
Successive Refinement of Empirical Models

Ralph E. Gonzalez
Department of Mathematical Sciences

Rutgers University
Camden, NJ 08102, USA

(rgonzal@ gandalf.rutgers.edu)

Abstract

An approach for automatic control using on-line
learning is presented. The controller’s model for the
system represents the effects of control actions in
v,’u’ious (hyperspherical) regions of state space. The
partition produced by these regions is initially
coarse, limiting optimization of the corresponding
control actions. Regions contract periodically to
enable optimization to progress further. New
regions and associated optimizing elements are
generated to maintain coverage of state space, with
characteristics drawn from neighboring regions.
During on-line operation the resulting state space
partition undergoes successive refinement, with
"generalization" occurring over successively
smaller areas. The system model effectively grows
and becomes more accurate with time.

1 Introduction

An on-line learning controUer maintains a model of its envi-
ronment (the action model), from which control actions are
determined. The model is refined during nonsupervised
operation to improve control with respect to an index of
performance. A performance-adaptive controller [Saridis,
1979] learns by direct reduction of its uncertainties, rather
than explicit identification of the environmental parameters.
That is, the controller’s understanding of its environment is
represented by its control decisions, and is constructed
empirically.

An example is the lookup-table controller [’Waltz and
Fu, 1965]. The space of system states is partitioned, and
each "control situation" (partition element) is ,associated
with an independent adoptive element. Each element
attempts to determine the control action appropriate within
its region of state space: for example, using a probabifity-
reinforcement scheme. The system model is a table relating
each region to the response which is most likely optimal.

This paper extends the lookup-table approach by
allowing regions to contract and to recursively spawn
smaller regions. The resulting state space partition under-
goes successive refinement during the on-line training

period, and the size of the lookup-table increases accord-
ingly.

This approach is implemented in a procedural frame-
work, where each region is associated with an independent
adaptive element whose accuracy is limited by the current
region size. Beginning with large regions encourages gener-
alization and speeds initial learning. As the regions contract,
the associated adaptive elements may obtain arbitrary accu-
racy. Learning is accelerated in those areas of state space
which arise most frequently, and the range of generalization
is successively reduced. Application to the optimal control
of a simulated robotic manipulator is discussed.

2 Learning Control

An automatic means of controlling a compiex system is
desired. The relevant aspects of the system comprise the
system’s state, denoted by the vector x. If the dynamics of
the system are unknown or are difficult to analyze, the
controller may empirically learn the appropriate control
vector u for each state, according to some available index of
performance OP) f(x,u). The controller produces a model
mapping the state space X onto the control actions u*(x)
which optimize the IP.

Of particular interest is the problem of on-line
learning, where the controller must construct a system
model while controlling the system. In this case it is desir-
able for the controller to be initialized with or to quickly
learn control actions which maintain stable operation, and to
continue to improve upon these actions over time. A robust
learning algorithm is required, since the selection of states is
determined by the dynamics of the system rather than by a
supervisory algorithm.

2.1 State Space Partitioning
If the state space X is discrete, the learning controller may
approximate u*(x) for each state x~ X. If the cardinality 
the set of states is very large or if X is continous, then
computing u*(x) for all states may require excessive (or
infinite) time. In this ease, the controller may partition state
space into discrete regions Iri: i=l,2,...n}. The learning
algorithm associates a single suboptimal control action ui
with each region, producing a lookup-table.

42

From: AAAI Technical Report WS-93-06. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



If the state space partition is very coarse (n is small),
then the effectiveness of ui may vary greatly for different
states within the region ri. On the other hand, if the partition
is very fine then the overall learning time will remain large.
Previous researchers have applied techniques to improve the
effectiveness of a coarse partition. Waltz and Fu [1965]
suggested that regions along the switching boundary of a
binary controller may be partitioned once more (based on
the failure of the control actions associated with these
regions to converge during the training period). Albus’
neural model CMAC [1975] used overlapping coarse parti-
tions to give the effect of a finer partition while achieving
greater memory efficiency. Rosen et al. [1992] allowed
region boundaries to migrate to conform to the control
surface of the system, which also resulted in a controller
which adapted well to changing system dynamics. These
techniques do not fully overcome the accuracy limitation
which ultimately characterizes any fixed-size system model.

2.2 Contractible Adaptive Elements

The system model described here consists of a set Cffi{ci:
i=l,2,...n(t)} of Contractible Adaptive Elements (CAEs),
whose cardinality n is a nondecreasing function of time.
Each CAE ci associates a single suboptim~d control action ui
with a hyperspherical region ri of the state space X. The
element ci becomes active when the state x(t) moves into i
(Figure la). While ,active, the CAE searches for an optimal
control action u*(x), according to some index of perfor-
m,’mce f(x,u). Since u*(x) varies over i, the search may
fail to converge. Under conditions of continuity, a bound on
this "noise" can be obtained (generally based on the size of
the region). This enables the establishment of an accuracy
threshold 5i beyond which the search becomes ineffective.

The active CAE ci searches until its accuracy threshold
8i is reached. At this point, the CAE reduces the size of its
region ri (Figure lb) and reduces 6i. As the conlroller 
employed on-line, each CAE’s region may contract repeat-
edly to permit arbitrary search accuracy.

When a region contracts, it is possible for a state to
arise nearby which falls outside of the boundary of all
existing CAEs in the set C (Figure lc). A new CAE 
generated, whose region may be centered at the current state
location (Figure ld). The size of the new region and the
st,’u’ting value for the search process may be "generalized"
from neighboring CAEs, with consideration of the distance
to the center of their ,associated regions. As more nearby
states arise during on-line operation, the contraction of a
CAE results in repopulation of the vacated area of state
space with sm,’dler CAEs. These second-generation CAEs
will themselves eventually contract, leading to still-smaller
third-generation CAEs. The range of generalization con-
Ir, tcts with each generation.

It is possible for a state to fall within the boundaries of
two or more hyperspherical CAEs. Only one may be ,acti-
vated; e.g., by consideration of the distance from the current
sutte to the center of the respective regions.

(
x ri

(a)

)
(

(b)

(c)

)
(

(d)

Rgure 1. CAE regions on ~imensional state
space; (a) at beginning of control interval, (b) after ri
contracts, (c) at beginning of next control interval, (d)
after creation of now region.

/43



2-~.1 Performance Features
Preliminary learning is accelerated by the use of a coarse
initial partition whose individual elements enjoy frequent
activation. Under certain conditions, it can be proven that
the successive refinement ,approach achieves the accuracy
possible with a fixed partition in less time [Gonzalez, 1989].
The CAE ,approach is also more flexible than that involving
a fixed pm’fition, since in many cases the desired partition
resolution is not known beforehand.

During on-line control, the state space pm’tition
defined by the set C generally becomes more refined in
those areas of state space which arise most frequently. This
provides memory efficiency and accelerates learning in
these ,areas.

The optimal control action may vary more quickly
over some areas of state space than others. For example,
there may be a discontinuity in the value of the optimum at
some surface of state space. If this surface passes through a
CAE’s region, then that CAE’s search process will fail to
converge. The region should then contract, allowing the
space it vacated to be repopulated with smaller CAEs. If this
occurs successively, the discontinuity will be contained in
regions whose combined volume can be made arbitrarily
small. Thus the likelyhood of a state arising in one of these
critical regions will be equally small. On the other hand, if
there is very little variation in the optimum over a large
region, it is possible for the associated CAEs’ search
processes to use a finer accuracy threshold without
contracting. This allows more rapid learning than would be
the case with smaller CAEs.

2.2.2 Search Techniques
Assuming state space is continuous and the controller is in
on-line operation, a particular state x wit generally arise
only once. Therefore it is not possible to accurately estimate
the gradient Vf(x,.) representing the change in performance
produced by a change in control action for a given state.
This prevents the use of pure steepest-descent based
methods when searching for control actions. If the range of
control actions is itself discrete, a probability-reinforcement
scheme [Waltz and Fu, 1965] may be used in place of
search. If control space is continuous, direct-search optimi-
zation is used.

Direct-search methods take many forms, and generally
utilize implicit estimates for the performance gradient. In
our implementation, each CAE maintains an independent
direct search process. Its parameters include the current
suboptimal control action, search direction, and step size.
During each control interval, (1) a CAE i containing the
current state x is activated, (2) i i ncrements its suboptimal
control action Ui by one step in the search direction, (3) i i s
applied to the system under control, (4) the resulting IP 
evaluated, and (5) i modifies its search direction according
to this value. (The state is assumed constant during the
control interval.) The step size is reduced as the suboptimal
control action nears optimum. The accuracy threshold ~ii

determines the minimum allowable step size. In some cases
/i i can be shown to be proportional to the radius of ri. This
occurs when the index of performance f is of the form:
f(x,u) = kllx-y(u)ll; i.e., f measures the distance between 
state "target" vector and an "output" vector y(u) [Gonzalez,
1989].

3 Robotics Application

We describe an application of the on-line learning controller
to a dynamic simulation of a 2-degree of freedom robotic
manipulator, including gravity and friction effects. The
robot’s dynamics are unknown to the controller, whose task
is to determine the joint torques which optimally move the
robot from an initial configuration to a target in a rectan-
gular region in the plane of the robot (Figure 2). The index
of performance is a weighted sum of the hand’s position and
velocity error and the energy and power requirements. It is
generally difficult to analytically minimize such a function
in the face of the robot’s nonlinear dynamics, and in any
case the computations necessary will generally preclude
real-time control. Likewise, conventional adaptive methods
do not produce optimal control of such systems.

The control interval is a single trial, beginning with a
fixed robot configuration and presentation of a randomly-
selected target. Since the robot’s configuration at the begin-
ning of each control interval is constant, the state x=[tI t2]T
consists solely of the 2-dimensional coordinates of the
target. The controller com~utes a 4-dimensional control
vector uf[T’la F2a Fld F2d]t, consisting of the acceleration
and deceleration torques for each of the two joints. (The
control vector could as easily have defined the electrical
input signal to the joint actuators.) The acceleration torques
are applied to their respective joints for the first half of the
control interval (0.5 see), and the deceleration torques ,are
applied during the second half of the interval. The index of
performance is computed at the end of the control interval.
This value is used by the active CAE to adjust the direction
of search.

(trt

Figure 2. Initial robot configuration and sample target.



Since the control interval coincides with the length of a
trial, control during each trial is open-loop, or "blind".
During on-line training, the controller constructs a lookup-
table containing suboptimal open-loop torque prof’fles for
reaching any target.

The system model consists initially of a single CAE,
whose disk-shaped region is centered in the state space. Its
control vector has been optimized for a target at the center
of state space, ,and the region radius is correspondingly very
sm,’dl. (The optimization is accomplished by waining the
initial CAE with a series of trinis whose targets are fixed at
this location.)

3.1 Simulation Results

Figure 3 shows the CAE regions existing after 10, 100,
I000, and 10,000 trials. When a CAE ci has a relatively
large region ri, the likelyhood of a (randomly-selected) state
x falling in ri is correspondingly large. Therefore, ci is acti-
vated fa’equently during on-line operation, and converges
quickly to a control vector ui satisfying its accuracy
threshold. Thereupon ri contracts. As training progresses the
average size of the individual CAEs causes them to be acti-
vated rarely, and le,’u’ning slows.

The size of a region is inversely related to the accuracy
of the control action of its associated CAE. Since states are
selected uniformly over state space, the variation in size of

(a)

regions after 10,000 Irials is related primarily to the diffi-
culty of optimization in some areas of state space. There
also is bias toward greater accuracy at the center of state
space due to the influence of the initial CAE, and a bias
toward lower accuracy al the edges of state space where
some regions overlap the boundary.

After 1O,000 trials, the controller succeeds in placing
the end-effector on any target with little error. Since energy
and power usage axe also included in the index of perfor-
mance, the robot’s motion is smooth and efficient. At this
point, learning may cease. Alternately, the CAEs may
remain active during on-line use of the robot to enable
continually-improving performance.

After 10,000 trials, the computer memory requirement
for this application is about 893 kb (each CAE requires
roughly 450 bytes). This includes the lookup-table of subop-
timal control actions (the system model) as well as ~m for
the individual CAE search processes. If learning continues
during on-line use, the number of CAEs will increase and
memory requirements will continue to grow.

3.1.1 Comparison with Fixed Partition

To compare the learning rate using CAEs versus that using a
fixed partition of state space, another experiment is
conducted. Each adaptive element is initinliTod with the
control action which is optimum at the center of state space;

(b)

(c) (d)

Figure 3. CAE regions after (a) 10 trials, (b) 100 trials, (c) 1000 trials, (d) 10,000 

45



Conwactible regions Fixed region size

Trial Number of Average Number of
number elements Average IP region size elements Average IP Region size

I0 6 580.7 95.08 10 694.6 5

I00 21 441.2 42.52 100 687.4 5

I000 174 243.0 22.70 881 795.2 5

IOO0(3 2002 71.3 5.25 4025 611.3 5

I00000 10852 41.4 1.78 6390 168.3 5

Table 1. Partition statistics comparing CAE approach versus fixed regions.

i.e., the same value which initialized the original experi-
ment. The radius of each corresponding state space region is
fixed to the average radius existing after the original 10,000
trials (5 units). The same 10,000 trials are presented again.
As before, adaptive elements are generated whenever a state
falls outside of all existing regions. However, once state
space is fully blanketed with regions, the partition remains
fixed. (The same performance is achieved if this partition is
fixed before training begins.)

Table 1 compares the results with those obtained
using the CAE approach. Following 10,000 uials, the
number of fixed regions is 4025, indicating that the average
adaptive element has only been in operation during 2.5
control intervals. Over the course of 100,000 trials the
average index of performance of the adaptive elements
begins to improve. In contrast, the CAE approach permits
learning to begin immediately, and obtains superior perfor-
mance after only 10,000 trials.

4 Conclusion

In cases where the system parameters are changing
gradually with time, time may itself be included in the state
vector. The effect is to make the distance from the current
state to "old" CAE regions greater than the distance to
newly-created CAEs, so that the controller can better track
time-varying dynamics. To conserve memory, very old
CAEs are purged, or"forgotten".

Further improvements in efficiency can be obtained
where the overall control problem can be decomposed hier-
archically, such that the state spaces relevant to each
subproblem have smaller dimensionatity than the main state
space. Optimization in each of the respective state spaces
must be coordinated carefully [Gonzalez, 1989]. This
approach exploits the sharing of subproblems among prob-
lems, and encourages automatic composition of models in
order to model new systems.

While high-level tasks generally require models which
more closely represent the environment, these models them-
selves may be fine-tuned empirically through a meta-
learning process based on lookup-table models.

The benefits and limitations of this approach for low-level
control are apparent from the simulation results. A lengthy
training period and large computer memory is required to
construct a useful system model, particularly where the state
space dimensionality is high. It may be necessary to train
the controller off-line using a simulation of the system.

Lookup tables using fixed partitions suffer from
lengthy training periods as well. The simulation results
verify that the CAE approach achieves greater accuracy with
a given training period. The CAE approach is flexible, since
the resolution of the partition need not be fixed beforehand
and may vary throughout state space. The system model is
never "complete", but improves continually during on-fine
operation.

Efficiency may be improved by utilizing a higher-
order (non-constanO approximation to the optimum within
the region associated with each search process. Another
variation uses a linearized model of the system to help steer
search in the appropriate direction.

References

[Albus, 1975] J. S. Albus, "A New Approach to Manipu-
lator Control: The Cerebellar Model ArticuLation Controller
(CMAC)", Trans. ASME, pp. 220-227, 1975

[Gonzalez, 1989] R. E. Gonzalez, Learning by Progressive
Subdivision of State Space, doctoral dissertation, Univ. of
Pennsylvania, 1989

[Rosen et al., 1992] B. Rosen: J. M. Goodwin; J. J. Vich~,
"Process Control with Adaptive Range Coding", Biol.
Cybern., V. 66, no. 4, Mar. 1992

[Saridis, 1979] G. N. Saridis, "Toward the Realization of
Intelligent Conm~ls", Proc. of the IEEE, V. 67, no. 8, p.
1122, August 1979

[Waltz and Fu, 1965] M. D. Waltz and K. S. Fu, "A Heur-
istic Approach to Reinforcement Learning Control
Systems", IEEE Trans. Automat. Contr., V. AC-10, pp.
390-398, 1965

46




