
Combining Experience with Quantitative Models

John J. Grefenstette
Connie Loggia Ramsey

Navy Center for Applied Research in AI
Naval Research Laboratory

Code 5514
Washington, DC 20375-5337

Abstract
This is a progress report on our efforts to design intelligent
robots for complex environments. The sort of applications
we have in mind include senlry robots, autonomous
delivery vehicles, undersea surveillance vehicles, and
automated warehouse robots. We are investigating the
issues relating to machine learning, using multiple mobile
robots to perform tasks such as playing hide-and-seek, tag,
or competing to find hidden objects. We propose that the
knowledge acquisition task for autonomous robots be
viewed as a cooperative effort between the robot designers
and the robot itself. The robot should have access to the
best model of its world that the designer can reasonably
provide. On the other hand, some aspects of the environ-
mcnt will be unknown in advance. For such aspects, the
robot itself is in the best position to acquire the knowledge
of what to expect in its world. We have implemented these
ideas in an arrangement we call case-based anytime learn-
ing. This system starts with a parameterized model of its
world and then learns a set of specific models that
correspond to the environmental cases it actually
encounters. The system uses genetic algorithms to learn
high-performance reactive strategies for each environmen-
tal model.

1 Introduction
This is a progress report on our efforts to design intelligent
robots for complex environments. The sort of applications
we have in mind include seatry robots, autonomous
delivery vehicles, undersea surveillance vehicles, and
automated warehouse robots. We are investigating the
issues relating to machine learning, using multiple mobile
robots to perform tasks such as playing hide-and-seek, lag,
or competing to find hidden objects.

An intelligent robot will need extensive knowledge to
interact effectively with its external environment. This
challenge represents an important opportunity for machine
learning. A key issue is not necessarily how complex the
environment is, but how easy it is to provide the robot with
the knowledge it needs, given the available knowledge we

have. Several previous studies have explored different
methods for automating knowledge acquisition for intelli-
gent robots, each approach typically depending on different
assumptions about what is already known about the task
environment. If the robot’s task environment is well under-
stood, it may be most et~ient to depend largely on a pre-
programmed model of the environment, and to use learning
to improve efficiency and reactivity (Laird et al., 1991). 
the effects of the robot’s actions can not be easily predicted
but there are only a few important state variables that affect
the robot’s decisions, the robot might use an internal model
to accelerate its learning of state-action mappings (Sutton,
1990). If the environment is assumed to exhibit perpetual
novelty, it might be useful to enable the robot to learn a
wide variety of cognitive sUuctures based on low-level per-
ceptual stimuli (Booker, 1988). We believe that in practical
cases, there will be a mix of the above cases. Some aspects
of the robot’s world will be accurately known in advance,
and some aspects can only be learned through the experi-
ence of the robot.

We propose that the knowledge acquisition task for auto-
nomous robots be viewed as a cooperative effort between
the robot designers and the robot itself. Some aspects of the
environment will be known in great detail to the designer,
for example, the size and weight of the robot, the charac-
teristics of its sensors and eff~ctors, and at least some of the
physics of the task environment. Our first principle guiding
the cooperative knowledge acquisition effort is:

1. The robot needs all the help it can get.

That is, the robot should have access to the best model of its
world that the designer can reasonably provide. This is
likely to include a quantitative simulation model of the
robot and its environment. On the other hand, some aspects
of the environment will be unknown in advance. These
aspects could include such things as the frictional charac-
teristics of the floor, the reflective atuibutes of the wall sur-
faces, the location of objects and obstacles, and the speed
and maneuverability of the other agents in the environment.
For such aspects, the robot itself is in the best position to

57

From: AAAI Technical Report WS-93-06. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



acquire the knowledge of what to expect in its world. This
observation leads to our second principle:

2. The robot should use its experience to fill
in the missing aspects of its world model.

Again, this should be a cooperative effort. The designer’s
responsibility should include identifying the uncertain
aspects of the environment, supplying plausible ranges of
values, and making sure that the initial model provided to
the robot u~ats these aspects as parameters that can be
changed as necessary to reflect the actual environment. The
robot can then modify its world model based on its observa-
tion of the actual environment. We have put these princi-
ples into practice in an arrangement we call anytime learn-
ing (Orefenstette and Ramsey, 1992; Ramsey and Grefen-
stette, 1993).

2 Anytime Learning
Anytime learning is a method for continuous learning in
changing environments. We call the approach anytime
learning to emphasize its relationship to recent work on
anytime planning and scheduling (Dean and Boddy, 1988;
Zweben, Deale and Gargan, 1990). The basic characteris-
tics of anytime algorithms are: (1) the algorithm can 
suspended and resumed with negligible overhead, (2) the
algorithm can be terminated at any time and will return
some answer, and (3) the answers returned improve over
time. However, our use of the term anytime learning is
meant to denote a particular way of integrating execution
and learning. The basic idea is to integrate two continu-
ously running modules: an execution module and a learn.
ing module (see Figure 1). The agent’s learning module
contains a simulation model with parameterized aspects of
the domain. It continuously tests new strategies against the
simulation model to develop improved strategies, and
updates the knowledge base used by the agent (in the exe-
cution system) on the basis of the best available results.
The execution module controls the agent’s interaction with
the environment, and includes a monitor that can detect
changes in the environment, and dynamically modify the
parameter ranges of the simulation model (used by the
learning module) to reflect these changes. When the simu-
lation model is modified, the learning process is restarted on
the modified model. The learning system is assumed to
opexate indefinitely, and the execution system uses the
results of learning as they become available. In short, this
approach uses an existing simulation model as a base on
which strategies are learned, and updates the parameters of
the simulation model as new information is observed in the
external environment in order to improve long-term perfor-
malice.

We are still in the process of elaborating the anytime
learning model. One aspect concerns the criteria for decid-
ing when the external environment has changed. Currently,
the monitor compares measurable aspects of the environ-
ment with the parameters provided by the simulation

Figure 1. Anytime Learning System

design. In addition, the monitor might also detect
differences between the expected and actual performance of
the current strategy in the environment.1 For example, if the
performance level degrades in the environment, that is a
sign that the current strategy is no longer applicable. If the
performance of the current strategy improves unexpectedly,
it may indicate that the environment has changed, and that
another strategy may perform even better.

3 Case-Based Initialization of Genetic
Algorithms
While this approach could be used merely to fill in particu-
lar values for parameters that are initially unknown, it is
especially useful in changing environments. Each observed
set of values for the parameters can be treated as an
environmental case. The learning system can store stra-
tegies for different cases, indexed by the environmental
parameters that characterize that case. When the environ-
ment changes, the set of previous cases can be searched for
similar cases, and the corresponding best strategies can be
used as a starting point for the new case.

Our particular instantiation of anytime learning uses a
learning system called SAMUEL (Cobb and Grefenstette,
1991; Gordon, 1991: Grefenstette, 1991: Grefenstette,
Ramsey and Schultz, 1990; Schuitz, 1991). SAMUEL is 
system for learning reactive strategies expressed as sym-
boric condition-action rules, given a simulation model of
the environment. It uses a modified genetic algorithm and
reinforcement learning to generate increasingly competent
strategies. SAMUEL has successfully learned strategies for
a number of multi-agent tasks in (simulated) static environ-
merits, including evading attackers, tracking other agents at
a distance, and dogfighting. While the basic ideas of any-
time learning could be applied using a number of other
learning methods, especially other reinforcement learning
methods, SAMUEL has some important advantages for this
approach. In particular, SAMUEL can learn rapidly from

s Hart, Anderson and Cohm (1990) discuss related issues concerning

the design of planners that monitor differences betweat expected and

actual progress of a plan.

58



partially correct strategies and with limited fidelity simula-
tion models (Schultz and Grefenstette, 1990; Ramsey,
Schultz & Grefenstette, 1990). More importantly for this
discussion, the genetic algorithms provide an effective
mechanism for modifying previously learned cases. When
an environmental change is detected, the genetic algorithm
is restarted with a new initial population. This initial popu-
lation can be "seeded" with the best strategies found for
previous similar cases. We call this case-based initializa-
tion of the genetic algorithm. Our studies have shown that
by using good strategies from several different past cases as
well as exploratory strategies, default strategies and
members of the previous population, the genetic algorithm
can respond effectively to environmental changes, and can
also recover gracefully from spurious false alarms (i.e.,
when the monitor mistakenly reports that the environment
has changed).

A case-based anytime learning system can be viewed as
one that starts with an underspecified model of its world
(the original parameterized quantitative model), and then
learns, on the basis of experience, a set of fully specified
models that correspond to the environmental cases it actu-
ally encounters. The power of this approach derives from
the cooperative effort between designer and robot. The
designer provides a rich sets of models that can be used for
learning, and the robot selects the appropriate models from
that (possibly infinite) set of models. Each partner makes 
significant contribution to the knowledge acquisition pro-
cess.

4 Current Results
Preliminary experiments have shown the effectiveness of
anytime learning in a changing environment (Grefenstette
and Ramsey, 1992; Ramsey and Grefenstette, 1993). The
task used in these experiments was a cat-and-mouse game
in which one robot had to track another without being
detected. The changing environmental parameters included
the speed distribution of the target agent and the maneuver-
ability of the target agent, as well as environmental vari-
ables that were in fact irrelevant to the performance of the
task. The most promising aspect of these results is that,
within each time period (epoch) after an environmental
change, the case-based anytime learning system con-
sistently showed a much more rapid improvement in the
performance of the execution system than a baseline learn-
ing system (with its monitor disabled). Case-based initiali-
zation allows the system to automatically bias the search of
the genetic algorithm toward relevant areas of the search
space. More recent experiments show that the longer the
epochs last and the longer the system runs and gathers a
base of experiences of different environmental cases, the
greater the expected benefit of case-based anytime learning
is.

5 Future Plans
So far we have tested the anytime learning approach on
simulated environments only. We have recently acquired
two mobile robots from Nomadic Technologies, Inc. The
robots are equipped with several sensor packages, including
contact sensors, infrared, sonar, and structur~ light range-
finders. Our experiments will involve the same kind of
cat-and-mouse tasks ~bed above. A significant feature
of the Nomadic robots is that they come equipped with a
complete simulation model, allowing the designer to test
control strategies in simulation before testing on the real
robot. Our approach calls for putting these simulations to
work as the learning test bed for the robots, exactly as
described above. We will soon be able to report our initial
findings on the physical robots.

The general approach described here is not limited to
mobile robots, but could be used in a variety of other set-
tings. There are many simulation models used for training
human operators, for example, flight simulators, air traffg
control simulators, and power plant simulators. Many
aspects of such simulators, such as weather conditions, ter-
rain characteristics, even the skill levels of the computer
generated agents, are usually parameterized to allow a
range of training experiences or to model probabilistic
events. Besides training simulators, there are simulators
that have been used to evaluate intelligent control systems
prior to deployment in an operational setting (Fogarty,
1989). Both training simulators and testing simulators usu-
ally include an evaluation mechanism for the decisions
made during the simulation run. These evaluation mechan-
isms provide feedback that can be used by autonomous
learning agents. The approach described here could be
used in many of these settings, allowing an automated
power plant, for example, to learn from its own simulation
model, and to adjust that model to reflect changing environ-
mental conditions. We expect that the combination of
experience and flexible quantitative models can reduce the
overall knowledge acquisition effort required to produce
effective autonomous systems.

References

Booker, L. B. (1988). Classifier systems that learn internal
world models. Machine Learning 3(3), 161-192.

Cobb, H. G. and J. J. Grefenstette (1991). Learning the per-
sistence of actions in reactive conu’ol rules. Proceedings
of the Eighth International Machine Learning Workshop
(pp. 293-297). Evanston, IL: Morgan Kaufmann.

Dean, T. and M. Boddy (1988). An analysis of time-
dependent planning. Proceedings of the Seventh
National Conference on A/(AAA/-88) (pp. 49-54). 
Paul, MN: Morgan Kaufmann.

Fogarty, T. (1989). The machine learning of rules for
combustion control in multiple bun~r installations.

59



Proceedings of the Fifth IEEE Conference on A! Applica.
t/ons (pp. 215-221).

Gordon, D. F. (1991). An enhancer for reactive plans.
Proceedings of the Eighth International Machine Learn.
ing Workshop (pp 505-508). Evanston, IL: Morgan Kauf-
mann.

Grefenstette, J. J. (1991). Lamarckian learning in multi-
agent environments. Proceedings of the Fourth Interna-
tional Conference of Genetic Algorithms (pp 303-310).
San Diego, CA: Morgan Kaufmann.

Grefenstette, J. J. and C. L. Ramsey (1992). An approach 
anytime learning. Proceedings of the Ninth International
Conference on Machine Learning (pp 189-195), D. Slee-
man and P. Edwards (eds.), San Mateo, CA: Morgan
Kaufmann.

Grefenstette, J. J., C. L. Ramsey and A. C. Schultz (1990).
I.earning sequential decision rules using simulation
models and competition. Machine Learning 5(4), 355-
381.

Hart, D. M., S. Anderson and P. R. Cohen (1990).
Envelopes as a vehicle for improving the efficiency of
plan execution. Proceedings of a Workshop on Innova-
tive Approaches to Planning, Scheduling and Control
(pp. 71-76). San Diego: Morgan Kaufmann.

Laird, J. E., E. $. Yager, M. Hucka and C. M. Tuck (1991).
Robo-Soar: An integration of external interaction, plan-
ning, and learning using Soar. Robotics and Autonomous
Systems 8(1-2), 113-129.

Ramsey, C. L. and J. J. Grefenstette (1993). Case-based ini-
tialization of genetic algorithms. To appear in the
Proceedings of the Fifth International Conference on
Genetic Algorithms.

Ramsey, C. L., A. C. Schultz and J. J. Grefenstette (1990).
Simulation-assisted learning by competition: Effects of
noise differences between training model and target
environment. Proceedings of the Seventh International
Conference on Machine Learning (pp 211-215). Austin,
TX: Morgan Kaufmann.

Schultz, A. C. (1991). Using a genetic algorithm to learn
strategies for colfision avoidance and local navigation.
Seventh International Symposium on Unmanned, Unteth-
ered, Submersible Technology (pp 213-225). Durham,
NH.

Schultz, A. C. and J. J. Grefenstette (1990). Improving tac-
tical plans with genetic algorithms. Proceedings oflEEE
Conference on Tools for AI 90 (pp 328-334). Washing-
ton, DC: n~.~E.

Sutton, R. S. (1990). Integrated architectures for learning,
planning, and reacting based on approximating dynamic
programming. Proceedings of the Seventh International
Conference on Machine Learning (ML-90), Porter, B. W.
and R. J. Mooney, eds., (pp 216-224). Austin, TX: Mor-
gan Kaufmann,

Zweben, M., M. Deale and R. Gargan (1990). Anytime
re.scheduling. Proceedings of a Workshop on Innovative
Approaches to Planning, Scheduling and Control (.pp.
251-259). San Diego: Morgan Kaufmann.

6O




