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Abstract

Autonomous vehicles will require both projective planning
and reactive components in order to perform robustly.
Projective components are needed for long-term planning
and replanning where explicit reasoning about future states
is required. Reactive components allow the system to
always have some action available in real-time, and them-
selves can exhibit robust behavior, but lack the ability to
explicitly reason about future states over a long time
period. This work addresses the problem of learning reac-
tive components (normative action models) for auto-
nomous vehicles from simulation models. Two main
thrusts of our current work are described here. First, we
wish to show that behaviors learned from simulation are
useful in the actual physical system operating in the real
world. Second, in order to scale the technique, we demon-
strate how behaviors can be built up by first learning lower
level behaviors, and then fixing these to use as base corn-
portents of higher-level behaviors.

1. Introduction
Creating reactive behaviors is generally diffgulL requiring
the acquisition of knowledge from domain experts, a prob-
lem referred to as the knowledge acquisition bottleneck.
SAMUEL is a system that learns reactive behaviors for auto-
nomous agents (Grefenstette, Ramsey, and Schultz, 1990).
SAMUEL learns these behaviors under simulation, automat-
ing the process of creating stimulus-response rules and
therefore reducing the bottleneck. The learning algorithm
was designed to learn useful behaviors from simulations of
limited fidelity. The motivation for learning action models
from simulation is pragmatic; learning from real systems
can be expensive in terms of operating costs, time and in
the possibility of loss of or damage to the vehicle.

One important assumption of this work is that, for many
interesting tasks, behaviors learned under simulation can
be successfully applied to real world environments. Previ-
ously, we demouslrated that behaviors learned in one
simulation model would work in a different, target simula-
tion model where known differences between the learning
simulation and the target simulation were created. In this
work, we show behaviors learned under simulation con-
trolling an actual physical system.

Another important assumption is that these behaviors
can be built up into more complex behaviors. While we
have shown the ease of learning many behaviors for simu-
lated autonomous agents (Grefenstette, Ramscy, and
Schultz, 1990; Schultz, 1991; Schultz and Grefenstette,
1992), it is hard to learn all of the autonomous vehicle’s
behaviors at one time. What we propose is to incremen-
tally build up complexity by learning more basic behavior
models and then assuming and using these models as we
learn higher level behaviors. This work focuses on norma-
tive action models, meaning that the system learns the
most desirable actions associated with classes of situa-
tions. This can be contrasted with descriptive action
models in which the system learns a description of state
transitions associated with various actions.

The next section will describe the simulation and physi-
cal robots being used. Section 3 will describe the overall
task that is being learned. Section 4 describes the current
work in using simulation-learned behaviors on the actual
robots. The work on building on existing behaviors in
described in Section 5. Section 6 gives concluding
remarks.

2. Description of Robots and Simulation
The two robots are each Nomadic Technologies, Inc.’s
Nomad 200. The robot consists of a mobile base and a
turreL The base is a three servo, three wheel synchronous
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drive system with zero gyro-radius. That is, the three
wheels rotate and translate together. One motor controls
the translation of the three wheels, another motor controls
the rotation of the wheels, and a third motor controls the
rotation of the turret. The base contains two rings of tac-
tile sensors. Each ring contains 10 touch sensors and the
rings are rotationally offset from each other to allow better
resolution. The turret contains three sensor systems: a
sonar system, an infrared system, and a su’uctured light
range finder.

The sonar system is composed of 16 Polaroid sonars
mounted in a ring around the turret. Each sonar has a
width of 22.5 degrees and an effective range from 17 to
250 inches. The firing order and firing rate of the sonar
cells is controllable. Also, individual sonar cells can be
deactivated.

The active infrared system is composed of 16 active
infrared sensors in a ring around the turret. Each is made
up of two infrared emitters and one detector and has a 22.5
degree width. The system makes measurements before and
during output from the emiuers and compares the results to
reduce the effect of ambient infrared radiation. Although
the infrared sensors detect reflective intensity, an internal
table auempts to correlate the intensity with distance,
yielding an infrared ranging system. The system has an
effective range of I to 24 inches.

The robot also has a structured light range finder (planar
range finder). The system uses a laser diode as its light
source and a CCD array camera for image generation and
has an operating range of 18 to 120 inches. This sensor
can produces an array of 60 range values.

Each robot uses a shared memory multiprocessor system.
The master processor is a 50 Megahertz 60386 processor.
The sensors are controlled by additional processors
(Motorola MC68HC1 IF1 at 16 megahertz). In addition,
the system uses a Motorola 68008/ASIC three axis motor
controller. Three 12 volt batteries supply power to the
robot, can which communicates back to a host computer
using radio modems.

The robots are supplied with a robot
control/communication server process, and associated pro-
gramming libraries for creating user control programs.
The robot can be controlled by using the supplied robot
control routines in a user process that can run on a host
computer. The user process then communicates with the
robot server process which handles the low level commun-
ication with the robot. The user program can also be com-
piled to run directly on the robot. The robots also come
with a medium fidelity simulation that can be used in place
of the actual robot with no changes to the user’s code.

In these experiments, the robot will be controlled from a
host computer over the radio modems. Learning will be
performed using the simulation, and results are tested on
the actual robot.

3. Description of Task to be Learned

At the highest level, the robot must learn a tracking task.
A target object wonders around the room. The robot must
learn to keep that object within a given distance radius
from itself. However, if the robot gets too close to the
object, then the robot fails the task. The robot will use the
planar light range finder to track the target object. The
robot must learn to control the rotational rate of the turret
to keep the target within its sensor range, and must deter-
mine the trajectory it wishes to follow for the next decision
cycle. This trajectory is expressed as the x, y coordinate
the robot wishes to go to during the next decision cycle.

In addition to learning to track an object, the environ-
ment contains obstacles that the robot must avoid as it per-
forms the tracking task. This requires that the robot also
learn a collision avoidance and local navigation behavior.
If the bumpers detect a collision, the robot falls at the
overall task. Here, the sonar and infrared sensors will be
used to navigate and avoid obstacles. The robot must learn
to control its translational and steering rates to avoid the
obstacles and to advance towards the goal location.

4. Using Simulation-Learned Behaviors in
Real World

Previously, we demonstrated that behaviors learned in
simulation would work in a target environment, even with
differences in noise between the learning environment and
the target environment (Schultz, Ramsey and Grefenstette,
1990) In that study, we created two simulations that
differed in only the aspects we were studying (noise and
variability of initial conditions in the environment), and
used them as the training and testing environments. How-
ever, many other differences tend to exist between simula-
tion models and the systems they model, usually due to
simplifying assumptions -- for example, diseretization of
the actual world in the model, differences in sensor
behavior, temporal differences, and environmental
differences.

This work extends our previous studies to actual physi-
cal devices, using laboratory robots to demonswate the
utility of learning reactive behaviors in a simulation model
of limited fidelity. Our simulation model differs from the
actual robots in several important aspects. In particular,
communication and processing time lags are not well-
modeled in the simulation, and certain types of noise in the
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real world are not captured in the simulation model. Also,
although the sensors in the simulation can model linear
noise, they do not model the full non-linearities that exist
on the real robot’s sensors.

There is a design tradeoff and human effort tradeoff
between creating a "perfect" simulation model, and the
quality of the learned knowledge. More time can be spent
designing a better simulation, but this in itself requires the
codification of domain knowledge in the simulation. In
essence you are building the action model into the simula-
tion. The result is easier learning with simpler learning
mechanisms. Conversely, you can put less effort into the
simulation model, and design learning systems that can
exploit this knowledge to create an internal action model
more immune to differences between the learning environ-
ment and the real world.

This work will attempt to show that despite many
differences between model and target, useful action models
can be learned in the form of reactive rules for controlling
the robot. The next section describes building up
behaviors. The behaviors will be learned in simulation,
but the performance of the systems will be measured on
the physical robot.

5. Building on Existing Behaviors

Although SAMUEL has been used to learn behaviors for
autonomous agents, as the overall complexity of the auto-
nomous agent increases, it is clear that a complete
behavioral model cannot be learned at one time. By care-
fully decomposing the task into component behaviors,
separate behaviors can be learned and composed back into
a complex system. Here, we start by learning basic needed
behaviors using appropriate low-level sensors. These
learned behaviors then become the action models for
higher level behaviors. In general, the lower level
behaviors use lower level sensors and control lower level
effectors. Higher level behaviors can then make use of the
lower level behaviors which abslract away the details of
those lower level sensors and effectors. In this study we
learn collision avoidance and navigation, and then wacking
behaviors to solve the task.

Reactive rules for the behavior of collision avoidance
and local navigation are first learned. The learned action
model maps active infrared sensor data and sonar sensor
data and internally integrated robot position and orienta-
tion data, plus a goal location for the robot into translation
and turning rates for the robot. During this task the goal
location, which is given to the robot as an x, y position, is
fixed. The robot’s starting location, as well as the number
and location of obstacles is varied for each lrial during

learning.

After this behavior is learned, the Uacking task is
learned. Here, we learn reactive rides that map higher
level sensors that indicate the location of the tracked
object into a goal location for the Iracking robot. The
robot uses the earlier learned behavior for collision
avoidance and local navigation to map the goal position of
the robot into actual velocity mode commands (Iransla-
tional and rotational rates). For this task, a planar light
range finder is used to detect the object being tracked.

At this level, the robot determines the location of the
uacked object using the planar range finder, and then using
this information, and its own integrated position and orien-
tation data, must produce a goal trajectory for itself. This
trajectory is expressed as a goal location for the current
decision cycle. This goal location is used by the collision
avoidance and navigation behavior as its goal location, as
described above.

Note that these two behaviors, navigation/colfision
avoidance and tracking, operate with dMl~¢rence rates of
decision cycles. The collision avoidance and navigation
behavior makes decisions for the robots steering and trans-
lational rates approximately two to four times a second.
The tracking behavior moves the goal location for the
robot and the controls the rate of rotation of the turret
approximately once every few seconds.

6. Conclusion
One assumption in this work is that it is possible to decom-
pose a complex system into more basic behaviors and that
these learned behaviors can then be recombiued into a use-
ful system. It is possible that the base behaviors are not
optimal given the additional tasks that are to be performed.
Future work will look at this question and on how to
retrain the system with all behaviors in place.

Another interesting area that has been examined by
many resea~hers is what to do when several behaviors try
to control the same effectors. This work does not address
that issue, although as we scale up, this will have to be
examined.
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