
MATE: An experiment while you sleep test bed

C. Mason
At Research Branch

NASA Ames Ream’oh Center
MoffettField CA 94035

USA

Collaboration among design systems is rapidly becoming a focus of research in automated
design (Klein 1992) (Lander and Lesser 1992) (Maher et. al. 1993 ). The construction 
collaborative design systems involves issues relating to the integration of heterogeneous
databases and tools, multi-user interfaces, and design documentation, as well as issues of
interagent communication and coordination. Here we focus on tools for exploring issues
related to communication and coordination during the design, construction, and evaluation
of collaborative design systems. The Multi-Agent Test Environment, MATE, is an
"experiment while you sleep," test environment that performs the task of network resource
allocation, experiment initiation, monitoring and termination, and archival of experimental
results. It was developed over the course of three DAI projects, and has proven to be
invaluable in the experimental development and evaluation of collaborative problem solving
systems.

The extended abstract is organized as follows. We first present some background on
MATE - how it evolved, the motivations, and philosophy. Next, a general description of
MATE is presented. The remaining sections present a brief description of the three basic
steps to running experiments with MATE: experiment configuration, network resource
allocation, and experiment execution and recording.

1. BACKGROUND

MATE has evolved over the construction of three DAI systems, NETSEA II - a
collaborative interpretation system for global seismic monitoring for a Comprehensive Test
Ban Treaty, EXPLORE-TEAM - a network of hybrid-architecture T-1 robots for planetary
exploration, and most currently, GNAT - a collaborative scheduling system for Globally
Networked Automatic Telescopes. One generalization that can be made from the experience
with these three widely varying, collaborative systems is that experinaentation with
communication and coordination strategies is critical to the correct and effective
functioning of collaborative problem solving systems. The appropriateness of a particular
strategy for negotiation or cooperation behavior varies according to the structure of the
application, and in general, the usefulness of a particular strategy in an application domain
may be situation dependent. In short, the construction of collaborative problem solving

* This research was supported by a National Research Council Associateship
through the National Academy of Sciences.

103

From: AAAI Technical Report WS-93-07. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



systems requires a great deal of experimentation to sort out exactly what type of
communication and coordination strategies are most effective, and when, or even if they
work at all 1. MATE was created to address this side of collaborative system design.

2. MATE - The Multi-Agent Test Environment

The Multi-Agent Test Environment, MATE, is a collection of experiment management tools
for assisting in the design, testing, and evaluation of collaborative distributed problem
solving systems. MATE provides tools for automatic experiment execution, monitoring,
and archiving of results, thus relieving much of the work involved in monitoring and
organizing the execution of a collaborative problem solving system. Using MATE, the
program designer can run a series of experimental collaborative problem solving scenarios
without human intervention by finding a set of eligible machines and executing pre
configured experimental trial descriptors. Alternatively, an individual experiment may be
run manually, allowing for interaction between the program designer and one or more
single agent debugging environments. MATE thus provides a platform for the collaborative
program designer to investigate alternative representation and reasoning strategies,
protocols for communication and negotiation, or other coordination issues.

The role of MATE in solving a particular problem solving instance can be described by
envisioning the collaborative problem solving software in terms of three layers, the agent,
the communications or network support layer, and MATE. An "agent" is composed of an
interactive process, such as a lisp interpreter, a problem solving module, such as a KBS,
procedure, or other representation, the data set(s), and a communication interface.

The communications layer provides four services to the agents: 1) point-to-point, multi-
cast, and broadcast message delivery, 2) transparent translation between symbolic agent
name and physical workstation address, 3) experiment start synchronization, and 4)
experiment termination notification.

MATE’s primary control tool is "AUTO-MATE," which, without human intervention,
monitors each experimental trial for network, machine, or software failure, and restarts the
trial if necessary and possible. The results of the experiment may be reviewed at the time it
is run, or much later, as each experimental trial is archived for later analysis. These logs
are used not only for gathering performance information, but in debugging the collaborative
distributed problem solver as well.

There are three phases to running experiments: 1) Experiment configuration, 2) network
resource allocation, and 3) experiment execution and recording. Each of these phases is
described below.

2.1 Experiment Configuration
Each experimental scenario must be configured according to the number of agents (and
therefore the number of machines to be used), communication or negotiation policy,
problem solving module, and data sets. The configuration of experiments is done
manually, by specifying a collection of invocation parameters to MATE tools. For
example, in our distributed scheduling system, negotiation strategies may be selected: 1)
direct - agent to agent, 2) indirect - where a third agent monitors the progress of the two

l ln this sense, programming collaborative problem solving systems is no
different than any other type of programming activity.

104



agents involved in the negotiation, and 3) arbitration - where each of the two agents
communicates with an arbitration agent, and abides by the decision of the arbitration agent.
We also have parameters for selecting among inference engines in our problem solving
module, which is represented by a knowledge based system: 1) single - for debugging 
single agent with no communication, 2) nontms - for debugging multiple agents without
use of a TMS system and 3) full-engine - for running multiple agents with the use of 
TMS system.

2.2 Network Resource Allocation
In the network resource allocation phase workstations in the local area network are selected
for the experiments by the program, "NOSE." NOSE is called either from AUTO-MATE,
or run manually. NOSE consults a list of known workstations on the local area network,
and selects a machine for each agent. NOSE tests each workstation to determine if: 1) it
has the proper file system and account access to run the experiment, 2) it has the memory
resources to run the agent, 3) it has sufficient CPU power, and 4) the system is not heavily
loaded by other users (the load threshold being adjustable). NOSE produces a list 
suitable workstations once per experiment, or whenever a negative change in usage patterns
of the workstations is detected during the runs. This was found to be quite sufficient, and
much less expensive than testing the availability of each workstation more frequently as
would occur in a WORM program, for example.

2.3 Experiment Execution and Recording
Once the experiment configuration is in place, and a list of capable machines is created, the
collaborative problem solver may be initiated through the AUTO-MATE control and
monitoring program (implemented as a UNIX csh program), or manually via menu
selections. Typically, manual invocation of the system is performed while debugging new
problem solver modules, for example, as the experimenter is given finer control over
execution and can interact with the single-agent debugging environment, running single-
step, watching problem solver actions, manipulations of data base objects, and so on.

The main purpose of AUTO-MATE is to execute a collaborative problem solving system
over a variety of problem solving scenarios, making sure everything from agent creation to
logging of results goes smoothly. This includes the following activities: 1) ensuring all
agents specified for the problem scenario are up and running - restarting agents whenever
error conditions allow, 2) detecting error conditions, 3) ensuring agent logs are written
properly, 4) verifying that no agent terminates prematurely, and 5) detecting when 
experiment is over.

For each experimental trial, AUTO-MATE begins by releasing a number of remote shell
commands that, after killing off any other stray agent processes, create agents on each of n
workstations, copying the proper load files, data sets, communication rules, and so on
(specified by invokation parameters) for this particular trial. AUTO-MATE then runs the
communications server, watching to ensure it starts successfully. As each agent process
and server is started, a log file is created. This part of experiment execution is subject to
several types of failures, so AUTO-MATE closely monitors the log files for the agents. If
necessary, AUTO-MATE will try to restart one or more agents that did not start, and may
re-run NOSE looking for other available machines.

During problem solving, agents write many intermediate results and run-time statistics
(such as size of working memory, number of messages sent or received and so on) to the
log file as each step of the processing proceeds. A recognizable message is written to the
log file when problem solving has been exhausted, and agents await further messages.
When all agents are finished processing and are waiting for further messages, the AUTO-
MATE monitoring process detects the trial is complete (by observing the distinguishing end

105



message at the end of each log file for a fixed period of time) and terminates the
communication server and agents. The log files for each of the agents and the server are
then copied into the proper place in the directory structure specified for that experimental
trial.

2.4 IMPLEMENTATION
MATE tools use several UNIX-based workstations networked together via ethemet in a
large local-area network. All of the MATE software is programmed in C and UNIX shell
programs. A complete listing of MATE functions may be found in (Mason 1992).

3. SUMMARY

This abstract addresses the issues of agent communication and cooperation from an
experimentalist perspective, and emphasizes the need for tools to aid in the design,
construction, and evaluation of collaborative problem solving systems. The Multi-Agent
Test Environment, MATE, provides a no-hands experimentation testbed, freeing the
collaborative program designer from the tedious chores of resource allocation, archival of
results, and experiment initiation, monitoring, and termination.

REFERENCES

Klein, Mark (1992). Supporting Conflict Management in Cooperative Design Teams,
AAAI-92 Workshop Notes on Cooperation Among Heterogeneous Intelligent Systems,
San Jose.

Landers, S. and Lesser, V. (1992). Negotiated Search: Cooperative Search Among
Heterogeneous Expert Agents, AAAI-92 Workshop Notes on Cooperation Among
Heterogeneous Intelligent Systems, San Jose.

Maher, M.,. Gero, J., and Saad, M.(1993). CAAD Futures "93, Elsevier, New York,
Eds. U. Flemming and S. Van Wyle.

Mason, C. (1992). MATE - A Multi-Agent Test Environment, Technical Report FIA-93-
09, NASA Ames Research Center, AI Research Branch.

106




