
Supporting mechatronic design via a
distributed network of intelligent agents

W. Birmingham, T. Dart, E. Durfee, A. Ward and M. Wellman
Electrical Engineering and Computer Science Department

Mechanical and Applied Mechanical Department
University of Michigan
Ann Arbor MI 48109

USA

1. Overview

Product development is often performed by functionally and geographically distributed groups
of people. In such an environment, there are many concerns that must be traded off against one
another before a product can be brought to market. An example of this tradeoff is high
performance versus low cost; a product with high performance generally costs more than a
product with low performance. When such competing objectives arise, as they usually do in any
product, then a solution must be negotiated among competing objectives.

Concurrent engineering (CE) is an approach to product development that integrates the overall
knowledge, resources and experience of a company as early as possible in the design cycle. The
goal of CE is to incorporate downstream objectives, such as manufacturing and sales, at the
same time that traditional concerns, such as power consumption, volume, and dollar cost, are
considered, thereby creating products with high quality and low cost, while meeting overall
customer expectations. The most important contribution of applying CE principles to the design
cycle is transforming a serial process to a parallel one. Such parallelism identifies design
conflicts early on, avoiding problems that arise in the serial approach. This, in turn, speeds
product development, while significantly reducing development costs.

National manufacturing networks (Pan, Tenenbaum 1991) have the potential to provide
tremendous improvement in the design and manufacturing process. In particular, these
networks will enable designers to quickly access information sources and design services.
Rather than being passive (Bowen, Bahler 1992a; Bowen, Bahler 1992b), we envision
networks with embedded intelligence, where agents on the network can coordinate actions to
actually create designs: this includes making design decisions, or advising human decision
makers.

The traditional design process can be characterized as point-by-point; a single design is created
in the space of all possible designs and is passed, in turn, to other groups (agents) for
modification. Each agent, in turn, changes the design to meet its objective creating another
point. The weakness of this approach is that the design process may never converge, as the

15

From: AAAI Technical Report WS-93-07. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

changes introduced by one agent may be undone by another, which cause the first agent to
change the design once again, and so forth, ad nauseam. It is the reduction of design time that
drives our current research. Current design processes, even though they may use concurrent-
engineering notions for improved communication, remain primarily serial. We illustrate this
point with an example.

In Figure 1, two sets of agents are collaborating on a simple design: a product-development
agent (PDA) and a reliability-assessment agent (RAA); the design for this example is shown
Figure 2. In this figure, a simple circuit that implements the functions processor and memory is
to be designed by selecting parts from a processor and memory catalog. The agents are
geographically and functionally distributed, and communicate through a blackboard where
changes made by one agent are immediately visible to other agents. A design is developed fast
by the PDA satisfying some set of constraints, and, when complete, is posted to the blackboard
where the RAA can evaluate it.

De, signl:
80186, CY2147
Power:. 3 Watts
Failure Rate: 5 fpmh

Design3:
8086, CY2147
Power: 3 Watts
Failure Rate: 5 fpmh

Part Catalogs:
CPU Power Failure Rate Sneed
8086 2 Watts 3 fpmh 8 MHz
80186 2 Watts 3 fpmh 16 MHz
80286 4 Watts 2 fpmh 32 MHz

Memory Power Failure Rate
CY2147 1 Watt 2 fpmh
CY2148 2 Watts 1 fpmh

fpmh: Failures per million hours

Design2:
80286, CY2147
Power. 5 Watts
Failure Rate: 4 fpmh

Figure 1: Sequential, Point by Point Design

Processor Memory

Figure 2: Processor/Memory Design

The PDA’s goal is to develop a design that consumes less than five watts of power. This agent

16

prefers designs with low power consumption and high processor speed. The initial design is
labeled Designl in Figure 1, and consists of the parts 80186 and CY2147. This is the design
that consumes the least amount of power, and since the 8086 and the 80186 consume equal
amounts of power, the 80186 is chosen because it is a faster processor than the 8086. The PDA
then posts the design to the blackboard.

The RAA notices that the failure rate of the design is unacceptably high. This agent changes the
design by replacing the 80186 with the 80286, since the 80286 has a lower failure rate, and then
posts the design. When the PDA sees the modified design, it notices that the power
consumption is too high, and so replaces the 80286 with the 8086, which consumes less
power, and posts the design. The RAA rejects the new design for the same reason that the
previous design was rejected. Passing the design back and forth in this manner will continue
until there are no more parts to try, or outside intervention of a higher authority, such as a
project leader, forces resolution.

¯The problem illustrated in this example is that each agent makes changes to the design that
satisfy the constraints and preferences from its perspective, without regard to the impact that its
decision will have on other agents. This results in needless iterations where a design with the
same characteristics is repeatedly generated. In this example, a design characterized by power
equal to three watts and failure rate of five failures per million hours that was developed by the
product-development agent is instantiated multiple times with different parts. With hundreds of
components, hundreds of constraints and many interested agents (marketing, finance, etc.), the
problem is compounded and results in substantial wasted effort. Figure 3 shows the space of
all possible designs for the example shown in Figure 1. In this figure, there are two designs
having the characteristics power = 3 watts and failure rate = 5 fpmh, two designs having the
characteristics power = 4 watts and failure rate = 4 fpmh, one design having the characteristics
power = 5 watts and failure rate = 4 fpmh, and one design having the characteristics power = 6
watts and failure rate = 3 fpmh. This representation is not very concise, as it requires a point
for each possible design. We have developed a much more abstract representation, which will
be introduced later.

O
O
¯ [¯ Multiple Points]

IIIIlll
IIIIIII

F~l~ ~te (fp~)

Re~e~nmtion: {(3, 6), O, 5), O, 4), ~, 4), (5, 3),

Figure 3: Space of All Possible Designs

As a first step towards developing an intelligent design network, we have proposed an
automated-configuration design service (ACDS) (Darr, Birmingham 1992) to support
construction and use of automated catalogs that can actively and concurrently assist in
configuration design, a common type of design. Configuration design is a good starting point,
because the task is well defined and of significant economic import, as a large number of

17

artifacts are developed from catalogs of components (Mittal, Frayman 1987). Catalogs may
based on current paper catalogs, or on parameterized models of currently uncataloged part
families. In time, we will include geometric features of custom parts, with their associated
functions and manufacturing processes.

In this paper, we present two methods for implementing ACDS. The first uses negotiation
among network agents to develop the design. This negotiation is based on eliminating constraint
violations. The second approach, called Walras (Wellman 1992), uses microeconomic
principles of market action to create a design. Both approaches provide similar services,
however, the Walrus has been only recently implemented. Thus, detailed comparison between
approaches is not yet possible because Walras has not yet been applied to concurrent design (or
implemented in the ACDS framework).

2. The Service

ACDS is a collection of loosely-coupled, autonomous agents that self-organize based on design
specifications. The agents coordinate their activities through a bidding process, eventually
choosing a final (set of) design(s). This section overviews the organization and operation
ACDS.

ACDS will provide the following services to users:

1. A language allowing users (or service companies acting for the users) to construct
precise, standardized descriptions of their products’ full range of characteristics.
With this capability, site-specific catalogs can be developed that represent the
particular components used by an individual company or engineering group within
a company. To protect proprietary information, access to agents can be controlled.

2. An associated language allowing system designers to precisely and quickly specify
the meehatronic systems they desire.

3. Algorithms operating on these descriptions to select near-optimal parts from the
catalogs, and to efficiently propagate selection decisions and constraints among
catalog agents.

2.1 Inputs and Outputs

Design specifications comprise the following:

Functions and interconnection: The designer def’mes functions through a schematic with
generic parts, and their logical and/or physical interconnections. In Figure 4 the
functions are motor and controller. Ports, defined in a data dictionary, establish
relationships among selected part attributes.

Feasibility statements: These describe the set of values associated with design attributes
(e.g., power, volume, etc.).

Preference statements: These describe characteristics the user would like the system to
have. An example is "pay $1 for every pound of weight saved", and prefer lower
weight designs to more reliable ones.

2.2 The Agents

Initially, there will three types of computation agents in ACDS: catalog, constraint and system.
The system agents interface the user to the network, translating the specifications and
broadcasting them to catalog agents. The system agents are also responsible for identifying a
complete design. A design is complete when all the functions are covered by a nearly optimal
selection of catalog parts. Some parts may cover more than one function, while other functions
require more than one part, and ACDS may therefore change the design "’configuration." Each
catalog agent represents a catalog of parts, and includes descriptions of the value sets for a
part’s attributes, as well as constraints relating the attribute values. A constraint agent is
associated with a particular constraint, such as design cost must be less than a user-specified
bound, and is used to monitor the evolving design.

Controller
reference
voltage output

vollage
feedback

voltage
voltage

Motor Wo~ght

voltage

back emf ~p~e

shaft
port

torque
speea

voltage

Figure 4: The functional input to ACDS.

2.3 Catalog and Part Models

ACDS catalog agents represent sets of physical parts. Catalogs are composed of part models,
plus information abstracted from the part models to describe the catalog as a whole. A part
model includes a set of attributes (e.g., access time), and statements about the set of values
associated with the attribute, for example, that a memory’s access time is somewhere in the
interval [100 120] nS. Each part is characterized by the function(s) that it implements and the
values that it has for some set of attributes. Figure 5 shows an example part catalog. In this
catalog, the cost of CPU1 can vary from $3 to $8, depending on the quantity sold. Similar
intervals are defined for the other attributes and parts.

Part Cost ($) Power (Watts)

CPUI [3 8] [12 30l
CPU2 [5 7] [I0 14]

Figure 5: Example Part Catalog

A utility value is assigned to each part in a catalog. This value is calculated using a weighted
utility (or cost function) provided by the designer. These values specify a total ordering on the
parts in a catalog. The part with the highest utility (or lowest cost function) value is the best
part. Figure 6 shows an example part catalog with utility values.

Catalog agents receive specifications from the system agent. They then identify "partial
solutions," subsets of their parts that may be desirable in the final design. They form abstract
descriptions of these sets, and supply them to constraint agents. These descriptions are used to

19

eliminate additional infeasible solutions in a form of network-consistency enforcement (Davis
1987; Mackworth 1977). When feasibility pruning is no longer effective, catalog agents bid a
new solution subspace. A bid is formed by selecting a subset of the parts in a catalog, and
making this subset the catalog agent’s "current catalog". By forming bids based on preferences
and information received from constraint agents, ACDS agents narrow the design space, while
allowing all agents to process messages concurrently. This process continues until a final design
results. An example of this narrowing process is given later.

Utility Function = 2/Cost + l/Power

Part Cost ($) Power (Watts) Utility
CPU1 [3 8] [12 301 [0.283 0.750]
CPU2 [5 71 [10 141 [0.357 0.500l

Figure 6: Example Part Catalog With Utilities

ACDS is intended to eventually support thousands of catalog agents distributed throughout the
world, where each agent will represent the product line of a manufacturer. As such, catalog
agents have the freedom to choose whether to participate in a design, so the catalog agents will
change from design to design.

2.4 Constraints

ACDS constraint agents maintain consistency throughout the network by enforcing design
constraints. The constraints are formed over part attributes (e.g., the sum of power
consumption of all parts < 15 W). Each constraint agent ensures that the evolving design space
conforms to the constraint it represents. A constraint agent monitors the bids produced by each
catalog agent, and provides information to the catalog agent regarding the violation status of the
constraint. This information is used by the catalog agents to form new bids.

An important element of concurrent engineering is considering downstream concerns (e.g.,
dependability, testability, manufacturability, and so forth) during the design process. Constraint
agents can represent such concerns, and thus impact the design process as it occurs. For
example, a constraint agent can monitor the failure rate (one measure of dependability), and
cause designs with unacceptable rates to be eliminated.

ACDS constraints are linear, additive, non-directional, and can be of any arity. Non-
directionality means that if a constraint is defined over n variables C(xl, Xn), then given n-1
variables, the ith variable can be inferred: xi - c’l(xl, xi-1, xi+l Xn).

Constraints originate from two sources. Non-part specific constraints, which are static, come
from the system agent. An example of this type of constraint is total power consumption:
~powereonsumed<6Watts. Part-specific constraints, which are dynamic (Mittal,
Falkenhainer 1987), come from catalog agents, since the system agent does not know which
catalog agents will participate in the design. An example of this type of constraint is the access
time for some CPU: access time = 2*clock speed - memory-access time.

A dynamic constraint has a predicate indicating when it is active. The value of the predicate for a
static constraint is always true. Dynamic constraints can be made active or inactive during the
design process, depending on the parts that are currently being considered. When inactive, a

20

constraint is not evaluated. This is useful when parts have different properties. For example,
different types of CPUs have different constraints for memory-access time. Only those parts
that are used to form a bid have their dynamic constraints activated.

In ACDS, all static constraints are created by the system agent when the network is established.
Dynamic constraints are created by the catalog agents that contain them. When a catalog agent
accepts an invitation to participate in a design it creates separate processes for each of its
dynamic constraints, thereby distributing the computational load.

2.5 Set-based Descriptions

We are interested in creating mechatronic (highly integrated mechanical and electrical systems).
Because these systems are composed of radically different types of components, representation
is a major concern. We have developed a representation scheme, called Labeled-Interval
Calculus or LIC (Ward, Lozano-Perez, Seering 1990), that captures the operating characteristics
of both mechanical and electrical devices. The LIC distinguishes between the statement that a
motor is restricted to speeds ONLY between 0 to 1800 RPM, and the statement that it will under
normal operating conditions take EVERY speed in that interval. With this representation we can
apply the same design algorithms regardless of the components involved.

Instead of reasoning over single points in the set of all possible designs, ACDS reasons over
design spaces, which are sets of points in the space of all possible designs. The ACDS design
space is represented as a set of intervals, where each interval corresponds to a design attribute
(Davis 1987; Ward, Lozano-Perez, Seering 1990). Each interval specifies the possible range
values for some attribute for all designs in the design space. Each catalog agent defines its
design space as a set of intervals lbr each attribute in its catalog. Each constraint agent defines
its design space as the set of intervals provided by catalogs having attributes that appear in its
constraint. Figure 7 shows the design space representation for the example in Figure 1. In this
representation, the set of all possible designs has been replaced by a set of intervals that
represents the region within which all possible designs must lie.

N
m

ttllltl
IIIIlll

l~lure~lle(~mh)

Re~e~nmtion: {13 51, [3 6])

Figure 7: Design-Space Representation

The design space representation provides three advantages over current schemes:

1) Precise descriptions of a broad range of mechanical and electronic components,
providing the basis for a degree of standardization not now possible.

21

2) Concurrent execution of the design process by many different agents.

3) Rapid exploration of vast design spaces by simultaneous reasoning about sets of
design possibilities.

2.6 Communication Issues

Because participating agents will be distant from each other, and might number in the
thousands, communication resources will be held at a premium. A fundamental challenge in
ACDS is to balance the benefits and costs of concurrent participation by many agents in the
design process. Concurrency has the potential for speeding the process, discovering novel
designs, and being resilient to partial failures in the network. It does, however, strain both
communication channels and computation resources as agents sift through massive amounts of
message traffic to find useful pieces of information. In fact, it could be argued that the
traditional point-by-point design approach has evolved not so much due to organizational
barriers among designers as to problems of information overload.

Our communication model is that agents should avoid information overload through judicious
message exchanges, and should expend computational resources in favor of communication
resources. As the network changes due to component choices, new communication paths must
be established to maintain network consistency. Problems, such as potential circularities in
constraints and synchronizing component bids to search the design space systematically, will
require new protocols that ensure progress toward a design while still promoting substantial
concurrency.

Scaling up to larger networks covering wider areas will pose research challenges ranging from
low-level encoding schemes that minimize numbers of bits transmitted, to high-level heuristic
knowledge that guides decisions about which agents to include in the design process and what
to demand of them. For example, given that different catalog agents might have common
components (the brands of components they carry might intersect, for example), heuristic
methods might prune the set of agents needed to ensure coverage of all relevant components.
While such heuristics may miss the best designs, they may lead to a better balance between the
cost of creating a design and that design’s end-use utility or performance. As an example, to
reduce message traffic and computation, a network might exclude a catalog agent which has a
poorer collection of parts than other catalog agents (its parts are subsumed by another), but has
better prices on the parts it does contain. If finding the best price is worth the additional effort,
then ACDS should not exclude this catalog, or should work initially with catalogs with the best
selection, and then after deciding on a design should open the bidding for each part to all
applicable catalogs (much like a person might go to a large car dealership to investigate the range
of models, and after deciding on a model will call other dealerships to find the best price).

3. Example

This section illustrates the operation of ACDS using a simple example. After the user has
entered the design, ACDS sends an invitation, containing the functions to implement and the
design specifications, to all of the catalogs currently on the network. Once all catalog agents
have accepted or declined the invitation to participate in the current design, the catalog agents
send their design spaces to the constraint agents so that infeasible parts can be removed.

After infeasible parts have been identified and removed, the catalog agents send their design
spaces to the constraint agents (this is called a bid) and the constraint agents evaluate the
intervals to determine if violations are present. If a constraint is violated, then the constraint
agent sends the amount of violation to each catalog agent. If a constraint is not violated, then

22

the constraint agent sends the amount that the constraint is satisfied by (called slack), to each
its participating catalog agents.

When the catalog agents receive the amount of violation or slack from each of the constraint
agents, then the catalog agents create new design spaces that reduce the amount of violation on
the intervals for the violated constraints, without exceeding the slack on the intervals for the
satisfied constraints. The catalog agents bid their new design spaces and the process continues
until all constraints are satisfied, at which point each catalog agent sends its the highest rated
part as a solution, or until a determination is made that no solution exists. No solution exists if
none of the catalog agents can create a new design space.

For this example, the user specifies that the design should implement the functions CPU,
memory and serial port, that the cost of the final design be less than or equal to $11.001, and
that the failure rate be less than or equal to 10 failures per million hours (fpmh). The cost
function for this example is a simple weighted sum of the attributes, where the weight of the
cost attribute is 10 and the weight of the failure-rate attribute is 1. Using a cost function of this
form, a part with a low value for cost function is preferable to a part with a high value for cost
function. The catalog agents CPU, memory and serial port respond, indicating that they are
willing to participate in the design. The system agent creates the constraint agents cost and
failure rate. If there were any dynamic constraints, then the catalog agents would create these
constraints at this time. At this point, the network consists of the catalog agents {CPU,
memory, serial port} and the constraint agents {cost, failure rate}. Each catalog agent creates a
design space by forming an interval over each of the design attributes. The initial ACDS
network, including the design spaces for each catalog, is shown in Figure 8.

Part Name cost failure rate cost function
Memoryl 6.0 2.0 62.0
Memory2 3.0 3.0 33.0
Memory3 2.0 6.0 26.0
Memory4 2.0 4.0 24.0
Memory5 1.0 7.0 17.0

Ce12.I~.figa.Sl/a~
cost -- [1.0 6.0]
failure rate = [1.0 7.0]
cost function = [15.0 61.0]

Part Name cost failure rote cost function
CPU 1 6.0 1.0 61.0
CPU2 4.0 7.0 47.0
CPU3 2.0 2.0 22.0
CPU4 1.0 5.0 15.0

Memory Design Spacg
cost = [1.0 6.0]
failure rate = [2.0 7.0]
cost function = [17.0 62.0]

Serial Port Design Snace
cost = [1.0 6.0]
failure rate = [1.0 8.0]

serial port cost function = [16.0 61.0]

Part Namecost failure rate cost function
Serial Portl 6.0 1.0 61.0
Serial Port2 3.0 3.0 33.0
Serial Port3 2.0 4.0 24.0
Serial Port4 1.0 8.0 18.0
Serial Port5 1.0 6.0 16.0

Figure 8: Initial ACDS Network

1 If the lower bound on an attribute is omitted, then it is assumed tO be 0. Similarly, if the upper bound on an

attribute is omitted, then it is assumed to be + o~.

23

The system agent next notifies each catalog agent of the appropriate constraint agents and vice
versa. The system agent does this by sending the address and the name of each constraint agent
to each catalog agent. If a catalog agent contains parts that have values for attributes appearing in
the constraint represented by a constraint agent, then the address of the constraint agent is
recorded in the local address table of the catalog agent, who then sends a message to the system
agent indicating that the constraint agent needs to know the address of the catalog agent. The
system agent then sends the address of the catalog agent to the constraint agent. In this way, the
catalog agents know only the addresses of constraint agents that it must communicate with, and
vice versa.

3.1 Pruning Infeasibles

After the design spaces are created, the CPU, memory and serial port catalog agents send the
intervals to the cost and failure-rate constraint agents.

The cost and failure-rate constraint agents collect the intervals from the catalog agents, forming
the design spaces cost = {[1.0 6.0] (from CPU), [1.0, 6.0] (from memory), [1.0 6.0] (from
serial port)] and failure rate = {[1.0 7.0] (from CPU), [2.0 7.0] (from memory), [1.0
(from serial port)}. These design spaces are used to form arc-consistent intervals. The arc-
consistent intervals for the failure-rate constraint agent is calculated as shown in Figure 9.

failure rate = [2.0 7.0]

failure rate
<ffi 10.0
memory: [2.0 7.0]
CPU: [I.0 7.0]
serial port: [1.0 7.0]

failure rate = [1.0 7.01 failure rate = [1.0 8.0]

Figure 9: Arc-Consistent Design Spaces

The interval [1.0 7.0] for the failure-rate attribute of the serial port catalog agent is calculated as
follows: the minimum value for the failure-rate attribute that can be achieved by the memory and
CPU catalog agents are 2.0 and 1.0 fpmh, respectively. In order for the constraint to be
satisfied, the maximum value possible for the serial port catalog agent must be no greater than
.I0.0 - (2.0 + 1.0) = 7.0. This value becomes the upper bound for the serial port catalog agent
for the failure rate interval.

The constraint agents send these arc-consistent intervals to each catalog agent, who remove any
infeasible parts (i.e., parts that lie outside the arc-consistent intervals), forming new design
spaces. Figure 10 shows the new catalogs. This operation can be used to eliminate the 80286 in
the example at the beginning of the paper. This would eliminate many of the iterations
described, at virtually no cost.

24

3.2 Design-Space Bidding

Once all infeasible parts have been removed, each catalog bids its design space to the constraint
agents for evaluation. The constraint agents collect the intervals from all the catalog agents, and
determine whether or not a constraint has been violated.

Part Name cost failure rate cost function
Memoryl 6.0 2.0 62.0
Memory2 3.0 3.0 33.0
Memory3 2.0 6.0 26.0
Memory4 2.0 4.0 24.0
Memory5 1.0 7.0 17.0

cost = [I.0 6.0]
failure rate = [1.0 7.0]
cost function = [15.0 61.0]

Part Name cost failure rate cost function
CPUI 6.0 1.0 61.0
CPU2 4.0 7.0 47.0
CPU3 2.0 2.0 22.0
CPU4 1.0 5.0 15.0

AC Memory_ Intervals
cost = [1.0 6.0]
failure rate = [2.0 7.0]
cost function = [17.0 62.0]

AC Serial Port Intervals

cost -- [1.0 6.0]
failure rate = [1.0 7.0]

serial port cost function = [16.0 61.0]

Part Name cost failure rate cost function

Serial Portl 6.0 1.0 61.0
Serial Port2. 3.0 3.0 33.0
Serial Port3 2.0 4.0 24.0
£c-r2 Pc.-’.~. !.~ o.~ io.~
Serial Port5 1.0 6.0 16.0

Figure 10: Arc Consistent Catalogs.

In this example, the constraint agents create a design space of the form:

[~ catalog agent interval lower bound ~ catalog agent interval upper bound]
catalog agents catalog agents

A constraint agent is satisfied if every value contained in the interval satisfies the constraint.
Once the violations are determined, a message is sent to each catalog agent, containing the
amount of violation if the constraint is violated, or the amount of slack if the constraint is
satisfied. This step is illustrated in Figure 11. For example, if the maximum values of each
intervals contributing to cost are added, the upper bound is violated (the sum is 18.0). Thus the
cost interval for some catalog agent must be reduced.

3.3 Design-Space Pruning

Since there are constraint violations, each catalog agent must modify its catalog in such a way as
to satisfy the violated constraints. A new design space is formed by removing parts or re-
introducing parts that were previously removed.

Since each constraint agent is violated, each catalog simply removes the part with the highest
value for each of the attributes, as is shown in Figure 12. This results in the catalogs consisting
of the set of parts surrounded by boxes. The old and new design spaces are shown alongside
the corresponding catalog agents.

25

If it had been the case that there were only two parts in some catalog, and one of those parts had
the highest value for one of the attributes and the other part had the highest value for the other
attribute, then if both parts were removed, the catalog agent would be left with a null catalog.
This means that there is no solution, which may or may not be the case. In such a case, the part
with the highest value for the cost function is removed. If there were any dynamic constraint
agents, then those constraint agents that depended on parts just removed would be deactivated.

cost = [1.0 6.01
failure rate = [2.0 7.0]
cost function = [17.0 62.0]

[3.0 18.0]
Violated by 7.0

cost = [1.0 6.0]
failure rate = [1.0 7.01
cost function = [15.0 61.0]

[4.0 20.0]
Violated by 10.0

s~ port

cost = [1.0 6.01
failure rate = [1.0 6.0]
cost function = [16.0 61.0]

Figure 11: Bid #1

Part Name cost failure rate cost function

Memoryl 6.0 2.0 62.0

IMemory2 3.0 3.0 33.0
Memory3 2.0 6.0 26.0
Memory4 2.0 4.0 24.0
Memory5 1.0 7.0 17.0

Memory_ Design Space
cost = [1.0 6.0] Old

[2.0 3.0] New
failure rate = [2.0 7.0] Old

[3.0 6.0] New
cost function = [17.0 62.0] Old

[24.0 33.0] New

cost = [1.0 6.0] Old
[1.0 2.0] New

failure rate = [1.0 7.0] Old
[2.0 5.01 New

cost function = [15.0 61.0] Old
[15.0 22.0] New

Part Name cost failure rate cost function

CPUI 6.0 1.0 61.0
CPU2 4.0 7.0 47.0

ICPU3 2.0 2.0 22.0
ICPU4 1.0 5.0 15.0

serial port

Part Name

Serial Portl

Serial Port Desi_t,n Space
cost = [1.0 6.0] Old

[2.0 3.0] New
failure rate = [1.0 7.0] Old

[3.0 4.0] New
cost function = [16.0 61.0] Old

[24.0 33.0] New

cost failure rate cost function

6.0 1.0 61.0

ISerial Port?. 3.0 3.0 33.0

[Serial Port3 2.0 4.0 24.0
Serial Port5 1.0 6.0 16.0

Figure 12: Design Space #1

The new design spaces are bid to the constraint agents as shown in Figure 13. Note that the
cost constraint is now satisfied and has slack of $3.00, while the failure-rate constraint is still

26

violated.

Since there is now some slack in the cost constraint agent, each catalog agent has the option of
reintroducing parts that were removed during previous iterations. The catalog agents begin by
removing the remaining part with the highest value for the failure-rate attribute, since the failure-
rate constraint agent is still violated. Consider the memory catalog agent; we notice that there
are three parts currently in the catalog: Memory2, Memory3 and Memory4. Of these three
parts, Memory3 has the highest value for the failure-rate attribute and is thrown out. The
catalog at this point consists of Memory2 and Memory4. The memory catalog agent next
considers reintroducing parts that were previously thrown out, namely Memoryl and Memory5.

cost = [2.0 3.0]
failure rate = [3.0 6.0]
cost function = [24.0 33.0]

[5.0 8.0]
Satisfied by 3.0

cost = [1.0 2.0]
failure rate = [2.0 5.0]
cost function = [15.0 22.0]

[8.0 15.0]
Violated by 5.0

serial port

cost = [2.0 3.0]
failure rate = [3.0 4.0]
cost function = [24.0 33.0]

Figure 13: Bid #2

In reintroducing new parts, there are two criteria that must be taken into account. The first is
that the value of the attribute of a part under consideration cannot increase the upper bound on
any violated constraint agent. The second is that the value of a part under consideration cannot
increase the upper bound on any satisfied constraint, relative to the previous design space, by
more than the slack amount from that constraint agent. The current memory catalog agent,
consisting of the parts Memory2 and Memory4, has an upper bound on the failure-rate attribute
of 4.0 fpmh. The previous catalog (Memory2, Memory3, Memory4) had an upper bound
the cost attribute of 3.0, and the slack for the cost constraint was 3.0. Using this information,
we can reintroduce any part whose value for the cost attribute is less than or equal to $6.00, and
whose value for the failure-rate attribute is less than or equal to 4.0 fpmh. The only part in the
memory catalog that falls within these bounds is the part Memoryl, so this part is re-introduced
and the bid is made. If there were any dynamic constraint agents that were de-activated when
this part was originally thrown out, they would now be re-activated.

Each catalog agent performs the same reasoning, and the resulting catalogs are shown in Figure
14. These design spaces are bid and evaluated as shown in Figure 15.

After this most recent bid, the cost constraint is now violated and the failure-rate constraint is
now satisfied by a slack amount of 1.0 fpmh. Each catalog agent uses this information to create
another set of catalogs as is shown in Figure 16.

In Figure 16 the CPU catalog agent was unable to create a new design space. The previous

27

catalog (shown in Figure 14) consisted of the part CPU3. The information received from the
last round of bids was that the cost constraint was violated by $3.00 and the failure-rate
constraint was satisfied by 1.0 fpmh. The CPU catalog agent cannot do anything to help to
satisfy the cost violation, since there is only one part in the catalog. It cannot re-introduce any
parts because the slack on the failure-rate constraint is too small. If each catalog agent were in
the same position of not being able to create a new design space, then no solution exists. These
new design spaces are bid and evaluated as shown in Figure 17.

Part Name cost failure rate cost function Memory Design Space

IMemoryl6.0 2.0 62.0 cost = [2.0 3.0] Old

Memory2 3.0 3.0 33.0 [2.0 6.0] New

Memory3 2.0 6.0 26.0 failure rate = [3.0 6.0] Old

]Memory4 2.0 4.0 24.0 I [2.0 4.0] New

Memory5 1.0 7.0 17.0 cost function = [24.0 33.0] Old
[24.0 62.0] New

cost -- [1.0 2.0] Old
[2.0 2.0] New

failure rate = [2.0 5.0] Old
[2.0 2.0] New

cost function = [15.0 22.0] Old
[22.0 22.0] New

Part Name cost failure rate cost function

CPUI 6.0 1.0 61.0
CPI.I2 4.0 7.0 47.0
IcptJ3 20 2.0 220 I
CPU4 1.0 5.0 15.0

serial port

Part Name

Serial Port Design Soace
cost -- [2.0 3.0] Old

[3.0 6.0] New
failure rate = [3.0 4.0] Old

[1.0 3.0] New
cost function = [24.0 33.0] Old

[33.0 61.0] New

cost failure rate cost function

ISerial Portl 6.0 1.0
Serial Port2 3.0 3.0

61.0 I
33.0

Serial Port3 2.0 4.0
Serial Port5 1.0 6.0

24.0
16.0

Figure 14: Design Space #2

cost = [2.0 6.0]
failure rate = [2.0 4.0]
cost function = [24.0 62.0]

[7.0 14.0]
Violated by 3.0

cost = [2.0 2.01
failure rate = [2.0 2.01
cost function = [22.0 22.0]

[5.0 9.0]
Satisfied by 1.0

serial port

cost = [3.0 6.01
failure rate = [I.0 3.0]
cost function = [33.0 61.0]

Figure 15: Bid #3

28

3.4 Solution

Once all the constraints are satisfied, as they are in Figure 17, the catalog agents select the
remaining part with the lowest value for the cost function to form a solution. Because all
constraints are satisfied, the combination of these parts is guaranteed to be a valid solution. In
this example, the CPU catalog agent selects the part CPU3, the memory catalog agent selects the
part Memory4 and the serial port catalog agent selects the part Serial Port3. The design
consisting of these parts satisfy all constraints and is sent to the system agent as the solution.
The system agent verifies that all functions have been covered and displays the solution. This is
shown in Figure 18.

Part Name cost failure rate cost function

Memo~l 6.0 2.0 62.0
IMemory2 3.0 3.0 33.0 I
Memory3 2.0 6.0 26.0

[Memory4 2.0 4.0 24.0 [
Memory5 1.0 7.0 17.0

Memory_ Design Space
cost = [2.0 6.0] Old

[2.0 3.0] New
failure rate = [2.0 4.0] Old

[3.0 4.0] New
cost function = [24.0 62.0] Old

[24.0 33.0] New

cost = [1.0 2.0] Old
[2.0 2.0] New

failure rate --- [2.0 5.0] Old
[2.0 2.0] New

cost function = [15.0 22.0] Old
[22.0 22.0] New

Part Name cost failure rate cost function
CPUI 6.0 1.0 61.0
CPU2 4.0 7.0 47.0

Icpu3 20 20 220 I
CPU4 1.0 5.0 15.0

serial port

Part Name

Serial Portl

Serial Port Design Space
cost = [3.0 6.0] Old

[2.0 3.0] New
failure rate = [1.0 3.0] Old

[3.0 4.0] New
cost function = [33.061.0] Old

[24.0 33.0] New
cost failure rate cost function

6.0 1.0 61.0
Serial Port2 3.0 3.0 33.0

ISerial Port3 2.0 4.0 24.0
Serial Port5 1.0 6.0 16.0

Figure 16: Design Space #3

4. A Market-Oriented Programming Approach

Another approach to distributed design that we are concurrently exploring is the potential use of
market price mechanisms to allocate resources among collaborating design teams. The rationale
for this approach is that in some circumstances, the market can efficiently allocate resources
toward their most productive use with minimal communication or coordination overhead. All
interaction among agents occurs via exchange of goods, according to terms dictated by a set of
standard prices.

We have implemented a general system for "market-oriented programming" based on concepts
from the microeconomic theory of general equilibrium. In the general-equilibrium framework,
there are two types of agents: those that simply exchange goods (consumers), and those that can
transform some goods into other goods (producers). In our computational version of a market
price system, we implement consumer and producer agents and direct them to bid so as to
maximize utility or profits, subject to their own feasibility constraints. Under certain technical
assumptions, the equilibria of this system correspond to desirable or optimal resource
allocations.

29

cost = [2.0 3.0]
failure rate --- [3.0 4.0]
cost function = [24.0 33.0]

[6.0 8.0]
Satisfied by 3.0

[8.0 I0.0]
Satisfied by 0.0

cost = [2.0 2.01
failure rate = [2.0 2.0]
cost function -- [22.0 22.0]

cost = [2.0 3.0]
failure rate = [3.0 4.0]
cost function = [24.0 33.0]

Figure 17: Bid #4

Part Name cost failure rate cost function

Memory2 3.0 3.0 33.0
M,,,;,¢,;: 3 2.0 6.,7, 2(,.~
IMemory4 2.0 4.0 24.0 [
}.’.,; ~5 I~¯ £,GJ . , .v ¯ e .,a

serial port

Part Name cost failure rate cost function

~:’U: 4,e 7,~ -:7.~
Icpu3 2.0 2.0 22.0 I

Part Name cost failure rate cost function

Serial Port2 3.0 3.0 33.0
ISerialporO 2.0 4.0 24.0 I

Figure 18: Final Solution

To cast a distributed resource-allocation problem in terms of a computational market, one needs
to identify

- the goods (commodities) traded,
- the consumer agents trading and ultimately deriving value from the goods,

the producer agents, with their associated technologies for transforming some
goods into other goods, and

- the agents’ bidding behavior.

Our implemented system, called Walras, provides an environment for specifying these features

30

of a computational market.

Given the specification, Walras "runs" the economy to derive its competitive equilibrium, that
is, a set of prices for the goods where (1) consumers bid so to maximize utility, subject to their
budget constraints, (2) producers bid so to maximize profits, subject to their technological
possibilities, and (3) net demand is zero for all goods. Details of Walras’s bidding process and
underlying assumptions are provided elsewhere (Wellman 1992).

Distributed configuration design is one of the tasks to which we have applied Walras. In a
multiagent design problem, each agent has responsibility for choosing a component to serve a
given function in a device, and the overall design consists of the combination of component
choices. Decentralizing the problem can be difficult, due to dependencies in the component
choices for each function, as well as interactions among the components in determining device
performance attributes, or preferences for those attributes.

For example, consider a simple two-component device consisting of a motor and a speed
controller. We are interested in a device with the best performance (highest torque with finest
tolerance on the speed range) but that minimizes some other attributes (weight, power
consumption, and dollar cost). There may be several choices for each component, which
combine via cross product to define the overall design space. Choices for the components
interact, because the horsepower ratings for the motor and speed controller must be compatible,
and because both components contribute to weight and dollar cost.

The market perspective on this kind of problem would view the performance and resource
attributes as commodities traded and transformed across the components. In some approaches to
distributed design (including human design organizations), some aggregate attributes are
budgeted in a hierarchical manner, so that the part implementing a given function may be
allocated some fixed fraction of the weight or dollar cost. This kind of scheme is too rigid,
because we do not know what the appropriate fractions should be until we make some progress
in the design. This is where the market approach should help. If attributes such as weight are
tradable commodities, then the components can buy and sell rights to take up weight according
to which can make the most effective use (i.e., get the most relative performance improvement)
from each incremental unit of weight.

To cast one of these problems in Walras, we first define a consumer agent to represent the end-
user of the device we are designing. We specify for this consumer a utility function defined over
possible combinations of all of the attributes. The consumer also has an endowment of the basic
resources (weight, dollar cost, power) corresponding to the maximum feasible that can
allocated to the device. This endowment limit performs the same function as the constraint agent
in ACDS.

For each component (ACDS catalog agent), we define a producer agent. The producer agent
transforms the basic resources into performance attributes (torque, voltage)according to the
specifications of each possible choice for the component. In other words, the catalog describes
the technology available to the corresponding producer.

The consumer’s problem is to set demands maximizing utility, subject to the budget constraint
(i.e., it cannot spend more than the value of its endowment), at the going prices. The producers
face a discrete choice among the possible component instances, each providing a series of
values for resource and performance attributes. The producer bids according to which choice
would be most profitable at the given set of prices. If none offers positive profits, the producer
bids zero.

When run on some simple design problems, Walras produces a set of component choices.
However, due to the discreteness (and other non-convexities) of the problem, the overall design
is not guaranteed to be optimal. At best, we can hope for local optima. In current work, we are
attempting to characterize the performance of the scheme for special cases. In addition, we are
looking into hybrid schemes that use the market to bound the optimal value by computing the
global optimum for a smooth and convex relaxation of the original problem. This is analogous
to branch-and-bound schemes that make use of regular linear-programming algorithms for
integer-programming problems.

5. Discussion

We have chosen a distributed architecture for several reasons. Design expertise for a complex
artifact is usually distributed across different groups and may be geographically dispersed
within a single company or in multiple companies. Centrally locating all relevant expertise, in
most cases, is awkward at best. A distributed architecture naturally models the real-world
distribution of expertise. This distribution of knowledge also speeds computation, subject to
communication costs, by sharing the computation load across many different computers. With
the advent of high-speed communication networks, communication cost will constantly fall.

A distributed architecture provides the user of ACDS with easy access to a wide variety of part
catalogs from many different vendors, without being aware of who or where those vendors are.
The only concern of the designer should be that the parts selected satisfy the specifications. By
considering parts from a variety of sources, ACDS has the opportunity to generate the best
possible design.

A distributed architecture also allows each vendor to maintain its catalog agent at its site.
Changes or additions to the part catalogs can be made locally and be immediately available to all
users over the network. ACDS allows vendors to join the network without knowing who or
where the designers using the network are located. This allows a new vendor to become known
to a large population of designers, and be on an equal competitive footing with more established
vendors.

ACDS will allow designers to realize their designs in significantly shorter time than is currently
possible using today’s concurrent design processes. Furthermore, designs will be less costly
and of higher quality since ACDS can consider a much greater variety of designs than any
human could effectively create.

ACDS will allow descriptions of many part characteristics, such as the behavior of mechanical
devices, that cannot properly be described using current languages. This will allow automation
of many manual design processes.

ACDS will provide a uniform representation for a wide range of types of data important to the
design process, including marketing and finance information, as well as engineering data. This
will make agent inter-operability an inherent property of the service, and will significantly
contribute to enterprise integration.

ACDS relies on several concepts from the distributed artificial intelligence literature. ACDS
draws from multistage negotiation (Conry, Kuwabara, Lesser, Meyer 1991), distributed
constraint-satisfaction problems (Yokoo, Durfee, Ishida, Kuwabara 1991), and negotiated
search (Lander, Lesser 1992). Negotiated search is a cooperative search and conflict resolution
paradigm realized by TEAM, a system for performing parametric design of steam condensers.
Each TEAM agent possesses knowledge about a single steam condenser component. These
agents are independent, except for parameters that are shared among components. TEAM agents

32

communicate via shared memory. In this system, an initial design is generated and placed in
shared memory so that all agents can evaluate it. Each agent examines the design and proposes
extensions to the design that solve some sub-problem. The catalog and constraint agents of
ACDS are collapsed into one agent in TEAM. Like ACDS, agents in TEAM share a global
utility (or cost) function to help guide decision-making.

Other systems that operate in the domain of concurrent engineering and are similar to ACDS
include the Design-Fabricator Interpreter (DFI) system (Werkman 1992), and the Galileo2
system (Bowen, Bahler 1992b). The DFI system is an example of the point-by-point approach
to concurrent engineering in the domain of structural engineering. In this system, agents that
represent human experts in the areas of design, manufacturing and assembly evaluate and
comment on a design from their particular perspective. Much like ACDS, this system supports
concurrent engineering by incorporating downstream concerns early in the design process,
using agents to represent multiple perspectives. The DFI system is more of a design evaluation
tool used to critique a preliminary design to identify possible downstream problems. The DFI
system can be thought of as automating the stage at which a higher authority is required to
resolve a conflict, where each agent proposes an acceptable design, and an arbitrator makes a
decision.

The Galileo2 system is a constraint programming language that facilitates concurrent
engineering. This system allows constraint networks to be divided into different, possibly
overlapping fields of view that correspond to the perspectives of engineering teams. By
assigning fields of view to manufacturability, testability, maintainability, and others, this system
supports concurrent engineering. Galileo2 is an interactive system which allows a user to
specify constraints on the final design from a given perspective. Galileo2 is not a synthesis tool
like ACDS, but is rather a design evaluation tool. Galileo2 makes it easier for designers to
communicate, but the process of resolving conflicts still requires manual intervention. Both
ACDS and Galileo2 use constraints to represent various design perspectives, but differ in the
way these constraints are used. In Galileo2, constraints are used to form a constraint network,
where constraints are propagated throughout the network to notify users that a constraint has
been violated. In ACDS, constraints are used to rule out parts that are provably infeasible.

6. Current Status

A prototype version of ACDS has been developed that contains core ACDS functionality in a
rudimentary form. This version was used to create the example in Section 3, and allows system
agents to establish contact with catalog agents distributed anywhere in the nation. Currently,
ACDS has agents operating in Ann Arbor, Michigan (The University of Michigan), Pittsburgh,
Pennsylvania (Carnegie Mellon University), and Palo Alto, CA (Stanford University).
Similarly, constraint agents can be distributed throughout a network.

We are beginning to expand the capabilities of ACDS. A mechanical-drawing system and
several analysis packages (e.g., thermal and reliability) are being integrated into ACDS. This
will allow designers to create custom designs that are synthesized from catalog components, and
to analyze these designs from a variety of perspectives that are not easily captured in constraints.
This will be a major step in moving ACDS towards the goal of supporting all aspects of design.

ACDS has been developed to be fully compatible with KQML (Finin et al. 1992), a language
for knowledge exchange among intelligent agents. (KQML is being supported by DARPA’s
Knowledge-Sharing Effort.) This compatibility means that ACDS can conveniently exchange
knowledge with agents developed by other parties, and can easily integrate into existing
engineering networks.

33

Walras is being integrated into the full ACDS environment. We expect to report soon on
comparisons between the approaches.

References
Bowen J., Bahler D.(1992a), "A Constraint-Based Approach to Networked Collocation

Concurrent Engineering", Proceedings First Workshop on Enabling Technologies for
Concurrent Engineering.

Bowen J, Bahler D.(1992b), "Supporting Multiple Perspectives: A constraint-based approach
to concurrent engineering", Proceedings of Artificial Intelligence in Design.

Conry S., Kuwabara K., Lesser V., Meyer R.(1991), "Multistage Negotiation for Distributed
Constraint Satisfaction", IEEE Transactions on Systems, Man, and Cybernetics,
21:1462-1477.

Dan"T. P., Birmingham W. P. (1992), "Concurrent Engineering: An Automated Design Space
Approach", Tech Report CSE-TR-149-92, University of Michigan, Ann Arbor, MI.

Davis E. (1987), "Constraint Propagation with Interval Labels", Artificial Intelligence 32:281-
331.

Durfee E., Lesser V., Corkill D. (1989), "Trends in Cooperative Distributed Problem Solving",
IEEE Transactions on Knowledge and Data Engineering, 1:63-83.

FininT., et al. (1992), "Specification of the KQML Agent-Communication Language", Tech.
Report E1T TR 92-04, Enterprise Integration Technologies, Palo Alto, CA.

Lander S., Lesser, V.(1992), "Negotiated Search: Cooperative Search Among Heterogeneous
Expert Agents", AAAI Workshop on Cooperation Among Heterogeneous Intelligent
Systems.

Mackworth A. K. (1977), "Consistency in Networks of Relations", Artificial Intelligence 8:99-
118.

Mittal S., Falkenhainer B. (1990), "Dynamic Constraint Satisfaction Problems", Proc. AAAI.
Mittal S., Frayman F. (1987), "COSSACK: A Constraint-Based Expert System for

Configuration Tasks", Proc. 2nd Int’l Conf. on Applications of Al to Engineering.
Pan J., Tenenbaum J. (1991), "An Intelligent Agent Framework for Enterprise Integration",

IEEE Transactions on Systems, Man and Cybernetics, November/December 1991.
Ward A., Lozono-Perez T., Seering W.(1990), "Extending the Constraint Propagation

Intervals", AI EDAM 4:47-54.
Ward A., Seering W. (1989), "Quantitative Inference in a Mechanical Design ’Compiler’",

ASME Design Theory and Methodology Conference.
Wellman M. (1992), "A general-equilibrium approach to distributed transportation planning",

Proc. AAAI.
Werkman K. J. (1992), "Multiple Agent Cooperative Design Evaluation Using Negotiation",

Proceedings of Arn’ficial Intelligence in Design.
Yokoo M., Durfee E., Ishida T., Kuwabara K.(1991), "Distributed Constraint Satisfaction for

Formalizing Distributed Problem Solving", Dept. of EECS, University of Michigan
Technical Report No. CSE-TR-102-91 1991.

34

