
problem is to find a policy that optimizes payoff in the long
term. ‘This policy can be found with dynamic programming,
or various reinforcement learning algorithms that have been
shown to have a theoretical basis in dynamic programming
(Barto, Sutton, & Watkins, 1990).

In a conventional Markov decision problem, the state
of the environment is automatically monitored at each time
step without considering the costs this might incur. Because
this is exactly the assumption we wish to question, the key
step in our work is to show how to express monitoring costs
and formulate monitoring strategies in the framework of a
Markov decision problem. Given a conventional Markov
decision problem with single-step state-transition
probabilities and a single-step reward function, we show
how to transform it into another Markov decision problem
in which the agent does not automatically monitor each time
step, but considers sensing costs in deciding when and how
often to monitor. It is not possible to describe all the details
of this h in this short paper, but a simple example is
followed by a brief commentary.

A simple example

Consider a Markov chain with five states labelled from 0 to
4, in which the highest numbered state, 4, is an absorbing
state. The action set for the controller is

A= {null,restart}. 1f the controller does nothing (i.e.,

performs the null action) at a given time step, the Markov
chain has the state transition probabilities shown in figure 1.

75 5 5 S5

The controller can restart the Markov chain once it enters
the absorbing state, 4. Restarting it restores it to state 0 and
has the state transition probabilites shown in figure 2.



1
Figure 2. State transition probabilites for restart.

For example, a restart in state 4 effects a transition to state 0
but a restart in state 2 does not change the state. (We
assume the effect of a restart is instantancous, while the the
effect of the null action takes one time step.)

There is a cost, -2, assesed for each time step the
process is in the absorbing state, and no cost assessed when
it is in the other states. A cost, -3, is incurred for restarting
the process, and there is no cost for the null action. So the
payoff function for this problem is:

-2 ifx=4
R(x’""")={0 o‘{herwise
R(x,restart)= -3

The optimal control policy is self-evident; the
process should be restarted whenever it enters its absorbing
state. This policy can also be found by computing the
optimal value function, below, by using some method of
infinite-horizon dynamic programming such as policy
iteration.

V(x)= max {R(x,a) +A ’)‘:sr.,(a)v(y)}

Using a discount factor of 4 =0.95, the optimal
policy for this problem and its expected cost are displayed in
table 1.

expected cost (including § -21.06
monitoring cost)

~Table 1. Optimal policy for original Markov decision problem

The last row of the table shows how the expected cost
would increase if a monitoring cost, M = -1, is assessed
cach time step. In a conventional Markov decision problem,
the controller has no control over costs incurred by
monitoring because the state of the process is monitored
automatically at each time step. We show that a more cost-
effective policy can be found by defining a new Markov
decision problem in which monitoring costs are considered
and the controller does not automatically monitor each time

34

step but decides for itself how many steps to wait before
monitoring again. This new Markov decision problem is
constructed from the original one by defining a new action
set.

A* = {null, restart} x{1,2,3,...}

where a tuple, (a,m), represents a decision to take action,
a, and monitor again m time steps later.
A multi-step state transition function is defined by
matrix multiplication,
P ((a,m)) = (P(a)P™"! (mdl))x,

where a is cither mull or restart, and P(null) and
P(restart) are the single-step state transition probability
matrices displayed graphically in figures 1 and 2. .

A multi-step expected payoff function is defined in
terms of the original payoff function as follows:

R*(x.(a,m))=M + R(x,a) + ’i:,l(/‘l’ P s ((a. J))R( y.mdl))

where M = -1, again, is the cost incurred for monitoring.
The optimal value function for this new decision

problem is
V(e)= g, R (xam) + 2 5, P (am)V )

It can be solved only if the number of action and monitoring
interval pairs, (a,m), that must be evaluated in each state, is
finite. One way to ensure this is to put a bound on the
maximum monitoring interval m. A less arbitrary solution
is to reason that the expected value in state x for action a is
a unimodal function of the monitoring interval, m. This is a
perfectly reasonable assumption since it amounts to saying
that the closer the monitoring interval is to the optimum, the
better it is. This allows an optimal monitoring interval for
cach state-action pair to be found by bounded search or
simple gradient ascent.

The optimal policy and its expected cost have been
cobl;lp;ted by dynamic programming and are displayed in
tabie 4.

Table 2. Optimal policy for the redefined Markov decision problem.

Two observations can be made about this policy.
First, taking monitoring costs into consideration makes it
possible to compute a more efficient policy in which the
state of the Markov process does not have to be monitored



at each time step. Second, the controller no longer monitors
at a fixed periodic rate. In this example, its rate of
monitoring increases as it gets closer to the costly absorbing
state. This reflects the general idea that there are regions of
a problem space or environment in which a controller needs
to "be more careful”, so to speak, by monitoring more
frequently. We have found that a pattern much like this
emerges from a number of different problem-solving
situations. Atkin and Cohen (1993) describe an example in
which it is worthwhile for an agent to monitor more
frequently as it approaches a goal.

Dynamic programming is not the only way to
determine a policy once monitoring costs and strategies
have been expressed in a Markov decision problem.
Various reinforcement learning algorithms have been
developed that have a theoretical basis in dynamic
programming and can be used either for direct learning,
when an explicit cost and probability model are not
available, or for real-time planning and learning when a
model is available but the problem space is too large to
perform full passes of dynamic programming in real-time
(Barto, Bradtke, & Singh, 1993). Although not described
here, we have designed a simple extension of the Q-learning
algorithm that learns to monitor as part of its control policy.
It works by using a separate stochastic Gaussian unit for
each state-action pair to find the optimal monitoring interval
by gradient ascent.

Work in Progress

Two interesting classes of policies can be found using our
approach. The first is illustrated by the previous example:
an agent observes the current state, performs a single action
(which could be the null action), and then waits some
number of steps before monitoring again. This is typical of
problems in which, for example, & process is monitored over
time to detect when a corrective action should be taken. It
also applies to problems in which a single action is
continued for a period of time and periodically monitored to
decide whether to continue it or not.

However this class of policies is only a special case
of a more general class in which, in each state, a policy
specifies an open-loop sequence of actions to perform
before monitoring again some number of time steps later.
The difference between the first class and the more general
class is that, in the latter, a sequence of different actions is
taken before monitoring again, rather than a single action.
This broader class of policies is more closely related to
planning problems in which a sequence of actions is taken to
get from a start state to a goal state. However the first class
of policies, described here, corresponds to an important set
of practical monitoring problems; moreover, finding an
optimal policy in the first case is computationally simpler.
While the number of possible action and monitoring interval
pairs, (a,m), in the first class is a linear function of the
monitoring interval, the number of possible open-loop
sequences of actions in the general class grows
exponentially as a function of the monitoring interval.

In both these classes of problems, the purpose of
monitoring is simply to determine the current state of the

35

environment. Another purpose of monitoring, one we have
not yet considered, might be to check whether the model
used by the agent to generate its behavior is correct or needs
to be revised. A very simply example of this is described in
(Grefenstette & Ramsay, 1992), where a monitor detects
discrepancies between the parameters of an agent's model
and the environment to decide whether to update the model
parameters and trigger a leamning algorithm to revise the
agent's behavior. It might be interesting to explore, within a
framework like the one described here, how uncertainty
about whether an action model is correct might influence the
rate of monitoring.

Acknowledgments

Thanks to Andrew Barto and Satinder Singh for helping to
clarify some of these ideas in discussion, and to Scott
Anderson for comments on a draft.

This research is supported by the Defense Advanced
Research Projects Agency under contract #F49620-89-C-
00113; by the Air Force Office of Scientific Research under
the Intelligent Real-time Problem Solving Initiative,
contract #AFOSR-91-0067; and by Augmentation Award
for Science and Engineering Research Training, PR No. C-
2-2675. The US Govemment is authorized to reproduce and
distribute reprints for governmental purposes
notwithstanding any copyright notation hereon.

References

Atkin, M. and Cohen, P. (1993). Genetic programming to
learm an agent's monitoring strategy. In this proceedings.
Barto, A.G., Sutton, R.S., and Watkins, CJ.C.H. (1990).
Learning and sequential decision making. In Learning and
Computational Neuroscience: Foundations of Adaptive
Networks. M. Gabriel and J. W. Moore (Eds.), MIT Press,
pp. 539-602.

Barto, A., Bradtke, A., and Singh, S. (1993). Learning to
act using real-time dynamic programming. Computer
Science Technical Report 93-02, University of
Massachusetts, Amherst.

Chrisman, L. and Simmons, R. (1991). Sensible planning:
Focusing perceptual attention. Proceedings AAAI-91, pp.
756-761.

Grefenstette, J.J., & Ramsey, C.L. (1992). An approach to
anytime learning. Proceedings of the Ninth International
Conference on Machine Learning, pp. 189-195.

Sutton, R.S. (1990). Integrated architectures for leaming,
planning, and reacting based on approximating dynamic
programming. Proceedings of the Seventh International
Conference on Machine Learning, pp. 216-224,.

Tan, M. (1991). Learning a cost-sensitive internal
representation for reinforcement learning. In Proceedings of
the Eighth International Workshop on Machine Learning,
pp. 358-362.

Whitchead, S.D., & Ballard, D.H. (1991). Learning to
ggmeive and act by trial and error, Machine Learning 7:45-





