
Organizing cooperative search among
heterogeneous expert agents

S. E. Lander and V. R. Lesser
Dcparanent of Computer Science

University of Massachusetts
Amherst MA 01003

USA

Abstract

We present negotiated search, a paradigm for cooperative search and conflict res-
olution among loosely-coupled expert agents. The paradigm is realized in TEAM, a
framework that provides a flexible environment for agent integration. TEAM enables

agents with heterogeneous characteristics and capabilities to work together coopera-
tively. Experimental results from a design application program implemented in TEAM

are presented. These results indicate that system performance is correlated with the or-
ganization of the agent set based on the ability of agents to communicate, the interaction
capabilities instantiated at each agent, and by the texture of agents’ local solution spaces.
The experiments show that heterogeneous agents can work together without tightly co-

ordinated organization. However, they also demonstrate that some agent organizations
have more potential for effective cooperation than others. We analyze agent character-
istics that affect this potential and discuss the use of negotiated-search strategies that
take advantage of the particular strengths of the agents in an agent set. Both agent
characteristics and group dynamics have far-reaching implications for the development
of multi-agent systems and for the design of agents that are intended to work within
agent sets.

1 Introduction

Negotiated search is a paradigm for the cooperative development of mutually-acceptable
solutions by a set of heterogeneous expert agents. In negotiated search, search and conflict
resolution mechanisms are tightly interwoven, and conflict resolution is viewed as an integral
part of problem-solving. Agents are not hostile and will not intentionally mislead or otherwise

This research was supported by DARPA under Contract #N00014-89-J-1877 and by a University Research
Initiative Grant, Contract #N00014-86-K-0764. The content of the information does not necessarily reflect the
position or the policy of the Government, and no official endorsement should be inferred.

89

From: AAAI Technical Report WS-93-07. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

try to sabotage each others’ reasoning. Agents are cooperative, meaning that an agent is
willing to contribute both knowledge and solutions to other agents as appropriate and to
accept solutions that are not locally optimal in order to find a mutually-acceptable solution.

An agent is designed to work outside of any statically defined agent set. Each agent
represents an area of expertise that can be incorporated into dynamically formed sets of
agents as required to work on problems that require that expertise. Given this model of
independent agents, it is not possible to anticipate and engineer out all potential conflicts at
agent-development time since it is not known what knowledge will be contained in the com-
plete system (Hewitt 1986). Instead of dealing with conflict through knowledge engineering,
each agent must address it explicitly as it occurs. The presence of conflict is not related
to the willingness of the agents to cooperate. Conflict is inherent in the agent set due to
inconsistent knowledge among agents, incomplete knowledge and/or incorrect assumptions,
different problem-solving techniques, and different criteria for evaluating solutions. In the
domain presented here, conflict is detected either through the explicit communication of local
solution requirements or through the direct evaluation of a proposed solution.

There are two basic ways to characterize approaches to conflict resolution in negotiated
search: extended search and relaxation. The first, extended search, is applied by an agent
when it recognizes a conflict with another agent in an existing solution. The agent sidesteps the
conflict by extending its local search until a solution is found that does not conflict. Extended
search methods are used when an agent believes that a better solution can be developed if it
continues to examine its local solution space for additional solutions. Some general methods
that can be implemented as local operators to facilitate extended search in specific situations
include: integrating external constraints to narrow the solution space; finding alternate goal
expansions; or using case-based reasoning to find a ball-park solution and then refining that
solution.

The second negotiated search method, relaxation, is applied when an agent must relax
some requirement on a solution in order to expand its local solution space. Relaxation may lead
directly to a solution. If a history of previously generated, but unacceptable, solutions is kept,
one of these solutions may become immediately acceptable. If no history is kept, extended
search can be applied in the expanded solution space with a better chance of finding a solution.
Relaxation methods are utilized when it seems likely that the solution space is overconstrained
or when the expense of further local search is unjustified. Some general methods that can be
implemented as relaxation operators include: relaxing or relinquishing constraints, relaxing
or relinquishing goals, manipulating constraints (e.g., unlinking, bridging (Pruitt 1981)),
manipulating evaluation criteria (Sycara 1985).

In negotiated search, two interwoven processes occur: first, local search by a single agent
for an optimal solution to a subproblem under its local requirements for solutions; and second,
composition1 of local subproblem solutions into an overall solution in the composite space
created from the intersection of the local solution spaces of the agents. Local search is guided
by the domain expertise of the searching agent. Composition relies on the group problem-
solving skills of each agent: communication, coordination, and assimilation of externally
provided information. Effective integration of these two processes is captured in the TEAM
framework described below.

ISathi similarly uses the term composition as the name of a specific negotiation operator that combines local
information (Sathi and Fox lq89).

90

Negotiated-search operators are specific methods for doing extended search or relaxation
within an agent. The decision to apply a particular operator to a specific problem-solving
situation is made locally by each agent. It is possible to get acceptable behavior without
coordinated efforts by the agents. However, more coherent behavior is likely to result
through the analysis of the skills of the agents and the desired dynamics of the group. A
negotiated-search strategy guides the definition of operators and coordinates the scheduling
of a sequence of operators across agents, eliciting a particular style of coherent inter-agent
behavior within an agent set.

Section 2 introduces the steam condenser design domain and Section 3 describes the
TEAM framework. In Section 4, we relate our work to that of other researchers. Section 5
gives a brief description of the negotiated search paradigm and its realization in the TEAM
framework. A more detailed description is available in (Lander and Lesser 1991).
the experiments described in Section 6, we vary the sets of negotiated-search operators
instantiated at each of the agents in a set and discuss the underlying characteristics of the
agents and the dynamics of the agent set that lead to the observed behavior. In Section 7, we
describe a negotiated-search strategy, compromise, and discuss the requirements for the use
of a particular strategy with respect to agent characteristics and group dynamics that exist in
an agent set.

2 The Parametric Design Domain

The initial domain for the TEAM framework is parametric design of steam condensers under
a set of user-defined specifications. In parametric design, the general form of the artifact
being designed is known, but the designer must find values for a set of variable parameters.
Much of the application knowledge in the steam condenser domain was originally developed
by Meunier for use in an iterative respecification system (Meunier 1988). A steam condenser
comprises a set of components: a pump, heat exchanger, motor, platform, shaft and v-belt as
shown in Figure 1. Each TEAM agent produces a proposal, a design for a single component

water

pump

stesm ~sput

P
t--rheat exchanger I exhaust

U
condensed stem’n output

Figure 1: A Steam Condenser

of a condenser, or a critique, a local evaluation of a partial or complete design. Both proposals
and critiques may include information about local solution requirements that will help to guide
the local search of other agents. Each steam condenser component is designed by a separate

91

agent, for example, PUMP AGENT produces pump proposals. The components are independent
except for shared parameters that represent the interface points of the design.

3 The TEAM Framework

The TEAM framework supports loosely-coupled heterogeneous agents engaged in problem-
solving through negotiated search. The architecture of the TEAM framework is shown in
Figure 2. Agents are distinct entities that communicate through the shared memory. A set of

Framework
Controller
Framework
funct~

Global utility
function

I----I

I
I

mm.----. ,.I

...... Retd-ody data path
Read/write data path
Message imth

Agent Set

/ Mtx
April
0peat0tl

Local Inference
Engine

Figure 2: Architecture of the TEAM Framework

TEAM functions incorporate proposals into designs and do bookkeeping tasks on the designs,
for example, totalling the cost of a design when a new component is added. These functions
are domain-independent. For example, to create a new design from a proposal submitted
by an agent, a TEAM function will build an empty design object and copy values from the
proposal to the design. During processing, there are two distinct phases: 1) an agent cycle;
and 2) a framework cycle. During the agent cycle, each agent is invoked sequentially. The
invoked agent uses the information in shared memory to choose applicable operators and add
them to its local agenda. It then invokes its highest-priority operator and returns its result.
After all agents have executed, TEAM functions are invoked to update the shared memory in
accordance with the returned results.

4 Related Research

Negotiated search has roots in blackboard problem-solving, constraint-directed search, and
in negotiation, both human and computational. From blackboard problem-solving, we take
ideas about opportunism, competing solutions, flexibility, and incremental extension of partial
solutions.(Erman et al. 1980). Although the blackboard literature provides a great deal of
insight into coordinated behavior (Lesser and Corkill 1983), TEAM is not itself a blackboard
system. A discussion of the differences can be found in (Lander 1993).

92

From constraint-directed reasoning (Fox et al. 1982), we borrow (and simplify) a con-
straint representation to define the problem space and to generate and evaluate solutions within
the space. Sathi and Sycara (Sathi and Fox 1989; Sycara et al. 1991) address constraint rea-
soning issues in their work on constraint-directed negotiation. The agents in those projects
share an underlying integrated problem-solving methodology and differ only in the specifics
of their constraints. The agents’ interactions are centrally synchronized. In contrast, we are
looking at problems where agents possess different knowledge, problem-solving skills, and
communication capabilities, and in addition, they take responsibility for scheduling their own
activities.

From negotiation literature comes an understanding of the underlying mechanisms of
conflict resolution and the development and application of specific negotiated-search opera-
tors. Klein (Klein 1990) has focused on the:development of a taxonomy of conflict types,
while we are looking at determining appropriate operaters given particular agent and group
characteristics. Werkman (Werkman 1990) has developed a multi-agent multi-criteria system
that relies on an integrated knowledge representation and mediation framework to discrim-
inate among alternative solutions. Because TEAM agents solve interactive subproblems
rather than redundant ones as in Werkman’s system, a centralized mediator doesn’t have the
appropriate domain expertise to make intelligent decisions. Sycara describes a negotiation
system, PERSUADER, for a non-cooperative labor/management domain (Sycara 1985) that
uses both extended search and relaxation methods through a mediator. In this case, one of
the functions of the mediator is to act as a buffer between hostile agents, helping to maintain
privacy of information and an objective viewpoint. Pruitt (Pruitt 1981) and Fisher (Fisher
Ury 1981) discuss human negotiation. In human negotiation situations, much of the effort
expended in reaching settlement is directed toward minimizing the psychological discomfort
of concessions. Despite this, the work offers valuable insights into specific methods for
achieving mutual satisfaction.

5 Negotiated Search

In this section, we give a brief overview of the realization of the negotiated-search paradigm
in TEAM. A more complete description of the system can be found in (Lander 1993).
begin with a description of how local problem-solving efforts of the agents are coordinated
through the overall view of problem solving maintained in the shared memory. Next, the
mechanisms used in local problem-solving at the agent level are presented.

5.1 Coordination of Local Search Efforts

Agents communicate and coordinate their efforts through a high-level view of problem-
solving, maintained in a shared memory, and accessible to all agents. Each agent works
on some subproblem(s) and produces proposals that represent subproblem solutions. Each
proposal is assigned a rating by the agent that generated it. We use a rating scheme with
values of infeasible, poor, fair, good, and excellent. The calculation of a local rating is
domain-dependent and is defined independently for each agent. Each agent also assigns an
acceptability value to a proposal: acceptable or unacceptable. Acceptability is calculated by

93

an agent based on its current level of solution requirements. That is, a proposal rated as fair
by an agent may be initially unacceptable, but as solution requirements are relaxed, it may
become acceptable even though its rating hasn’t changed.

A solution in shared memory is called a design. Each design is initiated by the generation
of an agent proposal, called the seed proposal for that design. A seed proposal specifies a
partial set of parameter values for a design. At any given point in problem-solving, there may
be multiple active designs. Agents are free to generate seed proposals at any time, depending
on their local scheduling algorithms. At least one agent in an agent set must generate a seed
proposal in response to a user-specified problem definition in order to initiate problem-solving.
However, it is generally the case that multiple agents generate seed proposals at system start-
up time and at other times during problem-solving. Each seed proposal represents a different
starting point (in the composite space) for a design; normally, it will take multiple attempts
to find one that is acceptable.

Once a design has been initiated by the generation of a seed proposal, it is placed in shared
memory and other agents can respond to it. An agent responds to a design by generating
a proposal to extend that design or by generating a critique of the design. Conflicts are
detected by the responding agent: an agent may attempt to extend an incomplete design and
be unable produce an acceptable proposal given the parameter values that have already been
specified; or an agent may attempt to criticize a design and find a local constraint violation.
The responding agent returns the proposal or critique that was generated regardless of its
acceptability along with any information that can be offered to explain detected conflicts.

The acceptability of a design is a function of two components: the set of acceptability
ratings from each agent and, if desired, a global utility value. Agent acceptability ratings
reflect individual agents’ criteria for evaluating solutions. For example, one agent might
consider safety a high-priority criterion while another would consider the life expectancy of a
design to to be more important. Each of these criteria are important and should be considered
in a final solution. However, the information needed to calculate a value for a particular
criterion is often embedded in the local knowledge of an agent and cannot be represented
outside of the expert environment. Global utility, on the other hand, provides a way to rank
alternative designs on aspects of the overall solution that do not require domain expertise
to evaluate (cost, for example). In TEAM the system developer can specify a function
apply to each complete solution that calculates a global utility value, as well as a threshold
value for the utility. Thus, we take a two-level view to evaluating designs. The goal of
negotiated search is to find solutions that optimize global utility value while maximizing
agent acceptability.

If the design is complete (all components are represented) and acceptable, the system
will add it to the set of completed designs and will stop if it has met a user-defined quota
on the number of alternative designs required. If the design is not complete, it stays active
while waiting for component proposals from other agents. Agents locally schedule their own
activities and may respond at different times. A local scheduling algorithm might attempt to
respond to the most complete acceptable design on each processing cycle. However, each
agent is responsible for managing its own local agenda and may have other priorities: no
global restriction is placed on local scheduling algorithms.

Unacceptable designs are saved along with information about why they were unacceptable.
A design that is unacceptable because of constraint violation(s) can be considered a potential

94

compromise, if the constraint(s) involved are relaxed at some future point, this compromise
will become acceptable and the design will be reactivated. If a feasibility constraint has been
violated in the design, the design is marked as infeasible and will not be considered as a
possible compromise.

5.2 Local Search

Although there are many operators that can potentially be applied to conflict situations, they
all fall under the general umbrella of either extended search or relaxation. To negotiate
in a complex domain, an agent needs to have operators available from each class. The
instantiation of an operator at a particular agent is relatively unrestricted: it must react to a
particular input(s) with a required functionality and produce a specific output. However, the
actual methodology used for achieving the desired functionality is not constrained. For our
experiments, we have defined three representative operators. Every operator has a specific
set of situational requirements that impact its effectiveness for a given agent. We will discuss
using solution space and agent characteristics to choose appropriate operators for a particular
agent further during the analysis of experimental results.

The three defined operators are generate-proposal, respond-to-design, and relax-solution-
requirement. The first two are extended search operators, the third is a relaxation operator.
Each of these operators has a defined functionality that is implemented locally by each agent
in a style consistent with the agent’s architecture, knowledge representation, and inference
engine.

Search Operators: Generate-proposal is an extended search operator that an agent im-
plements to generate a seed proposal that satisfies its locally-known set of constraints. The
input required for generate-proposal is a user-defined problem specification. There are two
possible outputs from the generate-proposal operator: either a proposal or a message that
no proposal can be found. If an acceptable proposal cannot immediately be generated by an
agent, it may unilaterally decide to relax some requirement and/or extend its search through a
locally-defined mechanism, if an agent does not instantiate the generate-proposal operator, it
will not create seed proposals for designs. However, it can still generate proposals in response
to designs initiated by other agents as described below.

Respond-to-design is the second extended search operator defined. This operator takes as
input an externally-initiated design (a composition of proposals from other agents), it serves
to both evaluate the design and to extend it through the generation of a local proposal that
matches (fits into) it. The local proposal is generated under the external specifications of the
input design and is often not acceptable to its creator: in order to extend the input design, the
agent must violate some local solution requirement. It outputs either a matching proposal,
with information about local solution-requirement violations when necessary, or a message
that the design is infeasible with respect to local constraints. The initiating agent for the
design will usually react to an unacceptable evaluation by generating a new seed proposal.
When an unacceptable proposal is returned with constraint violations, the violated constraints
can be assimilated by other agents to initiate new designs that will avoid the same conflict(s).

95

Relaxation Operators: We define one relaxation operator, relax-solution-requirement.
This operator can be invoked unilaterally when an agent can’t find a solution under the
current problem specification. It can also be invoked due to nonproductive iterative nego-
tiation efforts: if an agent has generated multiple seed proposals and/or has responded to
multiple designs without finding a suitable fit, there may not be a fit.

An agent can also relax a solution requirement in response to information received from
another agent that explicitly conflicts with some local requirement. For example, if Agent A
has the constraint x _< 100 and Agent B has the constraint x > 100, one of the agents will
have to relax its constraint. Constraints include information about flexibility (how important
it is to relax or not relax) that an agent uses to decide whether to relax its own constraint or
not. When a solution requirement is relaxed, previously developed unacceptable solutions
are reevaluated to see if they are now acceptable in the expanded solution space induced by
the relaxation.

6 Experiments

We present a set of experiments that investigate the effect of varying the operators available
to a set of agents. In order to keep the discussion focused, the experiments reported here
were kept simple. A more complete list of TEAM experiments to date appears in (Lander
and Lesser 1991).

Each of the experiments involve three agents: one that produces pump proposals, aA,
one that produces heat exchanger proposals, HEA, and one that produces motor proposals,
MA. In each experiment, the agents have a different pattern of negotiated-search operator
instantiation (see Table 1). These differences affect each agent’s ability to generate seed
proposals and/or extend designs initiated by other agents. We analyze the experimental
results for each configuration and discuss the underlying characteristics that influence the
results: namely, the effectiveness of a particular operator given the characteristics of the
solution space and the effectiveness of the overall strategy embodied in the set of operators
chosen for each agent.

Operator

generate-proposal PA PA HEA
HEA

respond-to-design PA HEA PA
HEA MA MA
MA

relax-solution-rcquinnentPA PA PA
HEA HEA HEA
MA MA MA

Table 1: Agent~Operator Configurations for Experiment Sets

Table 2 summarizes the results from the experiments described in Table 1. Average cost is
the average of the global utility values calculated for each of the best three complete acceptable

96

designs. The minimum cost is the global utility value calculated for the most highly-rated
complete acceptable design. A processing cycle comprises the sequential invocation of each
agent in the agent set and the TEAM functions required to process all returned values. The
relaxation threshold is a user-specified value that controls how quickly an agent is able to
relax a solution requirement. For example, if the relaxation threshold is 10, an agent must go
through at least 10 search cycles before relaxing a requirement (unless an explicit constraint
violation is found or no new solution can be generated under the current requirements). This
parameter controls how much search should be done before assuming that no solutions can
be found without relaxation.

Se! AverageI Min I Processing
Cost Cost Cycles
1

Relaxation threshold 10 1644 1577 11
Relaxation threshold 15 1600 1577 15

2
Relaxation threshold 10 1600 1577 10
Relaxation threshold 15 1600 1577 15

3
Relaxation threshold 10 1991 1767 3O
Relaxation threshold 15 1907 1765 46

Table 2: Experimental Results

To simplify the discussion of the results, we first examine a simple, generic, two-agent
example. The agents’ solution spaces over the shared parameters x and y are shown in Figure
3. The agents in the system communicate only declarative constraints and not relationships

t

..........-.

X -- 473
0 X -- 47

Agent A Agent B

Figure 3: Solution Spaces of Agents A and B over x and y

that are procedurally described. For example, let Agent A have a functional relationship
between x and y of the tbrm: {PROCEDURE Calculate-X-From-Y (Y) Return
: = Y+ 1 }. Agent A cannot in/brm Agent B that x will always equal y + 1 because the
information is not represented as a constraint. Of course, this is a very simplistic example
of a functional relationship, in general, functional relationships are more complex, e.g, in
the steam condenser domain, the relationship between parameters water-flow-rate and
head is a function involving domain-specific calculations over locally-defined variables such
as water input temperature, viscosity, and velocity.

97

Agent A can express boundary constraints, e.g., 0 _< x _< 473 from Figure 3, and, if
boundary constraints are available from Agent B, the solution space overlap (the composite
space) can be generated. However, Agent A cannot further constrain the points within its
boundaries to help other agents in their local searches since the required information is
represented functionally. When it evaluates a design initiated by another agent that doesn’t
fulfill the required parameter relationship, it can only reply by indicating that the proposal is
unacceptable without supplying any further information.

if A is the only agent in the system with this type of solution space, it should be the
controlling agent in the system. That is, A should generate proposals and other agents should
send back constraining information that would help to guide A’s local search. In the context
of the extended search operators defined earlier, A should instantiate generate-proposal and
not extend-design. It is highly constrained by its functional relationships among parameters
and can generate designs with the appropriate relationships, but cannot communicate that
knowledge to assist other agents in their local searches. Other agents should instantiate only
extend-design since they are unlikely to generate ~ed proposals with the correct parameter
relationships and are better suited to providing guiding infi~rmation to Agent A. This situation
is exactly that which occurs in the experiments above. PA has a parameter relationship between
water-flow-rate and head that severely constrains the set of acceptable solutions. We see in
Table 2 that the best results are obtained in Experiment Set 2 where PA is the controlling agent
(the only agent generating seed proposals).

In Experiment Set 1, both PA and HEA are initiating designs through seed proposals and
extending each other’s designs. The solutions found under relaxation threshold 10 (RT10) are
not as gt~ad as those in Set 2 because PA is "distracted" by the need to respond (negatively)
to HEA-initiated designs. It therefore generates only half the number of proposals in Set 1
as in Set 2 within 10 processing cycles. After 10 cycles, HEA relaxes a solution requirement
that makes some of the already existing designs immediately acceptable and the system stops.
Although some designs initiated by PA are acceptable, the quality of the designs is not as
gtmd as it would be if PA had generated more seed proposals. This is seen in the Set I
and Set 2 results under relaxation threshold 15 (RT15). These results are identical because
PA generated enough proposals in each case to find identical solutions. Although the time
of creation fi~r individual designs is not represented in the table, the Set 2 solutions were
generated sooner than those in Set 1, but did not become acceptable until relaxation occurred
at cycle 15.

In Experiment Set 3, HEA is the controlling agent with PA responding. Performance is
much worse, both in terms of quality and processing time. This was expected since HEA
has no way of intelligently guiding its proposal generation process and mutually-acceptable
solutions are found in a hit-or-miss fashion. The quality of solutions improves under RT15
because HEA searches longer for high-quality solutions.

Returning to the generic two-agent example discussed above, consider the case where
both agents have functional relationships that cannot be communicated. This forms a very
problematic agent set: the best-case scenario is that by random generation of seed proposals
and extension of designs, eventually the two agents find an overlapping solution, in this
case both agents should instantiate generate-proposal and extend-design since neither has
an advantage in controlling the interactions, if the composite space is large and sparse, any
mutually consistent solution found may be considered acceptable (the relaxation threshold

98

should be very low). On the other hand, if the composite space is small enough and dense
enough that the agents are likely to find a good fit eventually, the relaxation threshold should
be higher. In earlier work (Lander et al. 1991), we named this strategy generate-random-
alternatives and described several other strategies.

7 Negotiatied-Search Strategies

This section examines how a particular negotiated-search strategy, compromise, relates to
solution space characteristics of a set of agents. We narrowly define the compromise strategy
to be a series of negotiatied-search operators in which two or more agents adjust the value of
a shared parameter by sliding the potential value along some ordered scale. As the parameter
value is increased, the utility of the solution is decreased for one agent and increased for
another. An example of compromise is buying/selling a house, where the parameter in
question is the price of the house and the scale is the numeric scale. Note that compromise
includes a synchronized sequence of planned actions (compromise operators) by at least two
agents.

What characteristics make compromise a viable option for a particular agent.’? The first
requirement is that a monotonic relationship exists between utility value and potential values of
a solution parameter: given a utility function, U(pl ...Pn), if the value ofpl increases, the value
of U(pl...p,~) either strictly increases or decreases. If an agent has this characteristic, locally
defining a compromise operator is potentially useful. If two agents share this characteristic
over some Pz and if their utility functions are inversely related over p®, the compromise
strategy can be applied. Their local utilities, UA and UB, can be adjusted in a controlled
manner by sliding the value of Px along the scale until an acceptable intermediate value is
reached.

Compromise can be thought of as a shortcut to iterative applications of extended search
and relaxation operators. By taking advantage of the utility/parameter-value relationship, it
is possible to focus the search on a small section of the space and to skip multiple relax-
ation/search cycles by having agents agree to relax requirements equally on that parameter.
However, the applicability of the compromise strategy depends on the existence of both the
intra-agent utility/parameter value relationship and the inter-agent inverse-utility relationship.

8 Conclusions

In this paper, we introduce the concept of negotiated search, a multi-agent distributed search
paradigm that integrates search and relaxation to enable cooperative solution development.
The TEAM framework has been developed to support negotiated search and is demonstrated
in an implemented application for the parametric design of steam condensers. The application
currently includes seven agents although the experiments in this paper were run with three
agents for simplicity.

In the experiments, we examine the impact of agent and group characteristics on the
selection of operators in negotiated search and specifically focus on two points: 1) how
agent characteristics can be used to select operators that produce the most effective overall

99

performance; and 2) how group characteristics can be used to develop agent sets that take
advantage of inter-agent relationships to improve performance.

We note the influence of an agent’s ability to communicate constraining information
and of the texture of its local solution space on the effectiveness of the agent’s role in
problem solving. Solution space texture includes characteristics such as the size and density
of the space and its intersection with the composite space. In general, we observe that
the best system performance occurs when a tightly constrained agent with little ability to
provide guiding information to other agents has sole control of the initial generation of design
proposals. However, performance is also influenced by solution space texture and by the
degree to which agents have different characteristics.

In looking at group characteristics, we note that a negotiated-search strategy (a coordinated
sequence of relatively simple operators across agents) can take the place of uncoordinated
iterative cycles of search and relaxation if a particular set of conditions exist. We explore the
use of negotiated-search strategies further in (Lander and Lesser 1992).

TEAM has proven to be an effective tool for experimenting with negotiated search. It
provides a flexible environment for testing hypotheses about agent/operator relationships and
the group dynamics of agent sets. These results are important because they provide a concrete
foundation for guiding the design of agents for multi-agent sets, for deciding whether or
not a particular agent is an appropriate candidate for inclusion in a particular set, and for
determining the role an agent should play within a set.

References

[Erman et al., 1980] Lee D. Erman, Frederick Hayes-Roth, Victor R. Lesser, and D. Raj
Reddy. The Hearsay-ll speech-understanding system: Integrating knowledge to resolve
Uncertainty. Computing Surveys, 12(2):213-253, June 1980.

[Fisher and Ury, 1981] R. Fisher and W. Ury. Getting to Yes: Negotiating Agreement without
Giving In. Houghton Mifflin, 1981.

[Fox et al., 1982] M.S. Fox, B. Allen, and G. Strohm. Job-shop scheduling: an investigation
in constraint-directed reasoning. In Proceedings of the National Conference on Artificial
Intelligence, pages 155-158, Pittsburgh, Pennsylvania, August 1982.

[Hewitt, 1986] Carl Hewitt. Offices are open systems. ACM Transactions on Office Infor-
mation Systems, 4(3):271-287, July 1986.

[Klein, 1990] Mark Klein. Supporting conflict resolution in cooperative design systems, in
Proceedings of the 10th Workshop on Distributed Artificial Intelligence, Bandera, Texas,
October 1990.

[Lander and Lesser, 1991] Susan E. Lander and Victor R. Lesser. Negotiated search: A
framework for cooperative design. Technical Report 91-79, Department of Computer
and Information Science, University of Massachusetts, Amherst, Massachusetts 01003,
November 1991.

100

[Lander and Lesser, 1992] Susan E. Lander and Victor R. Lesser. Customizing distributed
search among agents with heterogeneous knowledge. In Proceedings of the First In-
ternational Conference on Information and Knowledge Management, pages 335-344,
Baltimore, Maryland, November 1992.

[Lander et al., 1991] Susan Lander, Victor R. Lesser, and Margaret E. Conneli. Conflict
resolution strategies for cooperating expert agents. In S.M. Deen, editor, Cooperating
Knowledge Based Systems 1990, pages 183-198. Springer-Verlag, 1991.

[Lander, 1993] Susan E. Lander. Distributed Search in Heterogeneous and Reusable Multi-
Agent Systems. PhD thesis, University of Massachusetts, Amherst, Massachusetts, 1993.
In preparation.

[Lesser and Corkill, 1983] Victor Lesser and Daniel Corkiil. The distributed vehicle moni-
toring testbed: A tool for investigating distributed problem solving networks. AIMagazine,
4(3):15-33, 1983. (also Blackboard Systems, R. Engelmore andT. Morgan (eds.), pp
353-386, Addison-Wesley, 1988).

[Meunier, 1988] Kenneth L. Meunier. Iterative respecification: A computational model for
automating parametric mechanical system design. Master’s thesis, University of Mas-
sachusetts, Amherst, Massachusetts 01003, February 1988.

[Pruitt, 1981] Dean G. Pruitt. Negotiation Behavior. Academic Press, 1981.

[Sathi and Fox, 1989] Arvind Sathi and Mark S. Fox. Constraint-directed negotiation of

resource reallocatiops. In Les Gasser and Michael Huhns, editors, Distributed Artificial
Intelligence, Volume 2, pages 163-193. Pitman, Morgan Kaufmann Publishers, 1989.

[Sycara et al., 1991] K. Sycara, S. Roth, N. Sadeh, and M. Fox. Distributed constrained
heuristic search. IEEE Transactions on Systems, Man and Cybernetics, Fall 1991.

[Sycara, 1985] Katia Sycara. Arguments of persuasion in labour mediation. In Proceedings
oft he Ninth International Joint Conference on Artificial Intelligence, pages 294-296, Los
Angeles, California, 1985.

[Werkman, 1990] Keith J. Werkman. Multiagent Cooperative Problem-Solving through Ne-
gotiation and Sharing of Perspectives. PhD thesis, Lehigh University, May 1990.

101

