
Talking About the World:

Abstract

Models of the world can take many shapes. In this
paper, we will discuss how groups of autonomous
robots learn languages that can be used as a means
for modeling the environment.
The robots have already learned simple languages
for communication of task instructions. These lan-
guages are adaptable under changing situations; i.e.
once the robots learn a language, they are able to
learn new concepts and update old concepts. In this
prior work, reinforcement ]earning using a human
instructor provides the motivation for communica-
tion.
In current work, the world wiU be the motivation
for learning languages. Since the languages are
grounded in the world, they can be used to talk
about the world; in effect, the language is the means
the robots use to model the world. This paper will
explore the issues of learning to communicate solely
through environment motivation. Additionally, we
will discuss the possible uses of these languages for
interacting with the world.

1 Introduction
In a world model, aspects of the world observed by robots
are abstracted into concepts that they use to interact
with the world. In this work, the robots move about
the world and make attempts to talk to other robots.
Initially, the robot language is not specified; the robots
must agree upon a signalling protocol to be used as their
language. As they begin to agree upon a language, this
language wK1 reflect their views of the world. In the lan-
guage our small, vision-less robots develop, a wall and
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the back of a bookcase might be represented by the same
word. The robots will abstract concepts from the world
in a different way than humans with highly developed vi-
sion systems are able to. By examining the language the
robots develop, we will be able to learn more about how
the robots see the world and how languages for robots
differ from our own human languages.

We have chosen to use situated robots rather than
simulations since the world is its own best model. Our
belief is that if we were to do the work in simulation,
we would be building in biases that would influence the
language development. Therefore, we should use the real
world rather than create a "blocks world" of some kind.

We have developed a team of autonomous robots that
learn their own novel languages for inter-robot communi-
cation. The languages they develop are better suited to
the robots’ needs since programmers can not anticipate
every possible situation that the robots may encounter
in the world. Additionally, programmers will most likely
create signals for actions and world objects in s way that
seems natural to humans; these provided signals may not
be natural to either the robots or to the tasks they are
to perform. If the robots have the ability to develop and
adapt their own language, they will be able to handle
novel situations, deal with changing environments and
perhaps even perform their tasks more efficiently. (The
languages are adaptable by definition - once the robots
have the ability to learn, they can learn new concepts
and update existing ones.)

In our original work, we explicitly gave one of the
robots the task information; this robot acted as a
"leader." The leader learned to perform the activity
and communicated the task information to the other
members of the team. Initially, the signals used by the
leader were selected randomly. The other robots needed
to learn the proper responses to the leader’s signals.
We reinforced the team’s behavior based on its perfor-
mance as a unit using "task-based reinforcement;" i.e.,
we only gave positive feedback when all members of the
team were acting appropriately. Under this method, the
robots successfully developed languages for task commu-
nication and were able to adapt them when we changed
the commands’ meanings. This work is discussed in
[Yanco and Stein, 1993]; it is also summarized below as
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background for the current work.
Our initial work was inspired by Shewchuk’s Ph.D.

thesis [Shewchuk, 1991]. It addresses the design of ap-
propriate reinforcement learning algorithms to learn lan-
guages for internal representation as well as for commu-
nication. He implemented a simple simulation of a lan-
guage learning task similar to the basic experiment we
describe below (two robots, two language elements) as 
part of his symbolic test suite for reinforcement learning
algorithms. Work on the development of communication
between groups of autonomous agents has also been done
by [MacLennan, 1990] and [Werner and Dyer, 19901.
Their research addresses the problem of language learn-
ing with genetic algorithms. Language evolves over
many generations of the community. Within an indi-
vidual agent, however, language is fixed over its lifetime.
In all of these cases, implementation is limited to simu-
lation; only the work of Shewchuk addresses the problem
of task-based reinforcement as described below.

In the current development of the work, the human
is removed from the learning process. The robots have
much more autonomy in their environment; they need to
rely on the world and other robots to provide task infor-
mation and reinforcement. In the context of this world
motivation, we are exploring the development of context
dependent languages and compositional languages.

2 The robots
The robots used in this research are Sensor Robots
designed by Fred Martin at the Media Labora-
tory at the Massachusetts Institute of Technology
[Martin and Sargent, 1991]. Each robot is approxi-
mately 9"1 x 6"w x 4"h, with a single circuit board con-
taining most of the computational and sensory resources
of the robot.

The robots communicate between themselves using a
pair of radio transmitter and receiver boards similar to
those used in garage door openers. These boards can
send four bits of data at a time; for language sizes greater
than 16 words, the ~obots need to send sequences of four
hit packets.

The robots contain four (front and rear, left and right)
bump sensors, left and right shaft encoders, an incli-
nation sensor, photosensitive cells, a microphone, and
infra-red detectors and emitters. Additionally, each
robot has a speaker and a 16-character LCD, both used
primarily for debugging and monitoring of the robot’s
activity.

While the robots have many sensors, they ate limited
in their sensing capabilities. They are not able to dif-
ferentiate between many obstacles in their world as they
do not have vision. However, we believe that these lim-
itations can be used to our advantage since we’ll have a
chance to see the representations of the world that the
robots create and see how they differ from our models of
the world.

3 Description of initial work
The cooperative task of coordinated movement was se-
lected for the initial experiments. We have implemented

The initial state, so, consists of the integer variables Co,
no, zl, and nl, each initialized to 0.

u(s,a,~.) = if a ---- 0 then beg~a
z0 :-- le0 -~- I"

no := no "t- 1
end else begin

Zl :-" Zl -{- r
nl := nl + 1

end

~o’t;’a.--n 0
else

retuz~t 1

where

+ + )( ;) :in g" 4n~b(~,,~) 

and za/2 > O.

Figure 1: Kaclbling’s interval estimation algo-
rithm [Kaclbling, 1990, Figure 21].

this task with troupes with two and three members and
with a variable number of vocabulary elements on robots
and in simulation. The simulator was used to gather
data for the three agent experiments and for the larger
vocabulary experiments with two agents. Because we
were particularly interested in the development of lan-
guage, we assumed that the followers do not have access
to the task specification (i.e. the environmental cues)
and must rely completely on the communication signals
emitted by the leader. In future experiments, we expect
to allow the follower robot(s) to use some environmental
input to modulate the communication signals from the
troupe leader as described in the later section on context
dependent languages.

Since this is a cooperative task, successful performance
depends on the actions of the troupe as a whole. En-
vironmental reinforcement is therefore positive only if
all agents perform the appropriate actions; this is called
task-based reinforcement. Since the followers cannot cor-
rectly interpret the environmental cues, this performance
can be achieved reliably only when the leader and fol-
lower robots mutually agree on the development and in-
terpretation of a private communication protocol.

Thus, the learning tasks are as follows:

¯ For the leader robot, the interpretation of the environ-
mentally supplied signal, the execution of an appro-
priate action, and the transmission of an appropriate
signal to the follower robot.

¯ For the follower robots, the execution of an appropri-
ate action based on the signal received from the leader
robot.

53



The "appropriateness" of an action is determined by
the environmentally supplied signal. The "appropriate-
ness" of the leader robot’s signal, however, is constrained
not by the environment but by the leader and follower
robot’s adapted internal state. That is, the signal is
appropriate if and only if the follower robot takes the
(environmentally constrained) appropriate action when
that signal is received.

In our experiments, the environment is represented
by a human "instructor" who issues one of a number
of signals to indicate the desired action. Currently, the
number of signals is also the size of the language. The
leader robot performs an action and also signals the fol-
lower robot. Upon receipt of the leader’s signal, the
follower robot selects and performs an action. If both
robots have performed correctly, positive reinforcement
(+) is issued. Likewise, if either robot performs incor-
rectly, negative reinforcement (-) is issued. Based 
this environmental feedback, the robots learn to select
appropriate actions and communication signals.

Both the action selection and the signal selection
are learned using standard reinforcement learning tech-
niques. (See, e.g., [Kaelbllng, 1990] or [Sutton, 1992] for
overviews of reinforcement learning.) The particular al-
gorithm that we use is adapted from Kaelbling’s interval
estimation method [1990]. Interval estimation is a rela-
tively simple form of reinforcement: A table of inputs ×
actions is maintained. Each time an input is received,
the expected "best" action is taken and the counter for
that input/action pair is incremented. If positive re-
inforcement is received, a second counter for that in-
put/action pair is also incremented. The "best" action
given some input is selected by an optimization function.
If no one particular action is the "best", an action is se-
lected randomly. The algorithm for interval estimation
is given in figure 1.

In our initial experiments, we allow each of the robots
two possible actions. At each iteration, each robot
chooses either go straight or spin. Further, the communi-
cation protocol contains only two vocabulary elements--
high and low--so that the learning problem remains
tractable. The leader robot must thus learn to select
one of four possible action/communication pairs; the fol-
lower robot must learn to associate each of the vocab-
nlary items with one of its two possible actions. Con-
vergence on the robots is easily verified by testing each
environmental input; if all behaviors are as expected, the
protocol will not change further without environmental
adaptation.

4 Results of initial work
~.1 Developing a Shared Language
The robots are able to learn both synchronous action--
both performing the same action in the same interval--
and divergent action---e.g., leader spins, follower goes
straight. Convergence times typically range from five to
twenty iterations with a team two robots. A sample run
of the experiment is given in table 1. In this run, the
appropriate actions are for both robots to spin on input
OO and for both robots to go straight on input TT. The

robots converge on a mutually agreeable language - a low
signal means that the follower should spin, while a high
signal means to go atraight--after thirteen iterations.

We have also run the experiment using team of three
robots. Using three robots, a two element language typ-
ically converges after an average of 27 iterations; the
range is between 10 and 80 iterations. Larger language
sizes have also been tested; as the language size increases,
the learning time increases exponentially. Results are
discussed in [Yanco and Stein, 1993].

~.~ Adaptability of language
Once the robots converge on a particular dialect, they
continue to receive positive reinforcement as long as the
environmental constraints do not change. If circum-
stances change, however, the robots may find that their
previously successful actions no longer earn them posi-
tive feedback. For example, after the run in figure 1, we
might change the "appropriateness" of the robots’ ac-
tions by giving positive reinforcement to leader spin, fol-
lower go straight on TT. Under such circumstances, the
robots can adapt their behaviormand, when necessary,
their communication protoeolmto the changing environ-
ment. Convergence times for unlearning portions of the
old task and relearning the newly appropriate behavior
range from roughly comparable to those for the initial
learning task to roughly double the time, depending on
the difficulty of the new task, the differences between the
old and the new, and how firmly the previous behavior
is entrenched.

5 Theory of current work

For our current work, we want the robots to determine
their actions solely on the basis of their interactions with
the real world as opposed to relying on a human instruc-
tor to provide task information and reinforcement. In
this scenario, the language requirements are completely
driven by the environment. Our hope is that the envi-
ronment will be able to replace the human in the learning
process.

5.1 Contezt dependent language
The next step in the robots’ language development is the
creation of a context dependent language. In a context
dependent language, words can have different meanings
depending on the situation in which they are used.

Context is provided by sensor readings on the robots.
Different areas in the world have various characteristics
that the robots are able to detect with their sensors. The
robots have sensors that detect light levels, the presence
of objects, heat levels and infrared signals. The sensor
values are read into an array that the robots are able to
access.

In this scenario, the robots need to map signals (or
words) to actions (or meanings for the words). To moti-
vate the robots to create multiple mappings from a word
to meanings, the language size is restricted; i.e. there are
not enough signals for the robots to create a one-to-one
mapping between words and meanings.
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I App op i.toll Le,do IFo"o-° .llR.in o com°otaction action I signal action

TT spin low spin m

. ©© spin low straight m

. TT straight high spin

. ©© straight high straight

. spin low spin +

.
©©

straight high spin m

.
TT

spin Jow spin +
. ©©

©© spin Jow spin +
. spin low spin +
.

©©
10. TT spin lOW spin m

11. TT straight high straight +
12. TT straight high straight +
13. ©© spin low spin +

Table 1: A sample run. The desired behavior is both spin on input ©©, both go straight on input TT, After thirteen
iterations, convergence is reached.

The robots can learn a command such as "do X,"
where the meaning of X is directly mapped to the sensor
readings. This is analogous to a world where animals
eat where there is food, gather objects where they are
present and avoid preditors that they detect. Directions
for movement could also have context dependent mean-
ings. For example, when in the bright area, the robot
moves to the dark area; after being in the dark area, the
robot should move to the warm area.

Another area of context dependency that will be ex-
plored as the work progresses will be the ability of words
to take context from the sentences in which they are em-
bedded. This should tie in to our development of com-
positional language.

5.~ Compositional language
The space of possible actions and signals in the initial
work was intentionally kept very small. In the reinforce-
ment algorithm, two variables must be kept for each pos-
sible action on each possible input. Thus, the required
variables grow exponentially with each additional action
added. In a simulation, memory and time may not mat-
tez; however, this is a real issue for autonomous robots
with limited memory that we want to act in real-time.

Our current goal is to have the robots develop a com-
positional language. In a compositional language, there
are words and relationships between words. For exam-
ple, the robots may learn a word for "go straight" and
modifiers such as "quickly" and "slowly". The advan-
tage of a compositional language is that the robots need
only learn each concept once, rather than relearn it every
time it reappears in a new sentence. This is similar to
English; we understand words and how they fit together
and need not relearn everything when presented with a
new sentence.

The reuse of concepts on robots will save both learning
time and memory. If the robots had to build a reinforce-
ment table for each new sentence, they would soon run

out of memory. However, if the robots learn the words
separately first, much less memory is required to learn
composed sentences. Also, the amount of time necessary
to learn the composed utterance should be much smaller
than the the time required to learn the meaning of the
whole utterance without any clues to the meaning of the
parts.

6 Conclusion

The robots have shown that they can develop simple lan-
guages in supervised situations. These learned languages
are adaptable, allowing the robots to respond to novel
or changing situations.

Current work is exploring the development of lan-
guages that are dependent upon the world for motivation
and reinforcement instead of a human instructor. The
developed languages will allow us to examine how the
robots abstract information about their environments
into a world model. Initially, the robots will make many
communication errors; their errors will be corrected as
they learn in the world. Since the robots’ languages will
improve with feedback from their environment, they will
in theory get better at their tasks as they continue to
explore the world. Additionally, the languages allow the
robots to talk about the real world without needing a
static world model, so the robots will be able to adapt
to changing environments.
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